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Abstract

Background: Continuous positive airway pressure (CPAP) is a primary mode of respiratory 

support for preterm infants. Animal studies have shown long-term detrimental effects on lung/

airway development, particularly airway (AW) hyper-reactivity, as an unfortunate consequence of 

neonatal CPAP. Since the hyaluronan (HA) synthesizing enzyme hyaluronan synthase-3 (HAS3) is 

involved in various adult pulmonary disorders, the present study used a neonatal mouse model to 

investigate the role of HAS3 in CPAP-induced AW hyper-reactivity.

Methods: Male and female neonatal mice were fitted with a custom-made mask for delivery 

of daily CPAP 3 h/day for 7 days. At postnatal day 21 (two weeks after CPAP ended), airway 
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(AW) hyper-reactivity and HAS3 expression were assessed with and without in vitro HAS3 siRNA 

treatment.

Results: MRIs of 3-day-old mice confirmed that CPAP increased lung volume with incrementing 

inflation pressures. CPAP increased AW reactivity in both male and female mice, which was 

associated with increased airway smooth muscle and epithelial HAS3 immunoreactivity. CPAP did 

not affect HA accumulation, but HAS3 siRNA reversed CPAP-induced AW hyper-reactivity and 

reduced HAS3 expression.

Conclusions: These data in mice implicate a role for HAS3 in long-term effects of CPAP in the 

developing airway in the context of preterm birth and CPAP therapy.

INTRODUCTION

Airway (AW) hyper-reactivity associated with asthma and wheezing disorders represent 

major long-term respiratory morbidities of former preterm infants 1–3. Supplemental O2 and 

continuous positive airway pressure (CPAP) have become the primary modes of respiratory 

support for preterm infants with respiratory distress 3, 4. While clinical practice has shifted 

towards moderate O2 levels that has reduced lung parenchymal damage, supplemental O2 

therapy is considered a major contributor to the pathogenesis of AW hyper-reactivity, which 

has been corroborated by numerous animal studies 5–9. The use of CPAP is certainly 

beneficial for early alveolar development but the long-term effects beyond the period of 

CPAP administration are not clear. Using a mouse model, we showed previously that a 

week of neonatal CPAP (delivered daily to unanesthetized mice) causes a long-term (weeks) 

increase in AW reactivity beyond the CPAP period 10. Thus, it is possible that although 

CPAP is beneficial in the context of alveolar expansion and lung growth in prematurity, 

there may be detrimental long-term effects on the bronchial AW. What is less clear are the 

underlying mechanisms by which CPAP effects may occur in the developing airway.

While a number of mechanisms could contribute to CPAP/stretch effects in the 

premature AW, there is increasing interest in interactions between extracellular matrix 

(ECM) components and AW cells in mediating and modulating structure and function 
11–14. Emerging data in adult AW research suggest a role for hyaluronan (HA), a 

major extracellular matrix (ECM) component composed of repeating disaccharides of D-

glucuronic acid and N-acetyl-D-glucosamine 13–15. Three synthase isoforms (HAS1, HAS2 

and HAS3) synthesize HA, and these enzymes they are in part distinguishable by the 

molecular weight (MW) of HA they synthesize 11. HAS1 and HAS2 synthesize high 

MW HA (HAHMW; >500 kDa), which has anti-inflammatory properties whereas HAS3 

synthesizes the smaller pro-inflammatory and pro-proliferative low MW HA (HALMW; 

<500 kDa) 11, 12, 14, 16. Conversely, a number of hyaluronidases (HYALs) degrade HA 
12, 14, which can lead to HALMW signaling of down-stream effectors including activation of 

receptors such as CD44, TLR4, inter-α-inhibitor (IαI) as well as inflammatory pathways. 

Although HA synthesis, degradation and signaling are not entirely understood in the 

AW, increased HALMW has been associated with lung injury 17, 18, COPD 19, asthma 
20, 21, and pulmonary fibrosis 18, 22. Less is known regarding HA in the developing lung. 

Preterm infants who died within 8 months of birth exhibited significantly higher pleural 

HA expression, with even higher expression in infants exposed to intrauterine infection 

Mayer et al. Page 2

Pediatr Res. Author manuscript; available in PMC 2022 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



23. In premature rabbits, hyperoxia increases lung HA expression 24, and in premature 

primates, increased lung HA deposition was associated with severity of respiratory distress 

and duration of mechanical ventilation 25. Mechanical ventilation also increased pleural 

liquid HA expression in adult rabbits 26, 27 whereas in adult mice, mechanical ventilation 

and subsequent lung injury was associated with increased HALMW and HAS3 mRNA, 

which was not observed in HAS3 KO mice 17, 28, 29. Collectively, these data suggest 

that altered HA functions could promote pulmonary distension during the neonatal period 

in the developing lung. Whether such effects are relevant to bronchial AW is unknown. 

