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Abstract

Background: Currently known associations between common genetic variants and colorectal 

cancer (CRC) explain less than half of its heritability of 25%. As alcohol consumption has a 

J-shape association with CRC risk, non-drinking and heavy drinking are both risk factors for CRC.

Methods: Individual-level data was pooled from Colon Cancer Family Registry, Colorectal 

Transdisciplinary Study, and Genetics and Epidemiology of Colorectal Cancer Consortium to 

compare non-drinkers (<=1 g/day) and heavy drinkers (>28 g/day) with light-to-moderate drinkers 

(1-28 g/day) in GxE analyses. To improve power, we implemented joint 2df and 3df tests and a 

novel two-step method that modifies the weighted hypothesis testing framework. We prioritized 

putative causal variants by predicting allelic effects using support vector machine models.

Results: For non-drinking as compared to light-to-moderate drinking, the hybrid 2-step approach 

identified 13 significant SNPs with pairwise r2>0.9 in the 10q24.2/COX15 region. When stratified 

by alcohol intake, the A allele of lead SNP rs2300985 has a dose-response increase in risk of CRC 

as compared to the G allele in light-to-moderate drinkers (odds ratio (OR) for GA genotype=1.11, 

95% confidence interval (CI)=1.06-1.17; OR for AA genotype=1.22, 95% CI=1.14-1.31), but not 

in non-drinkers or heavy drinkers. Among the correlated candidate SNPs in the 10q24.2/COX15 

region, rs1318920 was predicted to disrupt a HNF4 transcription factor binding motif.

Conclusions: Our study suggests that the association with CRC in 10q24.2/COX15 observed in 

GWAS is strongest in non-drinkers. We also identified rs1318920 as the putative causal regulatory 

variant for the region.

Impact: The study identifies multifaceted evidence of a possible functional effect for rs1318920

Introduction

Though alcohol consumption is considered a risk factor for colorectal cancer (CRC), 

meta-analyses across our large consortia have revealed a J-shape relationship with alcohol 

consumption. Light-to-moderate drinking is the group at the lowest risk of CRC, while the 

risk of CRC increases slightly in non-drinkers and substantially in very heavy drinkers 
1. Many mechanisms have been proposed to explain the relationship between alcohol 

consumption and colon carcinogenesis 2, but the lower risk of CRC observed among 
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light-to-moderate drinkers relative to non-drinkers and heavy drinkers has only recently 

been described and is poorly understood. As a possible explanation, the increased risk of 

CRC in non-drinkers may be due to residual confounding because some of these individuals 

may abstain from or stop drinking for reasons related to CRC risk factors or health status, 

including alcoholism. In fact, the McNabb et al. manuscript describing the J-shape explicitly 

states that the observed inverse association could be explained by residual confounding or 

chance 1. Another possibility is that light-to-moderate drinking has a protective effect on risk 

of CRC, even though heavier consumption is detrimental. However, this hypothesis is only 

supported by very preliminary evidence of an anti-inflammatory effect of light-to-moderate 

drinking on the colon in rats 3,4 and of low levels of ethanol exposure upregulating liver 

detoxification enzymes 5,6, so future research is needed to explore any possible protective 

effects.

Given this complex relationship, it is possible that there are single nucleotide 

polymorphisms (SNPs) that affect only non-drinkers or heavy drinkers or that known loci 

have unknown interactions with alcohol consumption that would be difficult to detect 

in genome-wide association studies (GWAS) of CRC. In fact, common SNPs identified 

through GWAS and hereditary syndromes explain less than half of the roughly 25% of CRCs 

that aggregate in families 7. Since alcohol consumption is widespread in the US population 

and there are known variants in genes like ADH and ALDH that have strong effects on 

alcohol metabolism 8, SNPs that have important interactions with alcohol may help fill in 

this missing heritability 9. In addition, variant effects in non-coding regions of the genome 

may play an important role, through interactions with mechanisms like alcohol-induced 

epigenetic changes in cancer 10. To search for important relationships with this established 

risk factor, we conducted genome-wide interaction analyses to test for SNPs that modify the 

effects of alcohol consumption on risk of CRC, including a novel hybrid two-step approach 

that aims to improve statistical power.

Materials and Methods

Study population

We pooled individual level genomic and epidemiological data from studies participating 

in the Colon Cancer Family Registry (CCFR), the Colorectal Transdisciplinary Study 

(CORECT), and the Genetics and Epidemiology of Colorectal Cancer Consortium 

(GECCO). Study details have been previously published 11-13 and can be found in 

Supplementary Table 1. For cohort studies, nested case-control sets were assembled using 

risk-set sampling. Controls were matched on factors such as age, sex, race, and enrollment 

date or trial group, when applicable. Colorectal adenocarcinoma cases were confirmed 

by medical records, pathological reports, or death certificate information. For the small 

subset of advanced adenoma cases, matched controls displayed polyp-free sigmoidoscopy 

or colonoscopy at the time of adenoma selection. All participants gave written informed 

consent and studies were approved by their respective Institutional Review Boards.

Analyses were limited to individuals of European ancestry based on self-reported race and 

clustering of principal components with 1000 Genomes EUR superpopulation, yielding 

an initial sample size of 96,735. There were approximately 3,660 participants excluded 
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from our main analysis based on ancestry. We excluded studies based on availability 

of alcohol consumption information, in addition to studies whose populations lacked 

sufficient variability in alcohol intake levels, were matched on smoking status, or studies 

where participants had a history of adenomas at baseline (n=19,259). We further excluded 

samples that showed cryptic relatedness, were duplicates with lower genotyping quality, had 

genotyping or imputation errors, or were age outliers (n=3,377), creating a final sample size 

of 74,099.

