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Abstract

A hallmark of the innate immune system is its ability to rapidly initiate short-lived or sustained 

transcriptional programs in a cell- and pathogen-specific manner that is dependent on dynamic 

chromatin states. Much of the epigenetic landscape is set during cellular differentiation; however, 

pathogens and other environmental cues also induce changes in chromatin that can either promote 

tolerance or ‘train’ innate immune cells for amplified secondary responses. We review chromatin 

processes that enable innate immune cell differentiation and functional transcriptional responses 

in naive or experienced cells, in concert with signal transduction and cellular metabolic shifts. 

We discuss how immune chromatin mechanisms are maladapted in disease and novel therapeutic 

approaches for cellular reprogramming.
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Introduction

In addition to adapting to tissue-specific cues, innate immune cells are uniquely 

programmed to appropriately respond to a diverse array of stimuli that range from pathogen 

infections to non-threatening microbial ligands and metabolites. Certainly, a key tenet of 

a successful first line immune defense to pathogens is the induction of a signal-specific, 

cell lineage-specific, and kinetically precise gene expression program. The products of such 

synchronized gene expression programs occur following pattern recognition receptor (PRR) 
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recognition of conserved features of microorganisms that are absent in the host (pathogen-

associated molecular patterns or PAMPs) and host-derived molecules only exposed under 

conditions of excessive cell death and tissue damage (damage-associated molecular patterns 

or DAMPs). Subsequent signal transduction and cellular metabolic shifts in neutrophils, 

monocytes, macrophages, natural killer cells, basophils, dendritic cells or epithelial cells 

leads to the activation of transcription factors that bind to inducible genes -- cytokines, 

transcription factors, effector proteins, and metabolic regulators - that enable pathogen 

clearance, aid adaptive immunity, clear cellular debris, and restore damaged tissues. The 

different PRRs, signaling pathways, and transcription factors involved in cell differentiation 

and the transmission of information from the cell surface to the nucleus during an innate 

immune response continue to be explored. How chromatin mechanisms dictate context-

appropriate transcription of precise genes from the larger chromatin landscape is an active 

area of investigation. These mechanisms are not only central to rapid initial responses to first 

exposure of a pathogen, but chromatin-associated factors also prime innate immune cells for 

subsequent re-infections and may be disrupted for anti-inflammatory therapies. Moreover, 

the contribution of tonic or homeostatic PRR signaling in either priming or repressing 

chromatin remains poorly understood.

In this review, we discuss the epigenetic regulators that instruct innate immune cell state 

and functional responses to environmental cues, highlighting overlap between these steps 

of cellular regulation. We describe the differential chromatin regulation of poised LPS 

primary response genes versus delayed secondary response genes and the signaling cascades 

that initiate chromatin changes to enable pro-inflammatory gene transcription. Furthermore, 

recent work has uncovered how pathogen recognition can stably alter chromatin for tolerized 

or primed responses to subsequent exposures. Finally, we discuss mutations in human 

epigenetic factors that lead to inflammatory diseases and the advancement of therapeutic 

strategies that target epigenetic factors. The advent of new chromatin technologies requiring 

fewer cells, or single cells, will enable further growth of this field within immunology.

Core components of epigenetic regulation

Gene expression requires the binding of transcription factors to promoters and enhancers, 

resulting in the recruitment of the transcription apparatus that includes RNA polymerase 

II (RNA Pol II) and permits transcription initiation, elongation, and termination. However, 

transcriptional machinery first needs access to genes as DNA is condensed into chromatin 

and epigenetic mechanisms must permit accessibility of underlying DNA. Broadly, the 

term epigenetics describes the regulatory mechanisms “outside of or above” the cell’s 

preconceived DNA code that regulate transcription. Four major mechanisms are considered 

to be involved in the epigenetic regulation of gene expression patterns: covalent modification 

of DNA; covalent modification of core histones or histone variants; non-protein-coding 

RNAs (microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) excellently reviewed 

here [1,2]; and chromatin remodeling machinery.
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Modifications of histones

In eukaryotic cells, 2 meters of DNA is tightly packaged in the nucleus. Specifically, 147bp 

of nucleotides wrap around an octamer of histones (2 copies each of histone H2A, H2B, H3, 

and H4) to form a nucleosome, and these nucleosomal units repeat throughout the genome 

and form increasingly higher-order structures that form chromosomes. Importantly, histone 

tails have an unstructured N-terminus that protrude from the nucleosomes and are subject 

to covalent modifications. Epigenetic ‘writers’ catalyze post-translational modifications 

(e.g. histone methyltransferases, histone acetyltransferases (HATs), kinases), while ‘erasers’ 

remove these dynamic modifications (e.g. demethylases, histone deacetylases (HDACs)). 