Significance lies in the potential for the static intraluminal stretch of CPAP superimposed on 

the mechanical forces of oscillatory breathing transferred to the bronchial AW via tethered 

parenchyma in the context of CPAP administration in prematurity. In the present study, 

therefore, we tested the hypothesis that the long-term (weeks) increase in AW reactivity 

following neonatal CPAP in mice is associated with increased airway HAS3 and HA 

expression, and whether these effects of CPAP can be reversed by inhibiting HAS3.

METHODS

Subjects:

Time-pregnant mice (C57BL/6J) were purchased from a commercial vendor (Charles River, 

Willmington, MA). The day after birth (P1), both male and female mouse pups were 

randomized to be treated with or without CPAP (in 21% O2) for the first week of postnatal 

life as described previously 10, i.e. until P7. Two weeks after CPAP ended (P7), mice 

were euthanized and the lungs prepared for: 1) measurements of AW reactivity using 

the precision lung slice preparation method 10; 2) rtPCR for changes in whole-lung gene 

expression; 3) immunohistochemical analysis of HAS3 and αSM-actin expression; 4) lung 

HA accumulation; and 5) interference of HAS3 using siRNA. All procedures were carried 

out in accordance with the National Institute of Health (NIH) guidelines for care and use 

of laboratory animals and were approved by the Animal Care and Use Committee at Case 

Western Reserve University.

Neonatal CPAP:

Following the day of birth (P0), the litter was divided in half, and both male and female pups 

were randomly assigned to receive one of four levels of CPAP (0 (control), 1, 3 or 6 cmH2O) 

starting the following day (P1) for the first 7 postnatal days as previously described 10, 30. 

The pups and the dam were maintained in a temperature controlled room during a 12:12 hr, 

light:dark cycle and provided food and water ad lib.

The details of the neonatal CPAP apparatus and technique have been previously published 
10. Briefly, each day mice were separate from the dam and fitted with a custom made mask 

to administer CPAP while resting on a temperature controlled heat pad (Gaymar T/pump, 

Orchard Park, NY). Animals were unanesthetized and spontaneously breathing. The mask 

was designed with an entry port into the mask to deliver humidified air, which passed 

through to an exit port connected to a downstream manometer. An adjustable leak in the 

tubing between mask and manometer enabled continuous flow through the mask, while also 

allowing fine adjustment of the back-pressure to the mask and thus, to achieve a desired 

Mayer et al. Page 3

Pediatr Res. Author manuscript; available in PMC 2022 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



level of CPAP (see S.1). A custom-made system allowed delivery of CPAP to multiple mice 

simultaneously. CPAP was administered for 2 hr on the first day to minimize the duration 

the pups were separated from the mother, but was increased to 3 hr/session for the following 

6 consecutive days (7 days total). Control mice were also separated from the dam, and 

underwent the same procedures of mask fitting, heat pad and identical airflow, but did not 

receive CPAP (i.e. 0 cmH2O). After each session of CPAP, the mask was removed, and the 

pups were returned to the mother to resume normal rearing. For any one animal, the same 

level of CPAP was repeated daily for 7 consecutive days from P1 through P7.

At the end of the 7 days of CPAP, the mice were allowed an additional 2 weeks of 

un-interrupted maternal care at which time the pups were prepared for assessment of 

AW reactivity to methacholine challenge using the in vitro precision-cut living lung 

slice preparation. Additional mice were used for rtPCR on whole lung homogenates, HA 

expression using fluorophore-assisted carbohydrate electrophoresis (FACE) and also thin 

sections for immunohistochemistry.

Precision lung slice preparation and measurements of AW reactivity:

The lung slice technique has also been previously described 10. At P21 (2 weeks after CPAP 

treatment ended), mice were sacrificed via anesthetic overdose (intraperitoneal injection 

of a ketamine/xylazine mix, 100 mg/kg/10mg/kg, respectively) and prepared for in vitro 
measurements of AW reactivity to methacholine using the lung slice method. To prepare 

slices, the mouse was placed supine, the trachea cannulated (0.58 mm PE tubing, Clay 

Adams, Sparks, MD), the chest cavity opened, and ~0.8ml liquefied agarose (Invitrogen, 

Carlsbad, CA; 38°C) was gently injected to inflate the lungs. The preparation was then 

placed en bloc in the refrigerator for 30 minutes to allow the agarose to cool and gel. The 

entire lung was then removed, and sliced into 300μm sections using a vibratome (VT1000, 

Leica Microsystems, Wetzler, Germany). Slices were immersed in DMEM + Pen/Strep (Life 

Technologies, Carlsbad, CA) and allowed to recover overnight in an incubator (5% CO2; 

37°C).