Exposure Definition

Demographic and environmental risk factor information was self-reported either at in-person 

interviews or via structured questionnaires. Harmonization of alcohol intake information 

consisted of a multi-step procedure performed at Fred Hutchinson Cancer Research Center, 

which is the GECCO coordinating center 14. Briefly, common data elements (CDEs) were 

defined a priori. Study questionnaires and data dictionaries were examined and, through an 

iterative process of communication with data contributors, elements were mapped to these 

CDEs. Definitions, permissible values, and standardized coding were implemented into a 

single database via SAS and T-SQL. Resulting data were checked for errors and outlying 

values within and between studies.

Food frequency questionnaires and diet histories were used to ascertain alcohol intake 

and other risk factors at the reference time, typically ranging from three months to two 

years prior to diagnosis for case-control studies and at enrollment for cohort studies 

(Supplementary Text 1). The harmonized alcohol intake variable is expressed as grams 

per day, and is categorized into three groups: non-drinkers (≤1 g/day; we did not set this 

to 0 as some studies included small amounts of alcohol intake from fermented foods), 

light-to-moderate drinkers (>1 to ≤ 28 g/day), and heavy drinkers (>28 g/day) 15. To account 

for the potentially disparate biological mechanisms driving the J-shaped association between 

alcohol use and CRC, we conducted separate genome-wide interaction scans: non-drinkers 

vs. light-to-moderate drinkers and heavy drinkers vs. light-to-moderate drinkers. Light-to-

moderate drinkers serve as the reference group for both scans as they have the lowest risk of 

CRC.

Genotyping and Imputation

Details on genotyping and quality control have been previously published 11; genotyping 

platforms used are summarized in Supplementary Table 1. Briefly, genotyped SNPs were 

excluded based on call-rate less than 95-98%, lack of Hardy Weinberg equilibrium with 

p-value less than 1x10−4, discrepancies between reported and genotypic sex, and discordant 

calls between duplicates. Autosomal SNPs of all studies were imputed to the Haplotype 

Reference Consortium r1.1 (2016) reference panel via the Michigan Imputation Server 16 

and converted into a binary format for data management and analyses using R package 

BinaryDosage (Morrison 2019). We filtered imputed SNPs based on a pooled MAF greater 

than or equal to 1% and imputation accuracy of r2 greater than 0.80. After imputation and 

quality control, a total of over 7.2 million common SNPs were used.
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Statistical analysis

Interaction Tests—To evaluate main effects, we used logistic regression models adjusted 

for age at the reference time, sex, and total energy consumption (kcal/day) and stratified 

by study. Study-specific results were combined using random-effects meta-analysis models 

using the Hartung-Knapp method to obtain summary odds ratios (ORs) and 95% confidence 

intervals (CIs) across studies17. Random effects were used given the large number of studies 

and possible heterogeneity of associations17. We calculated the heterogeneity p-values using 

Cochran’s Q statistics 18, and funnel plots were used to identify studies with outlying ORs. 

These analyses were performed using R package meta 19 (REF). 19

We performed genome-wide interaction scans using the R package GxEScanR, which 

implements several interaction testing methods 20, including traditional logistic regression 

GxE and joint tests of association, as described below. Imputed SNP dosages were modeled 

as continuous variables 21. For the purposes of this study, E refers to alcohol exposure, G 
refers to a SNP included in the genome-wide tests, D refers to CRC disease status, and 

C refers to a set of adjustment covariates. To test for multiplicative scale interaction, we 

fit conventional logistic regression models augmented with an interaction term of the form 

logit(Pr(D = 1 V G)) = β0 + βGG + βEE + βGxEGxE + βCC and tested H0:βGxE = 0. The 

quantity exp(βGxE) = OR{GxE} captures departure from multiplicative associations of E and 

G on D. The models were adjusted for age at the reference time, sex, study, total energy 

consumption (kcal/day), and the first three principal components from EIGENSTRAT to 

account for potential population substructure. For any significant findings, we conducted a 

sensitivity analysis stratified by sex and tumor site and adjusted for BMI, diabetes, education 

level, ever smoking, and study and sex-specific quartiles of red meat, fruit, and vegetable 

consumption. Age at reference time was missing for a single participant and was median 

imputed by study for cases and controls separately. For the remaining variables, we fit 

models using only subsets of individuals with available covariate information (complete case 

analysis). Total energy consumption was imputed for 25,247 individuals using study and 

sex specific means; missingness was 18% across all studies excluding UK Biobank. For UK 

Biobank, imputation was not feasible because energy intake information was missing for all 

individuals in this study. Consequently, in order to retain UK Biobank in the analysis, total 

energy intake was set to 0.. For the 2df joint test, we used likelihood ratio tests to jointly test 

H0:βG = βGxE = 0, df = 2. To accommodate E∣G associations, we also extended this to a 3df 

likelihood ratio test to jointly test H0:βG = βGxE = δG = 0, df = 3, where δG represents the 

association between G and E in a combined case-control sample 22,23. We report two-sided 

p-values calculated from these likelihood-ratio tests, and consider a p-value of less than 

5x10−8 significant and of less than 5x10−6 suggestive.