Regulatory information stored in modified histones is functionally translated by ‘readers’, 

that dock to defined modified histones via distinct protein domains (e.g. bromodomain, 

PHD, YEATS). Readers recruit other epigenetic or transcriptional machinery to specific loci 

thereby serving as the chromatin’s adaptor molecules. These chromatin readers may have 

similar structural features to adaptor molecules that transduce PRR signaling upstream of 

transcription [3]. Overall, the combinatorial ‘histone code’, first posited more than twenty 

years ago [4], is a central orchestrator of gene expression in innate immune cells. For 

example, myeloid cell identity depends on a combination of histone modifications that result 

in lineage-inappropriate gene silencing and a separate combination that poises chromatin at 

inflammatory genes for rapid and robust induction in response to microbial recognition.

DNA and RNA methylation

Methylation of the 5′-carbon of the pyrimidine ring at cytosine nucleotides (5-mC), 

the most widely studied type of DNA methylation, is catalyzed and maintained by the 

DNA methyltransferase (DNMT) family members. Ten-eleven translocation (TET) cytosine 

dioxygenase family members mediate oxidation of 5mC into 5-hydroxymethylcytosine 

(5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), which are critical for active 

DNA demethylation. In general terms, CpG DNA methylation (DNAme) at promoters 

inhibits binding of so-called methyl-sensitive transcription factors and recruits repressive 

DNAme readers (e.g., MeCP2, SETDB1), thus restricting transcription. In contrast, 

processive oxidation products of DNAme are generally associated with active chromatin 

and result in loss of DNAme, either passively, through cell division, or actively, via base 

excision repair. Modifications of RNA have also been shown to regulate gene expression. 

N6-methyladenosine modification (m6A) on eukaryotic RNA is a common modification 

which regulates RNA transcript splicing, processing, translation, and decay. In regards to 

innate immunity, genetic deficiency in METLL3, the methyltransferase catalyzing m6A 

modification, is associated with reduced NF-κB activity [5] and increased IFN production 

and viral clearance [6,7].

Chromatin remodeling

Chromatin packaging and topology are important determinants of gene expression. 

Chromatin undergoes active reorganization of its architecture to permit access of 

cis-regulatory elements to transcriptional regulators. This is performed by chromatin 

remodelers, which are ATP dependent translocases that participate in nucleosome sliding, 

conformational change of the nucleosome, or histone variant exchange. Mammalian 
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chromatin remodelers fall into four families: SWI/SNF (switch/sucrose non-fermenting, 

ISWI (imitation switch), IN080 (inositol requiring 80), and CHD (chromodomain helicase 

domain containing). They associate with large protein complexes and have been shown to 

both promote or prevent transcription. As discussed later, these proteins have an important 

role in innate immunity by regulating secondary response genes in macrophages following 

bacterial and viral challenges.

Epigenomic techniques for immunologists

The advent of high-throughput sequencing technologies and novel biochemical methods that 

survey genomic regulatory regions, chromatin occupancy, and accessibility has significantly 

advanced our understanding of chromatin biology in cell development and function (Table 

1). Many early techniques, such as chromatin immunoprecipitation (ChIP) and DNase I 

hypersensitivity assays, to assess chromatin occupancy and accessibility required large 

amounts of material, had poor signal-to-noise ratios and hence often prohibited use by 

immunologists examining relatively rare but pure primary immune cells. Recently there 

has been an influx of technologically improved assays (Table 1), including CUT&Run [8], 

CUT&Tag [9], ATAC-seq [10] and single cell versions of these, that has enabled many 

immunologists to embrace epigenetic analyses on limited cells. Moreover, protocols such as 

MINT-ChIP [11] and MulTI-Tag [12] have enabled multiplexing targets in the same cells. 

Also, epigenome profiling can now be integrated with bulk- and single cell-transcriptomic 

data using 10x Genomics Single Cell Multiome, simultaneous high-throughput ATAC and 

RNA expression with sequencing (SHARE-seq) [13,14], or Paired-seq [15]. In addition, 

chromatin accessibility or RNA measurements coupled with Cytometry by time of flight 

(CyTOF) as well as spatial genomic and epigenomic techniques will transform our 

understanding of chromatin regulation in immune cells.