The following day, lung slices were rinsed in HBSS and placed in an in vitro recording 

chamber for live imaging of AW responses to methacholine challenge. Slices were covered 

with a thin lightweight sheet of mesh and a coverslip held in place with silicone grease 

(Molykote, Dow Corning, Midland, MI). The chamber was mounted on a microscope 

(DMLFS, Leica Microsystems, Wetzler, Germany) and perfused continuously (7ml/min) 

with HBSS at room temperature. A digital video camera (Rolera Fast, QImaging, Surrey, 

Canada) attached to the microscope was used to identify individual AWs under 5X 

magnification. After an initial 3 minute period of baseline perfusion, slices were exposed 

to increasing doses of methacholine and changes in AW lumen area were recorded. The 

extent of AW constriction in response to increasing doses of methacholine (0.25, 0.5, 1, 2, 

4, and 8µM; Sigma Aldrich, St Louis, MO) was determined at the end of a 2 min period of 

exposure at each dose. ImageJ analysis software was used to calculate the luminal area (in 

pixels) and the extent of AW constriction was assessed with greater decrease in lumen area 

interpreted as greater reactivity.
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Individual AWs were chosen at random and the response to methacholine was performed 

on one AW/lung section, although measurements were typically collected from 1–2 sections 

per animal. Thus, treatment groups consisted typically of 1–2 AWs/animal, 2–3 animals per 

litter, 2–3 litters per group. AWs with a baseline area above 0.05 mm2 were excluded for 

analysis since we showed previously they are unaffected by CPAP 10.

Magnetic resonance imaging (MRI):

In a separate group of 3-day old mice (n=4), MRIs of the chest cavity were obtained 

for confirmation that our CPAP technique does lead to inflation of the lung rather than 

insufflation of the gastrointestinal systems. Individual mice were removed from the litter 

and placed in a customized restraint device which could be inserted into the bore of the 

9.4T Vruker Biosepc small animal MRI. Unanesthetized, spontaneously breathing mice 

were fitted with the same mask used to deliver CPAP (see S.1), which was held in place 

with masking tape, inserted into the bore of the MRI, and animals allowed 2–3 minutes to 

settle before being imaged. The mask was attached to the manometer and for adjustable leak 

with aquarium tubing, which was then positioned next to the animal resting inside the MRI. 

Tubing to the mask used to control flow was extended externally to the neighboring room. 

Air flow to the mask was gradually increased to achieve inflation pressures of 1, 3, 6, 8 

and 9 cmH2O. A 35 mm inner diameter mouse volume coil was used to acquire all of the 

images. At each inflation pressure, coronal multi-slice Fast Imaging with Steady-state Free 

Precession (FISP) images of the chest cavity were acquired with approximately 1-second 

scan time. MRIs were collected from 4 animals, and total “lung” volume at each inflation 

pressure was calculated using pre-determined calibration equations. Representative MRI 

scans and quantification of lung volume are provided in Figure 1.

rtPCR:

Whole lung tissue was removed and frozen for later analysis of mRNA expression using 

qRT-PCR. RNA was extracted from the frozen lung tissue using RiboZol (VWR, Radnor, 

PA) digestion, phenol chloroform extraction, and quantified using Nanodrop spectroscopy. 

cDNA was then generated using qScript cDNA synthesis kit (Quanta Biosciences) through 

reverse transcription. Real time qPCR was performed with Taqman probes for HAS1–3, 

HYAL (1–3), IαI, and HA binding protein (HABP2) CD44, TLR4, RHAMM, and TSG6 

(Thermo Fischer Scientific, Waltham MA) and compared to GAPDH (Thermo Fisher) as 

the housekeeping gene using PerfeCTa qPCR Fastmix, UNG, ROX (Quanta Biosciences). 

The catalog number for PCR probes were as follows: HAS3 – Mm00515009_m1; HAS1 

– Mm03048195_m1; CD44 – Mm01277161_m1; TLR4 – Mm00445273_m1; IαI – 

Mm434529_m1; RHAMM – Mm00469183_m1; TSG6 – Mm00493736_m1. Duplicates 

were run for each sample. The Fold-changes were calculated using 2-ˆΔΔCT method and 

StepOne software v2.3 (Applied Biosystems). Statistical comparisons were done using the 

ΔCT values.

Immunohistochemistry for Has3 expression and αSM-actin expression:

Precision cut lung sections 150 µm thick were obtained from agarose inflated lungs as 

described above. Slices were placed in 4% paraformaldehyde overnight. The following day, 

slices were stained free floating in 24 well plates by first rinsing them in PBS 3×5 min, 
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and then incubating in blocking buffer (1% BSA in PBS) for 30 min. at room temperature. 