We also implemented a hybrid two-step method that prioritizes potential interaction loci 

by weighting GxE tests (step 2) based on the ranks of an independent test statistic, in this 

case the genetic main effects on CRC (step 1). Our approach modifies the original weighted 

hypothesis testing framework, which uses step 1 ranks to prioritize and partition SNPs into 

exponentially larger bins of fixed sizes (based on an initial bin size of 5 and an overall 

significance level of 0.05) and increasingly more stringent step 2 significance thresholds 
24,25. A limitation of the original approach is that the top bins are often filled with correlated 
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markers from the same loci in analyses of imputed SNPs. To address this issue, our approach 

accommodates bins of varying sizes while properly controlling for type I error. Specifically, 

SNPs are partitioned into bins based on step 1 p-value thresholds in expectation, which 

were calculated using the original predetermined bin sizes and assumed uniform distribution 

of 1 million independent tests. For step 2 GxE testing, we accounted for the influx of 

correlated markers into each bin by correcting for the effective number of tests, estimated 

using principal component analysis performed on bin specific genotype correlation matrices 
26. This modification alleviates multiple testing burden and improves statistical power, 

while maintaining an overall type I error rate of 0.05. We also estimated stratified ORs by 

modeling interactions between alcohol intake and posterior genotype probabilities.

Relevant regional plots were generated using the command line version (Standalone) 

of LocusZoom v1.3 27. Measures of linkage disequilibrium (LD) were estimated using 

study population controls. Possible eQTL relationships were explored using the Genotype-

Tissue Expression (GTEx V8) and the University of Barcelona and University of Virginia 

genotyping and RNA sequencing project (BarcUVa-Seq) 28 datasets. The data used for 

the analyses described in this manuscript were obtained from: the GTEx Portal on April 

14, 2020 and dbGaP accession number phs000424.vN.pN on April 15, 2020. The most 

promising eQTL-gene association was tested in a subset of 35 human normal colon 3D 

organoid lines from an ongoing study in which lines were grown and expression was 

measured as described for the control condition in Devall et al. 29; lines were genotyped on 

the OncoArray beadchip, and the variant of interest was imputed with an r2 of 0.98 using 

the TOPMed reference panel 30. We then tested predicted expression of the eQTL-associated 

gene of interest for an interaction with alcohol consumption in data from the three consortia 

involved in this study (Supplementary Text 2).

Prediction of regulatory impact of candidate non-coding variants—We used 

ATAC-seq, DNASE-seq, H3K27ac histone ChIP-seq, and H3K4me1 histone ChIP-seq 

datasets of primary tissue from healthy colon and tumor primary tissue samples from 

Scacheri et al. 31, as well as from three CRC cell lines (SW480, HCT116, COLO205). These 

datasets were processed through ENCODE ATAC-seq/DNASE-seq 32 and histone ChIP-

seq pipelines 33 to perform alignment and peak calling. Dataset sources are indicated in 

Supplementary Table 2. −log10(p-value) tracks were extracted from the MACS2 step of the 

pipeline for visualization in genome browsers. Irreproducible Discovery Rate (IDR) 34 peak 

calls for ATAC-seq and DNASE-seq datasets, as well as naive overlap peak calls for histone 

ChIP-seq datasets, were determined from the ENCODE pipelines. The pyGenomeTracks 35 

software package was used to visualize chromatin accessibility across the functional datasets 

and to plot −log10(p-value) signal tracks. Peaks across samples from the same assay were 

concatenated across datasets, cropped to within 200 bp centered on the peak summit, and 

merged using bedtools 36 merge.

Gapped k-mer support vector machine models (LS-GKM) (v0.1.0) with a center-weighted 

GKM kernel were trained to classify chromatin accessible regions against genomic 

background regions as a function of their underlying DNA sequences 37. Default parameters 

were utilized. Support vector machines (SVMs) were trained via 10-fold cross-validation, 

where groups of chromosomes were split into folds (Supplementary Table 3). Separate SVM 
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models were trained on DNase-seq data from Supplementary Table 2 with samples pooled 

across assays as described above 31. For each biosample, the SVMs were trained on 120,000 

genomic regions. Positively labeled regions were 1 kb DNA sequences centered on the 

summits of the 60,000 most significant DNase-seq peaks from MACS2+IDR, and 60,000 

1 kb negatively labeled sequences were randomly sampled from the GRCh38 reference 

genome such that they did not overlap IDR and naive overlap DNase-seq peaks and were 

matched for GC content to the positive regions.

The resulting trained models for each of the five DNASE-seq datasets were used to score all 

variants on the Haplotype Reference Consortium (HRC) imputed panel (n=39,117,106). For 

each SNP along the HRC panel, we centered a 1 kb sequence interval and obtained SVM 

model predictions for the reference and alternate alleles. The difference in model predictions 

of accessibility (prediction for alternate allele - prediction for reference allele) are the 

in-silico mutagenesis scores (ISM), or SNP effect scores. We confirmed that the ISM scores 

for the HRC panel were normally distributed using the Kolmogorov-Smirnov and Shapiro 

Wilkes tests (p-values>0.10) and derived Z -scores. Variants with ISM scores greater than 

1.65 or less than −1.65, representing a 90% confidence interval, were determined to have 

significant effects. A single score was obtained for each HRC SNP by taking the maximum 

of the absolute values of the GKMexplain delta scores across the five models.