Regulation of macrophage identity and plasticity by chromatin mechanisms

Diversity and plasticity are fundamental properties of macrophages, and most work 

examining epigenetic mechanisms in innate immunity have focused on this cell type. 

To some extent, the properties of macrophages are imprinted through ontogenetic origin 

(during embryogenesis from yolk-sac progenitor cells vs. hematopoiesis) but are also 

heavily dependent on chromatin mechanisms that respond to external or tissue-specific 

environmental cues. Transcriptomic and epigenetic landscapes of human microglia exposed 

to an in vitro culture environment signficantly downregulated microglia-specific genes 

compared to ex vivo microglia, highlighting environment-dependent programming of these 

macrophages [16]. Similarly, engrafting peritoneal mouse macrophages into the alveolar 

cavity led to the downregulation of peritoneal-specific gene programs and upregulation of 

lung macrophage-specific genes [17]. This tissue-specific macrophage identity was shown to 

be strongly regulated by enhancers [17] and chromatin remodelers, such as BAF/PBAF, to 

facilitate or prevent transcription factor binding [18,19].

Regulation of silenced facultative heterochromatin, marked by H3K27me3, is also 

a major orchestrator of macrophage development, polarization, and function. The 

histone demethylases JMJD3 and UTX specifically facilitate di- and trimethyl H3K27 
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demethylation and regulate transcription of developmental transcription factors, such as 

HOX genes [20], and cell fate and patterning proteins, such as Wnt proteins and TGF-

β family members [21,22]. JMJD3 is also necessary for expression of IRF4 and the 

control of macrophage polarization that is required for anti-helminth responses [23]. 

Similarly, Enhancer of zeste homolog 2 (EZH2), a H3K27 methyltransferase, is required for 

macrophage cell identity as it mediates Toll-like receptor (TLR)-induced proinflammatory 

gene expression by directly repressing suppressor of cytokine signaling 3 (SOCS3) 

expression [24].

Furthermore, work from our group demonstrated a profound role for chromatin reader 

SP140, associated with inflammatory disease (Table 2), that predominantly occupies 

heterochromatin marked by H3K27me3 to repress chromatin accessibility and inhibit 

transcription of lineage-inappropriate genes, including late HOX genes (HOXA7 and 

HOXA9) [25]. SP140 loss results in severely compromised lineage-defining and microbe-

inducible innate transcriptional programs and defective bacterial killing [26]. In addition 

to histone methylation, histone acetyltransferases and deacetylases serve a role in 

polarizing macrophages to a pro-inflammatory or alternatively activated state. For example, 

macrophages that lack HDAC3 become anti-inflammatory [27,28] and polarize towards IL-4 

hyperresponsive cells [29]. Inhibition of HDAC3 via butyrate treatment or direct chemical 

inhibitor alters macrophage metabolism [30], prevents inflammatory responses [31], and 

enhances anti-microbial responses [30].

Kinetics of Macrophage Transcriptional Programs

Much of what we know about chromatin dynamics that regulate transcription after microbial 

sensing derives from numerous studies on the effect of LPS or Lipid A stimulation and 

signaling that stems from TLR4 activation. Response to LPS involves the upregulation of 

genes that are rapidly induced and others whose transcription is delayed [32]. Following 

LPS stimulation, primary response genes (PRGs) are rapidly induced in the absence of 

new protein synthesis whereas secondary response genes (SRGs) require new protein 

synthesis for activation. The promoters of PRGs, such as Tnf, Fos and Nfkbia, are richer 

in CpG islands and have higher levels of poised RNA Pol II, H3K4me3, H4ac in naive 

cells compared to SRG promoters [32–37]. These features are characteristic of actively 

transcribed genes and are associated with higher levels of H3K9/K14 acetylation and 

H3K4me3 [32,34]. Thus, naive macrophages have poised chromatin landscapes that enable 

expression of a defined set of PRGs within minutes of cell activation [34,38]. Transcription 

of these genes do not require chromatin remodeling complexes, such as the SWI/SNF 

family, or de novo protein synthesis, as their chromatin state is immediately permissive 

to transcription factor binding and RNA Pol II elongation [32]. SRGs on the other hand, 

whose transcription peaks around 4 hours post TLR4 stimulation, display low H3K4me3, 

H4Ac, and no RNA Pol II occupancy in naive macrophages. SRGs, such as Il12b, depend on 

SWI/SNF remodeling complexes to increase DNA accessibility and transcription [34,38,39]. 