Slices were then incubated overnight at 4° C in Has3 antibody (1:100, Novus Biologicals, 

Centennial, CO), and αSM-actin antibody directly conjugated to cy3 (1:100 Sigma Aldrich, 

St. Louis, MO) diluted in blocking buffer. The following day, slices were again rinsed in 

PBS 3×5 min. and then incubated in Donkey anti rabbit Alexa 488 secondary antibody 

(1:200, Thermo Fisher Scientific, Waltham MA) for 2 hrs at room temperature. The slices 

were rinsed in PBS 3×5 min and then stored in Vectashield mounting media (Vector 

Laboratories, Ontario, Canada) until imaging.

Slices were imaged for expression of HAS3 and αSM-actin around the airway using a 

Leica TCS SP8 confocal microscope at 40X magnification at 1024 × 1024 resolution. 

Argon and 561 diode lasers were used to image Alexa 488 and cy3 emission. To allow 

for a few saturated pixels, gain and offset settings of the photomultiplier were calibrated 

as per the manufacturer’s recommendations. A z-stack was captured for each HAS3 and 

αSM-actin stained airway image. All laser and gain settings were kept consistent for all 

images collected. No more than 3 airways were imaged per lung section.

Airway HAS3 and aSM-actin quantification:

Image analysis was performed after loading the airway images into ImageJ and splitting the 

red and green channels. The background was corrected to the same level for all images. 

The airway was then isolated within the image. Positive staining for HAS3, was identified 

by adjusting the threshold equally on all images, and then quantifying the area of positive 

staining. The area of positive staining was then normalized to airway lumen circumference. 

This process was repeated for αSM-actin. For both Has3 and αSM-actin, three z-stack 

images located in the center of the airway were analyzed and averaged to provide one data 

point per airway.

HABP immunoreactivity:

At P21 mice were sacrificed by an anesthetic overdose as described above. The lungs 

were then inflated with a 4% paraformaldehyde solution in 0.2 M phosphate buffer 

supplemented with 1% cetylpyridinium chloride (CPC). Lungs were inflated at a pressure 

of 25 cmH2O for 10 min with a cannula secured into the trachea, which was then tied 

off, and the lungs were post-fixed overnight. The lungs were then paraffin imbedded, 

and 5 µm thick sections were cut and mounted onto glass slides. For staining, slides 

were first deparaffinized, rehydrated in PBS for 15 min, and then incubated in blocking 

buffer (1% BSA in PBS) for 30 min. at room temperature. Following blocking, slides 

were incubated for 45 min. at room temperature in HABP antibody (Millipore, Burlington, 

MA) diluted 1:100 in blocking buffer, rinsed in PBS 3×5 min., and then incubated in 

strepavidin conjugated Alexa 488 (1:500, Thermo Fisher Scientific, Waltham MA) for 1 

hr. at room temperature. After staining, the slides were rinsed in PBS 3×5 min and then 

coverslipped with Vectashield mounting media (Vector Laboratories, Ontario, Canada) until 

imaging. Sections were imaged on a Leica DMLP microscope (Leica microsystems, Buffalo 

Grove, IL), and captured using a Qimaging Retiga EXi camera and Qcapture pro software 

(Teledyne photometrics, Tucson, AZ). Images were analyzed using ImageJ as described 

above.

Mayer et al. Page 6

Pediatr Res. Author manuscript; available in PMC 2022 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fluorophore assisted carbohydrate electrophoresis of glucosaminoglycans (FACE) and 
Purple Jelley HA Assay:

At P21 animals were sacrificed by overdose of anesthesia as described above. The lungs 

were removed, flash frozen, and stored at −80° C. FACE analysis was done as described 

previously 31. Briefly, samples we digested overnight at 60° C in proteinase K (1 mg/ml) 

(from Thermo Fisher Scientific, Waltham, MA), precipitated in 75% ethanol, and spun 

at 14,000 g for 10 min. twice. The resulting pellets were then resuspended in 35 µL of 

100 mM ammonium acetate and then digested with either 25 mU chondroitinase ABC 

(Sigma Aldrich, St. Louis, MO), or 2.5 mU Streptomyces Hyaluronidase (Sigma Aldrich, 

St. Louis, MO) at 37° C overnight. They were then precipitated in 100% ethanol, and spun 

at 14,000g for 10 min. twice. The samples were lyophilized using a speed vac (Eppendorf, 

Vacufuge plus ) at 60° C for 2–3 hours under vacuum, and then rehydrated and labeled 

with 2-aminoacridone (AMAC, Thermo Fisher Scientific, Waltham, MA) (6.25 mM in a 

solution of DMSO, sodium cyanoborohydrate and acetic acid) at 37° C for 18 hrs. in the 

dark. The samples were separated on a 30% acrylamide gel at 4° C at 500 V for 1–1.5 hrs. 

The resulting gel was imaged using an Imager with UVB light (Chemidoc-it2, UVP, Upland, 

CA), and analyzed using ImageJ software.