The lead GWAS SNP rs11190164 was LD-expanded (500 kb window, r2 thresholded at 

0.20) using PLINK (1.9) 38 based on the 1000 genomes phase 3 fileset from the cog-

genomics site (https://www.cog-genomics.org/plink/2.0/resources#1kg_phase3) 39, which 

was filtered to separate individuals of CEU ancestry. Using the SVM models trained on each 

of the five DNase-seq datasets, we scored the LD-expanded rs11190164 locus and predicted 

ISM effects on chromatin accessibility. We further inferred the contribution scores of each 

nucleotide in the input sequences to the output prediction of the SVM models using the 

GKMexplain algorithm 40. For each sequence containing a candidate variant, we computed 

GkmExplain scores for the sequence containing the reference allele and the sequence 

containing the alternate allele. For each candidate variant, a deltaGKMexplain score was 

computed by subtracting the GKMexplain score for the 1 kb vector of GKMexplain scores 

of the sequence with the reference allele from the 1 kb vector of GKMexplain scores of 

the sequence with the alternate allele. The TomTom algorithm 41 was used to identify 

likely motif matches for subsequences with high deltaGKMexplain scores. The support 

vector machine LS-GKM + GKMexplain workflow source code is available on github: 

https://github.com/kundajelab/SVM_pipelines.

Candidate functional variants were annotated with the 18-state 

ChromHMM annotations 42 across 218 cell types from the Roadmap 

Atlas 43 (https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/

ChmmModels/coreMarks/jointModel/final/). Bedtools intersect was utilized to identify 

overlaps between candidate functional SNPs and regions of enhancer activity in cell types 

associated with CRC.
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Results

As initial steps, we examined the characteristics of participants included in our interaction 

tests. Cases were older, had higher BMI and energy intake, more frequently had a family 

history of CRC, had lower levels of education, and were more likely to ever smoke 

cigarettes (Table 1). We then confirmed the previously reported main effect relationships 

between alcohol consumption and CRC, where non-drinking (OR=1.13, 95% CI=1.05-1.21) 

and heavy drinking (OR=1.34, 95% CI=1.23-1.45) were associated with increased risk 

as compared to light-to-moderate drinking (Supplementary Figure 1). The association 

between non-drinking and CRC risk was similar across tumor sites, and the heavy drinking 

association was weakest for proximal colon cancer (OR=1.26) and strongest for distal 

(OR=1.39) and rectal colon cancer (OR=1.44). We observed substantial heterogeneity in the 

association between non-drinking and CRC across studies (I2=66%, p-value<0.001). This 

observation is consistent with the fact that the reason for abstaining from alcohol and the 

composition of never, former, and occasional drinkers in the non-drinking group both affect 

risk of CRC and vary across study populations. This heterogeneity was not observed for the 

association between heavy drinking and CRC.

Using the traditional genome-wide GxE tests of the interaction, we did not identify a 

significant interaction between any SNP and alcohol consumption. For the non-drinking 

as compared to light-to-moderate drinking GxE, there was a suggestive interaction in the 

10q24.2/COX15 region previously associated with CRC (Figure 1A) 12,13. There were also 

suggestive interactions from the heavy drinking as compared to light-to-moderate GxE, but 

none in regions previously identified by GWAS of CRC (Figure 1C). The joint 2-df tests 

identified SNPs with known CRC associations, and the joint 3-df tests additionally identified 

SNPs with known alcohol consumption associations; however, no novel GxE interaction was 

discovered.

We also conducted a hybrid two-step method to test for interactions, which yielded a 

statistically significant finding in the same 10q24.2/COX15 locus that had a suggestive 

GxE interaction. For non-drinkers as compared to light-to-moderate drinkers, there were 

13 SNPs with pairwise r2 > 0.90 in the 10q24.2/COX15 region that showed a statistically 

significant interaction on risk of CRC (Figure 1B). This procedure was null for heavy as 

compared to light-to-moderate drinking (Figure 1D). As shown in the regional association 

plot, the lead SNP with the most significant interaction p-value in the region was rs2300985 

(Figure 2). A stratified analysis of the lead SNP illustrates the observed interaction, showing 

that the A allele of rs2300985 was associated with a higher risk of CRC compared to 

the G reference allele only in light-to-moderate drinkers; the association was null in non-

drinkers and in heavy drinkers (Table 2). We observed a dose-response relationship in 

light-to-moderate drinkers, where the OR for one copy of the rs2300985 A allele was 

1.11 (95% CI=1.06-1.17) and was 1.22 (95% CI=1.14-1.31) for two copies of the A 

allele (Table 2). Since light-to-moderate drinkers are the reference group, the OR for the 

interaction term in the pooled GxE was inverse (OR=0.89, 95% CI=0.84-0.94, p-value=1.16 

x 10−6). The forest plot illustrates an acceptable level of heterogeneity for the interaction 

OR across studies and no substantial difference between cohort and case-control studies 

(Supplementary Figure 2). The interaction term was similar in analyses stratified by sex and 
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tumor site, though it was weakest in proximal colon cases (OR=0.92) and strongest in distal 

colon cases (OR=0.87). This result withstood a sensitivity analysis additionally adjusted for 

BMI, diabetes, education level, ever smoking, as well as study and sex-specific quartiles 

of red meat, fruit, and vegetable consumption (OR=0.89, 95% CI=0.84-0.94). Additional 

adjustment for physical activity and post-menopausal hormone replacement therapy use 

restricted our sample size to 14,948 women and produced an odds ratio of 0.95.

