Skip to main content
. 2022 Feb 2;21:100383. doi: 10.1016/j.lanwpc.2022.100383

Table 1.

Characteristics of POD distribution among CVD death from NMSS in China, 2008-2020 (Death counts (person), %)

Characteristics Total (Death counts (person), %) Medical and healthcare institutions (Death counts (person), %) Out of medical and healthcare institutions (Death counts (person), %)
Home Nursing homes On the way to hospitals Others/Unknown
Total 7101871 (100·00) 1312850 (18·49) 5477427 (77·13) 119896 (1·69) 80578 (1·13) 111120 (1·56)
Location
 Rural 4972998 (70·02) 695221 (52·96) 4083287 (74·55) 86134 (71·84) 34430 (42·73) 73926 (66·53)
 Urban 2128873 (29·98) 617629 (47·04) 1394140 (25·45) 33762 (28·16) 46148 (57·27) 37194 (33·47)
 P for differenceb <0·001 <0·001 <0·001 <0·001 <0·001 <0·001
Region a
 Western 1669095 (23·50) 256303 (19·52) 1340500 (24·47) 26219 (21·87) 13715 (17·02) 32358 (29·12)
 Central 2672896 (37·64) 549425 (41·85) 2002981 (36·57) 56582 (47·19) 25788 (32·00) 38120 (34·31)
 Eastern 2759880 (38·86) 507122 (38·63) 2133946 (38·96) 37095 (30·94) 41075 (50·98) 40642 (36·57)
 P for difference <0·001 <0·001 <0·001 <0·001 <0·001 <0·001
Sex
 Male 3860831 (54·36) 771294 (58·75) 2891030 (52·78) 73731 (61·50) 46523 (57·74) 78253 (70·42)
 Female 3241040 (45·64) 541556 (41·25) 2586397 (47·22) 46165 (38·50) 34055 (42·26) 32867 (29·58)
 P for difference <0·001 <0·001 <0·001 <0·001 <0·001 <0·001
Age groups, years old
 0-14 3721 (0·05) 2068 (0·16) 1043 (0·02) 335 (0·28) 1 (0·00) 274 (0·25)
 15-64 1331828 (18·75) 350745 (26·72) 874114 (15·96) 43117 (35·96) 10281 (12·76) 53571 (48·21)
 65-84 4004276 (56·38) 707383 (53·88) 3151142 (57·53) 59445 (49·58) 42569 (52·83) 43737 (39·36)
 85 and above 1762046 (24·81) 252654 (19·24) 1451128 (26·49) 16999 (14·18) 27727 (34·41) 13538 (12·18)
 P for trendc <0·001 <0·001 <0·001 <0·001 <0·001 <0·001
Ethnicity
 Han 6681073 (94·07) 1256756 (95·73) 5134034 (93·73) 112926 (94·19) 74500 (92·46) 102857 (92·56)
 Other ethnics 420798 (5·93) 56094 (4·27) 343393 (6·27) 6970 (5·81) 6078 (7·54) 8263 (7·44)
 P for difference <0·001 <0·001 <0·001 <0·001 <0·001 <0·001
Marital status
 Married 4460593 (62·81) 961501 (73·24) 3311712 (60·46) 88165 (73·53) 25329 (31·43) 73886 (66·49)
 Unmarried 194097 (2·73) 37993 (2·89) 130946 (2·39) 3633 (3·03) 13327 (16·54) 8198 (7·38)
 Widowed/Divorced 2397127 (33·75) 304469 (23·19) 2002333 (36·56) 27247 (22·73) 40927 (50·79) 22151 (19·93)
 Unknown 50054 (0·70) 8887 (0·68) 32436 (0·59) 851 (0·71) 995 (1·23) 6885 (6·20)
 P for difference <0·001 <0·001 <0·001 <0·001 <0·001 <0·001
Education
 Junior high school and below 6451663 (90·84) 1021065 (77·77) 5170385 (94·39) 99515 (83·00) 70497 (87·49) 90201 (81·17)
 Senior high school 529794 (7·46) 222315 (16·93) 265834 (4·85) 17200 (14·35) 7394 (9·18) 17051 (15·34)
 College and above 120414 (1·70) 69470 (5·29) 41208 (0·75) 3181 (2·65) 2687 (3·33) 3868 (3·48)
 P for trend <0·001 <0·001 <0·001 <0·001 <0·001 <0·001
Occupation
 Agricultural-related personnel 5253275 (73·97) 568941 (43·34) 4505919 (82·26) 80973 (67·54) 30332 (37·64) 67110 (60·39)
 Retired 611319 (8·61) 274054 (20·87) 299824 (5·47) 9229 (7·70) 21212 (26·32) 7000 (6·30)