The Purple Jelley Hyaluronan Assay (Biocolor, Carrickfergus, County Antium, UK) was 

performed using the manufactures instructions. Briefly, the samples were digested in 

proteinase K, and the HA was precipitated and washed before mixing with the dye Stain-all. 

The absorbance of the dye was then read using a microplate reader (Vmax, Molecular 

Devices LLC, San Jose, CA) and compared to a standard curve to quantify the amount of 

HA present in each sample.

siRNA administration:

Since HAS3 mRNA and protein expression were increased following CPAP, additional 

experiments were done to test whether blocking HAS3 via targeted siRNA treatment would 

reverse airway reactivity. Two different HAS3 siRNAs [Thermo Fisher, Waltham, MA] or 

scrambled siRNA [Thermo Fisher Scientific, Waltham, MA] were added to the well plates, 

which contained the lung slices for the respective groups. P21 day old mice were sacrificed 

and lungs prepared for measurements of airway reactivity as described above. However, 

immediately after lung sections were sliced using the vibrotome, individual sections of the 

same lung were separated between 3 separate wells (~3–4 slices/well) containing DMEM 

+ Pen/strep cocktail, and each well was then randomly chosen to receive either 4 nM 

of siRNA, scramble siRNA, or no treatment (Ctrl). Individual slices were incubated for 

48 hours at 37° C in tissue culture. Incubations were repeated using a second siRNA, as 

well as for immunohistochemical analysis of epithelial HAS3 expression using confocal 

microscopy. The treatment groups included mice from both control and CPAP (i.e. 6 groups 

total, repeated with a second siRNA). After the incubation period, the slices were prepared 

for live imaging of AW responsiveness to methacholine challenge, whereas others were 

prepared for immunohistochemistry and confocal microscopy.
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Data Analysis:

Statistical comparisons of responses to methacholine between control and different levels of 

CPAP treated groups were made using a three-way, repeated measures ANOVA (SigmaPlot, 

Systat Software Inc. San Jose, CA). Comparisons for IHC and rtPCR between control and 

6 cm H2O CPAP were performed using a t-test. Differences were considered significant 

at p<0.05. Sample sizes for animals/airways were determined from our prior studies and 

subsequent power analysis.

RESULTS

MRI of neonatal mice receiving CPAP:

MRI analysis was used to visualize changes in lung volume in 3-day old, un-anesthetized, 

spontaneously breathing mice (n=4 mice). Lung volume increased with increasing inflation 

pressures (i.e. CPAP) up to 9 cmH2O (Fig. 1A). Representative images of a 3-day old mouse 

at progressively increasing levels of CPAP are also shown (Fig. 1B-D). These data validated 

our CPAP apparatus.

P21 airway reactivity to methacholine challenge

Neonatal CPAP resulted in a long-term increase in AW reactivity in both male (Fig. 2A) 

and female (Fig. 2B) mice, as indicated by the larger decrease in AW lumen area with 

increasing doses of bath-applied methacholine. In males, although a week of 1 or 3 cmH2O 

CPAP tended to increase AW reactivity compared to untreated control mice, only 6 cmH2O 

was statistically different from control mice. However, in females, there was a significant 

increase in airway reactivity with as little as 1 cmH2O (and even greater effects with 3–6 

cmH2O). Since AW reactivity was increased in both male and female mice with 6 cmH2O, 

this level of CPAP was used for the rest of the studies involving males.

Lung rtPCR:

In whole lung homogenates, mRNA levels for enzymes involved in HA synthesis (HAS1, 

2, and 3), degradation (HYAL1, 2, and 3) and several proposed signaling components 

(CD44, TLR4, IαI, RHAMM, and TSG6), as well as HABP2, were assessed 2 weeks after 

CPAP (6 cmH2O) treatment ended (Fig. 3). CPAP-exposed lungs showed increases in HAS2 

and HAS3 mRNA, whereas HAS1 was not significantly different from control mice (Fig. 

3A). CPAP also increased HABP2, TLR4, RHAMM and TSG6, whereas HYAL1, HYAL2, 

HYAL3 as well as CD44, and IαI were not significantly different from control (Fig. 3B,C).

Airway HAS3 and αSM-actin expression:

Since CPAP (6 cmH2O) increased lung HAS3 mRNA expression, we investigated whether 

it correlated with increased presence of protein using immunohistochemistry (Fig. 4). 

HAS3 immunoreactivity was located predominantly in AW epithelium, and its expression 

was increased following CPAP (Fig. 4A). Similarly, αSM-actin was also increased 

following CPAP (Fig. 4B), but was not notably co-localized with HAS3 (Fig. 4C, inset). 

Representative examples of HAS3 and αSM-actin staining are also provided (Fig. 4C).