The initial GWAS that discovered the 10q24.2/COX15 locus identified rs11190164 as the 

most significantly associated with CRC risk 13. The lead SNP from our interaction analyses 

(rs2300985) was highly correlated with rs11190164 at an r2 of 0.59. We LD-expanded our 

candidate set of variants to include 158 SNPs, including rs2300985, in a 500 kb window 

around the rs11190164 lead GWAS SNP based on an r2 greater than 0.20 in the 1 KG 

Phase 3 EUR population. We integrated functional chromatin profiling data in healthy colon, 

CRC tumor tissue, and three cell-lines (SW480, HCT116, COLO205) with machine learning 

models of regulatory DNA sequence to prioritize putative causal regulatory variants in this 

locus. For each candidate variant, we used gapped k-mer support vector machine (gkmSVM) 

models trained on DNase-seq data from the five CRC-relevant biosamples to predict its 

allelic effect on chromatin accessibility in each biosample (Figure 3). As expected, most 

of the candidate variants were predicted to have no significant allelic effects on chromatin 

accessibility. However, the models predicted the rs1318920 variant as a putative causal 

variant based on a significant difference in predicted chromatin accessibility between the 

reference C and alternate T allele (ISM score=−1.86, p-value=0.02 in healthy colon; ISM 

score=−2.22, p-value=0.007 in CRC tumor; ISM score=−1.79, p-value=0.02 in COLO205). 

The rs1318920 SNP had an association p-value of 6.9x10−5 in our GWAS of CRC and an r2 

of 0.60 with both the lead GWAS SNP rs11190164 and the lead interaction SNP rs2300985. 

The characteristics of the three SNPs of interest in the 10q24.2/COX15 region are described 

in Supplementary Table 4, which also verifies that their allele frequencies did not differ 

substantially by category of alcohol intake.

In order to further explore the regulatory sequence features disrupted by each of the 

candidate variants, we used the GkmExplain method to infer the contribution of each 

nucleotide in the 1000 bp sequences containing the reference and alternate allele to the 

predicted chromatin accessibility from the gkmSVM models. GkmExplain analysis of 

rs1318920, rs11190164 (the lead GWAS SNP), and rs2300985 (the lead interaction SNP) 

supported the prediction of a strong allelic effect specifically for rs1318920 in healthy tissue, 

tumor tissue, and the COLO205 cell line (Figure 4A-C). The C allele of the rs1318920 

variant was predicted to significantly (p-value=4.2 x 10−5) amplify the contribution scores 

of an overlapping subsequence [TTTGGACTTTGACC] relative to the T allele. This 

subsequence is a strong match to the known binding motif of the Hepatocyte Nuclear 

Factor 4α (HNF4α) transcription factor. The rs1318920 variant was also found to lie within 

50 bp of the overlapping DNase-seq peak summits, which are the locations with maximal 

signal; this additionally supports its strong effect size via motif disruption (Figure 5). 

Integrative chromatin state annotations from ChromHMM 42 across 218 biosamples revealed 

that rs1318920 falls within a putative regulatory element that is in an active enhancer state 

marked by enhancer-associated H3k27ac and H3K4me1 specifically in colorectal tissues 

(Supplementary Figure 3). In contrast to rs1318920, the lead GWAS SNP rs11190164 and 
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the lead interaction SNP rs2300985 did not have any supporting evidence for functional 

effects.

Two independent sources of expression quantitative trait loci (eQTLs) expand on the 

regulatory role of rs1318920. rs1318920 is an eQTL in the GTEx v8 compendium that 

influences the expression of EBAG9P1, ENTPD7, and RP11-85A1.3 in brain, cultured 

fibroblast, esophageal, or nerve tissues. rs1318920 is also a suggestive eQTL in normal 

colon tissue from the BarcUVa-Seq study 28 that regulates expression of ENTPD7, where 

the T alternate allele is associated with increased expression (β=0.11, p-value=3.5 x 10−3). 

Based on the BarcUVa-Seq result, we checked for and similarly observed a positive 

association between the T allele of rs1318920 and ENTPD7 expression in human normal 

colon 3D organoids (β=0.59, p-value=0.004). Exploring these results further, we detected 

a statistically significant interaction between standardized predicted expression of ENTPD7 
and non-drinking (p-value=0.007) in our data from the involved consortia; the interaction 

was positive, but non-significant for heavy drinking (p-value=0.42) (Supplementary Table 

5).

Discussion

We conducted a genome-wide interaction study (GWIS) of CRC and discovered a possible 

interaction between alcohol consumption and genetic variants in the 10q24.2/COX15 region. 

Specifically, for the lead interaction SNP, we found that the A allele of rs2300985 was 

associated with an increase in risk of CRC in light-to-moderate drinkers, but was not 

associated with CRC risk in non-drinkers.

If non-drinking partially captures other risk factors or health status, then our result suggests 

that those characteristics overwhelm or counteract the effects associated with rs2300985 

in non-drinkers. If light-to-moderate drinking is in fact protective, a possible mechanism 

might be that low levels of ethanol exposure are anti-inflammatory 3,4 or upregulate liver 

detoxification enzymes that then mitigate other risk factors, while the adverse consequences 

of alcohol predominate over any hypothesized benefits at high levels of ethanol exposure 5,6. 