 Unemployment/Student 409474 (5·77) 122344 (9·32) 260643 (4·76) 8542 (7·12) 9511 (11·80) 8434 (7·59)
 Worker/Self-employed/Enterprise manager 319004 (4·49) 135422 (10·32) 155978 (2·85) 9294 (7·75) 6661 (8·27) 11649 (10·48)
 Professional/Staff/Civil servant 132868 (1·87) 67153 (5·12) 55276 (1·01) 4065 (3·39) 1955 (2·43) 4419 (3·98)
 Others/Unknown 375931 (5·29) 144936 (11·04) 199787 (3·65) 7793 (6·50) 10907 (13·54) 12508 (11·26)
 P for difference <0·001 <0·001 <0·001 <0·001 <0·001 <0·001
Underlying cause of death
 Rheumatic heart disease 95272 (1·34) 17546 (1·34) 74826 (1·37) 1255 (1·05) 472 (0·59) 1173 (1·06)
 Hypertensive heart disease 404892 (5·70) 47809 (3·64) 341582 (6·24) 5871 (4·90) 4467 (5·54) 5163 (4·65)
 Ischemic heart disease 2569847 (36·19) 517092 (39·39) 1920166 (35·06) 53946 (44·99) 30537 (37·90) 48106 (43·29)
 Stroke 3213270 (45·25) 564317 (42·98) 2528016 (46·15) 43666 (36·42) 37242 (46·22) 40029 (36·02)
 Myocarditis and myocardial disease 12672 (0·18) 2876 (0·22) 9208 (0·17) 315 (0·26) 31 (0·04) 242 (0·22)
 Aortic aneurysm 15750 (0·22) 11699 (0·89) 3526 (0·06) 273 (0·23) 35 (0·04) 217 (0·20)
 Other cardiovascular diseases 790168 (11·13) 151511 (11·54) 600103 (10·96) 14570 (12·15) 7794 (9·67) 16190 (14·57)
 P for difference <0·001 <0·001 <0·001 <0·001 <0·001 <0·001
Highest diagnostic institutions
 Village clinics 1302619 (18·34) 162073 (12·35) 1086865 (19·84) 29283 (24·42) 8924 (11·07) 15474 (13·93)
 Primary institutions 3024159 (42·58) 530942 (40·44) 2378482 (43·42) 47212 (39·38) 25749 (31·96) 41774 (37·59)
 Secondary institutions 1892106 (26·64) 592140 (45·10) 1208397 (22·06) 27050 (22·56) 37982 (47·14) 26537 (23·88)
 Tertiary institutions 489988 (6·90) 20685 (1·58) 453089 (8·27) 8919 (7·44) 1263 (1·57) 6032 (5·43)
 Other institutions 41330 (0·58) 5201 (0·40) 28031 (0·51) 720 (0·60) 2083 (2·59) 5295 (4·77)
 Undiagnosed 351669 (4·95) 1809 (0·14) 322563 (5·89) 6712 (5·60) 4577 (5·68) 16008 (14·41)
 P for difference <0·001 <0·001 <0·001 <0·001 <0·001 <0·001
Highest diagnosis basis
 Autopsy 3610 (0·05) 398 (0·03) 1598 (0·03) 152 (0·13) 14 (0·02) 1448 (1·30)
 Pathology 29138 (0·41) 4316 (0·33) 23652 (0·43) 474 (0·40) 199 (0·25) 497 (0·45)
 Surgery 33918 (0·48) 14113 (1·07) 18637 (0·34) 405 (0·34) 285 (0·35) 478 (0·43)
 Clinical and physicochemical examination 4391504 (61·84) 949831 (72·35) 3290991 (60·08) 54386 (45·36) 50416 (62·57) 45880 (41·29)
 Clinical examination 1918375 (27·01) 310917 (23·68) 1523166 (27·81) 39602 (33·03) 17065 (21·18) 27625 (24·86)
 Diagnosis after death 670670 (9·44) 30382 (2·31) 574711 (10·49) 23889 (19·92) 11994 (14·88) 29694 (26·72)
 Other ways 54656 (0·77) 2893 (0·22) 44672 (0·82) 988 (0·82) 605 (0·75) 5498 (4·95)
 P for difference <0·001 <0·001 <0·001 <0·001 <0·001 <0·001
a

Region: Western: Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang; Central: Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan; Eastern: Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Hainan.

b

P for difference: We used χ2 test to compare the differences of characteristics distribution among nominal categories

c

P for trend: We used logistic regression to test the trends of characteristics distribution for ordered variables.