Mayer et al. Page 8

Pediatr Res. Author manuscript; available in PMC 2022 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HA quantification:

Several techniques were used to quantify total HA expression in lung tissue using FACE 

and a commercially available ELISA-like assay of whole-lung homogenates (Fig. 5A-B), 

as well as immunostaining for HABP (see S2). Of all three methods used to quantify HA, 

neither method was able to detect differences between control and CPAP treated mice. 

Further analysis of another glycosaminoglycan (chondroitin sulphate: 0S, 4S, 6S, and total 

CS (0S+4S+6S)) also failed to reveal a long-term effect of CPAP (Fig. 5A).

siRNA effects on AW reactivity and HAS3 expression:

In P21 day old male mice, lung slices incubated for 48 hrs with two different HAS3-targeted 

siRNAs showed reversal of CPAP-induced AW hyper-reactivity (Fig. 6A). Both siRNAs 

were effective, and their magnitudes of AW reactivity were similar to control treated mice. 

Scrambled siRNA however had no effect on CPAP exposed mice (Fig. 5A) or on the 

magnitude of AW reactivity of control mice who had lungs exposed to scrambled siRNA 

(data not shown). To confirm specificity of siRNA treatment, we randomly chose siRNA#1 

to confirm successful knock-down of epithelial HAS3 expression in CPAP treated mice 

(Fig. 5B). Similarly, scrambled siRNA did not affect the CPAP-induced increase in HAS3 

expression. Representative images are also provided in S3.

DISCUSSION

Sex- and dose-dependent effects of CPAP on airway hyper-reactivity:

The neonatal mouse model used in the current study is advantageous in terms of 

understanding stretch and lung distension effects on human postnatal airway development. 

The newborn mouse lung is at the saccular stage of development 32 and comparable to an 

infant born prematurely at 26–28 weeks gestation. We were also able to confirm using MRI 

of neonatal mouse lungs that clinically relevant levels of CPAP results in lung inflation 

(supplemental fig. 2). The persistence of airway hyper-reactivity in this mouse model up to 

2 weeks post-CPAP treatment is translationally relevant to the approximate timing of when 

wheezing manifests in former preterm infants, many of whom would likely to have been 

on CPAP or other forms of positive pressure support while in the NICU. Similar effects 

on AW reactivity have been demonstrated in neonatal rats that received high intermittent 

positive pressure (IPP) while anesthetized daily, intubated and mechanically ventilated 33. 

In our non-invasive neonatal CPAP mouse model, however, the AW hyperreactivity likely 

isn’t associated with significant lung injury since there was no macrophage infiltration and 

alveolar simplification was minimal 30. In this model, however, daily lung distension alone 

during the early neonatal period can have long-term unintended consequences on airway 

development.

Our findings of persistent increased AW reactivity are relevant towards distinguishing the 

early effects of CPAP in prematurity for alveolar expansion and maintenance of oxygenation 

vs longer term detrimental effects on the bronchial airways. However, the effects of CPAP 

appear to be sex-, age- and context-specific. For example, CPAP reduced AW reactivity 

in adult humans with asthma 34 and in another study in patients with sleep apnea 35, 

suggesting CPAP may be beneficial when combined with other underlying respiratory 
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complications. Further, in 7–8 weeks old un-anesthetized ferrets, continuous (24hrs/day, 

4 days) or nocturnal (12hrs/day) CPAP reduced AW responses to acetylcholine 36 suggesting 

CPAP effects could be very different depending on the stage of lung development. In the 

present study, at the highest level of CPAP (6 cmH2O), both female and male mice were 

significantly hyper-reactive compared to corresponding untreated control mice, although 

females become more reactive at even lower levels of CPAP (1 cmH2O) than males. Given 

the young age of the animals, it is less likely that hormonal factors per se account for these 

sex differences in sensitivity to CPAP, although a comprehensive exploration is beyond the 

scope of this study. We also previously showed sex-specific differences in the effects of 

CPAP during development with AW hyper-reactivity affecting males early in development 

(at the time of CPAP), whereas there is a delayed manifestation of AW hyper-reactivity in 

females 10. It was noted that earlier effects of CPAP on males implies greater sensitivity than 

females, although in the human infant, despite preterm boys expressing increased risk for 

BPD (and mechanical ventilation) while in the NICU 4, former preterm girls tend to exhibit 

a higher prevalence of respiratory morbidity as teenagers 37. Collectively, these data suggest 

the effects of CPAP on AW reactivity are complex and likely reflect several factors including 

duration, intensity and the experimental setting used to deliver pressure to the lung, as well 

as developmental influences. The importance of sex and the impact of respiratory support 

on pulmonary development should not be ignored and must be an important consideration in 

both animal and clinical research.