Based on our results, the effects associated with rs2300985 may be related to carcinogenesis 

only when combined with other changes due to light-to-moderate drinking.

Our integrative analysis also suggests rs1318920 as a potentially causal variant in the 

10q24.2/COX15 region that is in LD with both the lead GWAS SNP rs11190164 and the 

lead interaction SNP rs2300985. rs1318920 is predicted to have a significant allelic effect 

on chromatin accessibility of a colorectal tissue-specific active enhancer by restoring the 

combined binding motif of HNF4 α and γ and may have a regulatory effect on expression 

of ENTPD7 in colon tissue. As a potential connection to alcohol consumption, there is 

evidence from mouse and cell-line experiments that HNF4α DNA binding inhibits alcoholic 

steatosis 44 and may prevent alcoholic liver disease, which is a possible risk factor for CRC 
45. As a result, we hypothesize that rs1318920 is the causal variant driving the observed 

increased risk of CRC and that its effects on CRC may be affected by alcohol consumption. 

This finding warrants future work to confirm the functional relevance of rs1318920 in 
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cancer cell lines, including results from a luciferase assay demonstrating the allele-specific 

enhancer activity that was predicted in the COLO205 cell line.

If confirmed, the possible causal variant suggests a plausible biological mechanism, where 

the T alternate allele completes the motif that binds to the HNF4α transcription factor. 

HNF4A regulates genes involved in glucose, cholesterol, fatty acid, and amino acid 

metabolism 46; it has also been linked to CRC and identified as a potential drug target 

by Sladek et al. 47. In this case, the HNF4α binding site is within COX15 and close 

to ENTPD7. While speculative, the T allele of rs1318920 in the 10q24.2/COX15 region 

may restore HNF4α binding and promote CRC, possibly through increased expression of 

ENTPD7 in the colon. Interestingly, SNPs located in the 10q24.2/COX15 region are also 

cis-eQTLs for EBAG9P1 in naive CD4+ T cells, CD8+ T cells, and TREG immune cells 
48, suggesting a potentail impact on CRC risk via an immunomodulating effect. Follow-up 

analyses are warranted to assess the functional support for our hypotheses and to explore 

additional plausible mechanisms, including possible pathways through folate deficiency.

In a prior GWIS of alcohol in this consortium 49, we highlighted an interaction between 

SNPs in the 9q22.32/HIATL1 region and light-to-moderate drinking as compared to non-

drinking. The tag SNP rs9409565 met the p-value threshold of 0.05 for validation, but 

was not statistically significant in our larger study after adjustment for multiple testing 

(OR=0.94, p-value=0.01).

Though GxE interactions are difficult to detect, our GWIS benefits from a substantial 

sample size of 31,874 cases and 42,225 controls, which was only possible through the 

inclusion of numerous epidemiological studies with detailed risk assessment and dedicated 

data harmonization efforts over many years. This study is currently among the largest of its 

kind and, combined with cutting edge statistical methods, allowed us to detect a possible 

interaction between a known GWAS hit and alcohol consumption. Our detailed evaluation of 

the J-shaped relationship between alcohol consumption and risk of CRC 1 also ensured that 

we appropriately modeled alcohol consumption during interaction testing.

Our study also has several limitations. Our cohort, though large, consisted of consortia 

involving individuals solely from EUR backgrounds, which limits the generalizability of the 

findings to individuals of non-European ancestry. Our categories of alcohol consumption 

were not sex-specific; however, we observed similar main effect associations between 

alcohol consumption and CRC in males and females, and we adjusted our interaction tests 

for sex. Alcohol consumption was based on intake at the reference time, so our non-drinking 

category includes former drinkers, and this approach may contribute to residual confounding 

in the non-drinking group. Given the complexity of the harmonization process and the 

inconsistent information about past drinking across the large number of diverse studies 

involved, a sensitivity analysis excluding former drinkers is not feasible. However, to explain 

our main finding, the presence of former heavy drinkers in the non-drinking group would 

need to attenuate the association between the rs2300985 A allele and CRC risk more 

than observed in the heavy drinking group itself and would also need to outweigh the 

bias away from the null introduced by the presence of former light-to-moderate drinkers. 

The interaction also survived a sensitivity analysis adjusted for a comprehensive set of 
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potential confounders, though we were limited to covariates that were harmonized across 

the consortia and do not have access to all measured variables in each participating study. 

There were more non-drinkers than heavy drinkers, so we were not as well powered to detect 

interactions with heavy alcohol consumption.

For the reported interaction, the result from the traditional GxE was only suggestive, 

especially considering we conducted two GWIS. The modified two-step method that 

reported 10q24.2/COX15 as statistically significant is a newer approach that controls for 

multiple testing by estimating the bin-specific effective number of tests. While this approach 

is computationally more expensive, it addresses an important limitation of prior two-step 

methods, which do not currently account for correlated markers. Multiple methods exist to 

calculate the effective number of tests, and the Gao et al. method used in our approach is 

a comparatively stringent option 26,50. Finally, we were unable to establish causality with 

the data available, so the proposed relationships need to be validated experimentally using 

methods like Perturb-seq coupled with differing alcohol treatment conditions 51,52.

In summary, our results suggest that the association at the known 10q24.2/COX15 CRC 

locus is driven by light-to-moderate drinkers. Further, we have identified a putative causal 

variant in the region with strong evidence for a functional effect, which provides interesting 

directions for future research involving the link between rs1318920 and CRC and the 

possible role of alcohol consumption in this mechanism. Though we hope these findings 

inform future research involving the 10q24.2/COX15 region and CRC, they should not be 

used to guide public health recommendations without further validation, functional work, 

and research in the context of other CRC-associated variants and risk factors.
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Figure 1. 
All analyses are adjusting for age, sex, study site, total energy consumption, and the 

first three principal components. A) & C) Manhattan plots of interaction between genome-

wide genetic variants and non-drinking (A) or heavy drinking (C) as compared to light-

to-moderate drinking. The blue horizontal line indicates the threshold for suggestive hits 

(p-value < 5e-6), and SNPs plotted in orange have previously reported associations with 

colorectal cancer. B) & D) Plots of expectation-based partitions adjusted by the number of 

effective tests in each bin. The gray line indicated the threshold for significance based on 

the bin specific alpha-threshold (Meff). (B) shows 13 significant SNPs, which are all located 

in the 10q24.2/COX15 region. Point colors alternate blue and green for visibility; red points 

denote statistically significant findings. Abbreviations: SNPs = number of markers included 

in each bin. Meff = the number of effective tests in each bin after accounting for correlation 

between SNPs.
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Figure 2. 
Regional association plot of SNP and non-drinking vs light-to-moderate drinking interaction 

−log10 p-values. Result from hybrid two-step analysis of colorectal cancer risk at 10q24.2/

COX15. rs2300985 is the index SNP as indicated by the purple diamond (GRCh37 

coordinates).
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Figure 3. 
Support vector machine learning model pipeline to predict functional effects of linked SNPs 

within the 10q24.2/COX15 region. A) Analysis pipeline for SVM classifier development and 

linked SNP scoring. B) SVM test set predictions for reference and alternate alleles for 158 

variants with r2 > 0.2 within 500kb of the COX15 tagged SNP rs11190164. Bottom panel 

highlights reference and alternate predictions for rs11191064, rs1318920, and rs2300985.
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Figure 4. 
GkmExplain sequence importance scores within +/− 50 bp of the variants of interest in 

the 10q24.2/COX15 region. Scores are derived from SVM models in healthy and tumor 

primary tissue samples as well as SVM models in cell lines SW480, HCT116, COLO205. 

A) rs1318920 reference allele scores. B) rs1318290 alternate allele scores. C) rs1318920 

alternate allele scores - reference allele scores. D) rs2300985 reference allele scores. E) 
rs2300985 alternate allele scores. F) rs2300985 alternate allele scores minus reference allele 

scores. G) Tag SNP rs11190164 reference allele scores. H) Tag SNP rs11190164 alternate 

allele scores. I) Tag SNP rs11190164 alternate allele scores minus reference allele scores.
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Figure 5. 
Chromatin accessibility assays highlighting peaks within the 10q24.2/COX15 region. Top 

panel indicates GENCODE reference genes (GRCh37). Variants with r^2 > 0.2 within 500kb 

of tag SNP rs11190164 are color-coded by r^2 value. LD was calculated for the EUR and 

EAS populations within phase 3 of the 1000 Genomes (panel 2 and 3 from the top). Healthy 

ATAC-seq, DNASE-seq, H3K27ac histone ChIP-seq, H3K4me1 histone ChIP-seq p-value 

bigwigs are indicated in green. The same set of assays for tumor samples are indicated in 

blue. The same set of assays for cell lines SW480, HCT116, COLO205 are overlaid and 

indicated in red.
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Table 1.

Characteristics of all study participants by case-control status.

Cases
(N=31874)

Controls
(N=42225)

P-value

Alcohol consumption 
a 

 Light-to-moderate drinkers (>1-28 g/d) 13979 (44 %) 21658 (51 %) <0.001

 Non-drinkers (≤ 1 g/day) 13754 (43 %) 15546 (37 %)

 Heavy drinkers (>28 g/d) 4141 (13 %) 5021 (12 %)

Age (median imputed)

 Mean (SD) 64.0 (± 10.4) 63.1 (± 9.44) <0.001

Sex

 Female 15531 (49 %) 21046 (50 %) 0.00269

 Male 16343 (51 %) 21179 (50 %)

Total energy intake (mean imputed) 
d 

 Mean (SD) 1910 (± 708) 1970 (± 736) <0.001

Family history of colorectal cancer

 No 22482 (71 %) 27925 (66 %) <0.001

 Yes 4371 (14 %) 4481 (11 %)

 Missing 5021 (15.8%) 9819 (23.3%)

BMI

 Mean (SD) 27.4 (± 4.89) 27.0 (± 4.62) <0.001

 Missing 697 (2.2%) 604 (1.4%)

Education level (highest completed)

 Less than High School 7759 (24 %) 8313 (20 %) <0.001

 High School/GED 6391 (20 %) 6420 (15 %)

 Some College 7651 (24 %) 10780 (26 %)

 College/Graduate School 9011 (28 %) 13587 (32 %)

 Missing 1062 (3.3%) 3125 (7.4%)

Ever smoking

 No 14284 (45 %) 20496 (49 %) <0.001

 Yes 17093 (54 %) 21089 (50 %)

 Missing 497 (1.6%) 640 (1.5%)

Type 2 diabetes (ever diagnosed)

 No 26725 (84 %) 37268 (88 %) <0.001

 Yes 3837 (12 %) 3627 (9 %)

 Missing 1312 (4.1%) 1330 (3.1%)