Increased airway HAS3 and aSM-actin:

A notable effect of CPAP was the increased HAS3 and HABP mRNA from whole-lung 

homogenates. Further, AW hyper-reactivity following neonatal CPAP was associated with 

increased epithelial HAS3, although we were unable to confirm increased HA accumulation 

in lung tissue per se. This suggests that CPAP may not have affected the stable pool of 

constitutive HA, but does not rule out a possible effect on the rate of HA turnover via 

synthesis and degradation. HA is a major ECM component 13–15, which is synthesized via 

membrane-bound synthases with a significant prevalence of HA within and around airway 

smooth muscle, suggesting credible signaling pathways exist between HA and smooth 

muscle. In the present study, technical limitations prevented determination of HA size; 

however, since HAS3 synthesizes low molecular weight HA (<500 kDa) 11, 12, 14, 16, the 

upregulated expression of HAS3 following CPAP implies HA comprises predominantly the 

low MW isotype (HALMW). An inability to detect HALMW in lung tissue could suggest 

it is secreted into bronchial fluids. HALMW can also be formed by fragmentation of high 

molecular weight HA (HAHMW) via hyaluronidases (HYAL) 38, although we didn’t detect 

significant changes in HYAL mRNA following CPAP. However, this does not necessarily 

rule out a role of HALMW produced by breakdown of HAHMW via HYAL in the developing 

airways or even with CPAP.

CPAP also caused a long-term increase in airway smooth muscle as shown by increased 

αSM-actin immunoreactivity. Increased ASM and metabolic activity of immature lungs 

stimulated by stretch 39 would be consistent with accelerated lung growth 32, 40 as well 

as exaggerated and sustained changes in ASM structure/function leading to thicker, more 

reactive airways, potentially manifesting as wheezing/asthma later in life. Preterm infants 
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that died within 32 weeks of birth exhibited significantly higher pleural HA expression, 

which was even higher in infants exposed to intrauterine infection 23. Increased HA levels 

were associated with respiratory distress severity in a preterm primate model 25. Lung 

HALMW expression and HAS3 mRNA are increased in mice with ventilator-induced lung 

injury, worsened at higher tidal volumes, but attenuated in HAS3 KO mice 17. Mice infected 

with RSV showed increased HALMW and IαI in BALF following subsequent chloride 

exposure, which was associated with increased AW reactivity 41. These data associate 

higher total HA, including a predominance of HALMW with perinatal lung disease, but 

the mechanisms by which HA acts on the target cell types are unclear. In the adult lung, 

HA regulates inflammation, ASM growth and migration as well as vascular integrity and 

angiogenesis. Increased HALMW has been demonstrated in different pathological states 

including vascular leakiness 42, 43, cancer 44, 45, pulmonary hypertension 46, lung injury 
17, 18, COPD 19, asthma 20, 21, and pulmonary fibrosis 18, 22. Overall, there is little doubt 

that dysregulation of HA, particularly increased expression of HALMW is important in the 

pathophysiology of lung disease including that involving bronchial airways.

The mechanisms by which HAS3 contributes to CPAP-induced AW hyper-reactivity are 

less clear. We expected HAS3-derived HALMW to be increased, but technical limitations 

impaired detection of HA size. Of interest, however, was the increased HAS3 was 

expressed almost exclusively in the epithelium in conjunction with increased αSM-actin. 

i.e. HAS3 was not co-localized with smooth muscle, which we had in fact expected. 

These findings suggest there may be a complex epithelial – HAS3 – smooth muscle 

paracrine signaling mechanism underling CPAP-induced AW hyper-reactivity. Regardless, 

HAS3 does appear to be important in CPAP effects given our findings that siRNA treatment 

reverses CPAP-induced AW hyper-reactivity, which was associated with decreased epithelial 

HAS3 expression. These data are consistent with findings in other conditions. Specifically, 

increased HAS3 mRNA has been associated with bronchial epithelial cell signaling with 

lung fibroblasts in asthmatic children 47. In animal models, lung HALMW expression and 

HAS3 mRNA are increased in mice with ventilator-induced lung injury, which is worse at 

higher tidal volumes, but attenuated in HAS3 KO mice 17. Similarly, inhibition of HAS3 

blocked ventilator/sepsis-induced lung injury in vivo 28 and in vitro models of lung stretch 
29.

CPAP also increased AW smooth muscle expression. Although we were unable to assess 

HALMW, prior studies have shown HA and or mechanical stretch of lungs can cause smooth 

muscle proliferation 33 and affect airway smooth muscle cell calcium signaling 48, 49. These 

observations could explain the CPAP-induced AW hyper-reactivity, and increased HAS3 and 

smooth muscle that lasts even up to 2 weeks after CPAP treatment ended. Further studies are 

necessary to investigate these potential pathways in greater detail.

CONCLUSIONS:

In conclusion, in our novel neonatal mouse model, we find that clinically relevant levels 

of CPAP cause a persistent increase in AW reactivity via an HAS3-dependent mechanism. 