Total dietary red meat intake 
b 

 Q1 7108 (22 %) 10764 (25 %) <0.001

 Q2 8320 (26 %) 11986 (28 %)

 Q3 8088 (25 %) 10910 (26 %)

 Q4 7398 (23 %) 7717 (18 %)

 Missing 960 (3.0%) 848 (2.0%)
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Cases
(N=31874)

Controls
(N=42225)

P-value

Total dietary fruit intake 
b 

 Q1 8406 (26 %) 10215 (24 %) <0.001

 Q2 9749 (31 %) 11841 (28 %)

 Q3 6832 (21 %) 9923 (24 %)

 Q4 5868 (18 %) 9261 (22 %)

 Missing 1019 (3.2%) 985 (2.3%)

Total dietary vegetable intake 
b 

 Q1 7124 (22 %) 9896 (23 %) <0.001

 Q2 10091 (32 %) 11515 (27 %)

 Q3 7459 (23 %) 10561 (25 %)

 Q4 6248 (20 %) 9326 (22 %)

 Missing 952 (3.0%) 927 (2.2%)

Physical activity (MET-hr/week) 
c 

 Mean (SD) 44.8 (± 64.9) 48.0 (± 70.6) <0.001

 Missing 14547 (45.6%) 16449 (39.0%)

Post-menopausal hormone replacement therapy use

 No 7510 (24 %) 10605 (25 %) <0.001

 Yes 3827 (12 %) 6032 (14 %)

 Missing 20537 (64.4%) 25588 (60.6%)

Tumor site

 Distal 8445 (26 %) 0 (0 %) NA

 Proximal 10035 (31 %) 0 (0 %)

 Rectal 8167 (26 %) 0 (0 %)

 Missing 5227 (16.4%) 42225 (100%)

a
Non-drinking is treated as missing for the heavy vs. light-to-moderate comparison, and heavy drinking is treated as missing for the non-drinking 

vs. light-to-moderate comparison. MECC_1 is also excluded from the heavy vs. light-to-moderate comparison, so the heavy drinking interaction 
analyses involved 247 fewer light-to-moderate drinkers than shown in the table.

b
Study- and sex- specific quartiles of serving size.

c
MET defined as 1 kcal/hr/hour. Calculated as the mean +/− 3*(study- and sex- specific mean absolute deviation).

d
Calculations exclude individuals with missing total energy intake information.
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Table 2.

Colorectal cancer associations stratified by genotypes of rs2300985 in the 10q24.2/COX15 region and 

by alcohol consumption. A) Stratified associations for rs2300985 genotypes with colorectal cancer within 

alcohol consumption categories. B) Joint associations for rs2300985 genotypes and alcohol consumption with 

colorectal cancer across when comparing to light-to-moderate drinkers with the GG genotype.

A)

Genotype 
at 

rs2300985

Non-drinkers
a

Light-to-moderate drinkers
b

Heavy drinkers
c

No. of 

Cases
e

No. of 

Controls
e

Odds Ratio 

(95% CI)
d

No. of 

Cases
f

No. of 

Controls
f

Odds Ratio 

(95% CI)
e

No. of 

Cases
g

No. of 

Controls
g

Odds Ratio 

(95% CI)
e

GG 5,366 5,747 1 (ref) 4,806 7,804 1 (ref) 1,349 1,639 1 (ref)

GA 6,324 7,369 0.96(0.91-1.01) 6,678 10,266 1.11(1.06-1.17) 2,057 2,496 1.05(0.95-1.16)

AA 2,064 2,430 0.98 
(0.91-1.06) 2,495 3,588 1.22(1.14-1.31) 735 886 1.06(0.93-1.21)

B)

Genotype 
at 

rs2300985

Non-drinkers
a

Light-to-moderate drinkers
b

Heavy drinkers
c

No. of 

Cases
e

No. of 

Controls
e

Odds Ratio 

(95% CI)
d

No. of 

Cases
f

No. of 

Controls
f

Odds Ratio 

(95% CI)
e

No. of 

Cases
g

No. of 

Controls
g

Odds Ratio 

(95% CI)
e

GG 5,366 5,747 1.28 
(1.21-1.35) 4,806 7,804 1 (ref) 1,349 1,639 1.45 

(1.33-1.58)

GA 6,324 7,369 1.23 
(1.17-1.30) 6,678 10,266 1.11 

(1.06-1.17) 2,057 2,496 1.51 
(1.41-1.63)

AA 2,064 2,430 1.26 
(1.17-1.35) 2,495 3,588 1.22 

(1.14-1.31) 735 886 1.54 
(1.37-1.72)

a
Non-to-occasional drinkers consume less than 1 gram of alcohol per day.

b
Light-to-moderate drinkers consume 1-28 grams of alcohol per day.

c
Heavy drinkers consume more than 28 grams of alcohol per day.

d
Adjusted for age, sex, study site, total energy intake, and the first three principal components.

e
Non-drinking cases: GG (39%), GA (46%), AA (15%); Non-drinking controls: GG (37%), GA (47%), AA (16%).

f
Light-to-moderate drinking cases: GG (34%), GA (48%), AA (18%); Light-to-moderate drinking controls: GG (36%), GA (47%), AA (17%).

g
Heavy drinking cases: GG (32%), GA (50%), AA (18%); Heavy drinking controls: GG (32%), GA (50%), AA (18%).

Abbreviations: No. = Number.
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