Further work is needed to understand the mechanistic pathways contributing to the AW 

hyper-reactivity to determine potential longer-term consequences of neonatal CPAP in 
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preterm infants with respiratory distress syndrome. Specifically, how CPAP could contribute 

to the pathophysiology of lung function in the presence of other clinically relevant scenarios 

will be an important step forward in understanding these complex interactions, and whether 

HAS3 could be a viable target to treat wheezing disorders in former preterm infants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Impact:

• Neonatal CPAP increases airway smooth muscle and epithelial HAS3 

expression in mice

• CPAP-induced airway hyperreactivity is modulated by HAS3

• These data enhance our understanding of the role mechanical forces play on 

lung development

• These data are a significance step toward understanding CPAP effects on 

developing airway

• These data may impact clinical recognition of the ways that CPAP may 

contribute to wheezing disorders of former preterm infants
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Figure 1: 
Mean lung volume (A) and representative coronal FISP MRI images of the chest cavity 

from a 3 day old, unanethetized spontaneously breathing mouse while on various levels of 

acute CPAP (B-D, 0, 3, and 6 cmH2O, respectively). Values in A are means ± 1 SEM. Note, 

for imaging purposes, lung volumes were assessed at inflation pressures up to 9 cmH2O. 

For each scan, the animal was held at a given level of CPAP for ~60 seconds for image 

acquisition before CPAP was then increased to the next inflation pressure (n=4 mice).
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Figure 2: 
Airway (AW) responses to methacholine challenge in the in vitro living lung slice 

preparation from 21 day old male (A) and female (B) neonatal (P1–7) mice were pre-treated 

with or without CPAP for 7 days. Treatment groups consist of control (Ctrl, no CPAP, solid 

circles/lines) and 1 (open circle), 3 (grey circle), and 6 cmH2O (solid circle, dashed lines) 

CPAP. Values are expressed as fraction of baseline lumen size. The smaller lumen size 

at increasing concentration to methacholine signifies increased AW reactivity. *indicates 

significant difference in the slope of the response between Ctrl and CPAP animals (N=7–10 

airways from 4–5 mice/group; *p<0.05 vs Ctrl).

Mayer et al. Page 17

Pediatr Res. Author manuscript; available in PMC 2022 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Long-term (at P21 days) effects of CPAP (6 cmH2O) on lung mRNA expression of various 

(A) hyaluronan synthases (HAS) as well as hyaluronan binding protein-2 (HABP2), (B) 

hyaluronidases (HYAL), and (C) various HA-associated signaling pathways. Note the 

increased HAS3 mRNA expression two weeks after CPAP treatment ended. Data are 

expressed as fold change from control mice. *p<0.05 vs ctrl; bars are mean ± SEM and 

open symbols are values from individual lungs. (n=15–17 lungs/group).
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Figure 4: 
Changes in epithelial HAS3 (A) and αSM-actin (B) immunoreactivity in P21 day old male 

mice, two weeks after CPAP (6 cmH2O) treatment ended. Note the increase in HAS3 

(A) and αSM-actin (B) immunoreactivity following CPAP. Representative images of lung 

sections from a control (C, i-iii) and CPAP (iv-vi) treated mouse are provided, including 

high resolution images (inset, vii-ix) of the white box regions from the CPAP mouse. Note, 

HAS3 (green) was not co-localized with airway αSM-actin (red). *significantly different 

from control mice (p<0.05). (n=8 animals/group).
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Figure 5: 
Quantification of total (A, i-v) chondroitin sulphate (CS, and its constituents: 0S, 4S and 

6S) and (B, i-iii) total HA using FACE (B, i) and commercially available (ELISA-like) 

Purple Jelley Assay (B, ii) of P21 day old male mice. Neither total lung HA or any CS 

were affected by CPAP using either FACE analysis of whole lung homogenates (A, i-iv) 

or by ELISA-like assays (B, i-iii). Representative gels are also provided (A, iv and B, ii). 

(n=10–12/group).
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Figure 6: 
Effects of siRNA treatment on (A) CPAP-induced AW reactivity and (B) epithelial HAS3 

expression in P21 day old male mice, two weeks following neonatal CPAP (6 cmH2O). 

Treatment groups comprise in vitro exposure (48 hrs incubation) of two different siRNAs 

targeted to HAS3 with a scrambled siRNA sequence. Note the increased AW reactivity 

following CPAP is reversed by siRNA treatment (A, siRNA#1 and #2), which was 

associated with decreased (vs CPAP) epithelial HAS3 expression (B). For clarity, scramble 

and siRNA data for control animal AW reactivity are not shown (A) and only siRNA 

#1 was used to show knock-down of HAS3 expression (B). #p<0.05 in the slope of the 

response vs Ctrl mice. N = 5–6 animals per group, 2–3 AWs/animal; values means ± SEM. 

Representative images from (B) are shown in Figure S3.
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