In addition, PRGs but not SRGs are negatively regulated at baseline by the transcriptional 

corepressors NCoR/HDAC3 and coREST/HDAC1 to perhaps limit transcription at these 

poised sites [32].
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Signaling to Chromatin: Histone Phosphorylation

Accumulating evidence demonstrates that signal transduction cascades downstream of PRR 

activation directly regulate histone or DNA modifications or chromatin-interacting proteins 

[40] (Figure 1). H3S10ph, H3.3S28ph, and H3.3S31ph are examples of histone residue-

specific phosphorylation events that occur downstream of TLR4 activation [41]. After LPS 

stimulation, MSK1 and MSK2 rapidly phosphorylate H3S28 at promoters and enhancers 

[41]. In addition, H3S10 located at inducible gene promoters is phosphorylated after NFκB 

activation, although it is not clear which kinases are responsible for this post-translational 

event [42–45]. IKKα is recruited to inflammatory genes after NFκB activation [45,46] 

where it mediates phosphorylation of H3.3S31 within LPS induced gene bodies, such 

as Tnf, Cxcl2, and Il1a [47]. H3.3S31ph correlates with H3K36me3 density, which is 

exclusively deposited by the histone methyltransferase SETD2 [47]. The SETD2 catalytic 

domain binds to H3.3S31ph thereby promoting K36 engagement in the active site [47]. 

Thus, H3.3S31ph augments SETD2 methyltransferase activity. Other epigenetic enzymes 

that interact with H3.3S31ph include the H3K27me3 demethylase JMJD3 [48,49] while the 

PHF1 Polycomb group protein family member (H3K27me3 methyltransferase complex) is 

ejected by H3.3S31ph [50,51]. How these other enzymes orchestrate gene expression after 

stimulation in regard to H3.3S31ph modification will need further study. However, Armache 

et al. reveal that the K36me3 reader and transcriptional corepressor ZMYND11 is already 

present at a subset of LPS induced genes at baseline and is ejected by dually modified 

H3.3S31ph/H3.3K36me3 as – providing a mechanism whereby ZMYND11 ejection allows 

rapid transcription to occur [47]. Thus, many stimulation-induced genes share distinguishing 

chromatin features: (1) active chromatin states and pre-existing H3.3K36me3, (2) pre-bound 

ZMYND11 corepressor, (3) stimulation induced H3.3S31ph, and (4) ejection of ZMYND11. 

Beyond TLR4 stimulation, histone phosphorylation likely features as a transcriptional 

inducement mechanism downstream of diverse receptors and in different cell types, 

including adaptive immune cells [40].

Innate Immune Training and Tolerance

Accumulating evidence demonstrates that innate immune cells have adaptive-like features, 

such as tolerance and training, that depend on alterations to chromatin state. During innate 

immune training, epigenetic changes or “scaring” persist even after the cell returns to 

homeostasis following stimulation [52]. This pattern of exposed enhancers and promoters 

of host-defense genes results in enhanced transcription in response to homologous or 

heterologous rechallenge. The opposite of trained immunity, “tolerized” innate immune 

cells are unable to activate gene transcription following restimulation [53,54]. Both innate 

immune adaptations are rooted in epigenetic reprogramming.

Tolerized genes include pro-inflammatory genes, such as Il6 and Il1b, whereas non-tolerized 

genes encode antimicrobial effectors, such as Cnlp and Lcn2 [53]. After stimulation, H4Ac, 

H3K4me3, and Brg1 associated with promoters of LPS inducible genes then dissociate 

during resolution [33,53,55]. However, upon secondary exposure to LPS, the promoters 

of tolerized genes do not exhibit a second increase in H4Ac and Brg1 whereas non-

tolerized gene promoters display greater and faster H4Ac accumulation than the initial 
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response and maintained H3K4me3 deposition [53]. Inhibition of histone deacetylases or 

H3K4 demethylases rescues transcription at tolerized genes [53] suggesting that epigenetic 

enzymes negatively regulate transcription of pro-inflammatory genes and limit pathology 

associated with inflammation while allowing for pathogen defense. While both tolerized and 

non-tolerized gene transcription is induced by the same upstream PRR signal transduction, 

the differential epigenome at these distinct gene sets enables selective and fine-tuned 

transcription for appropriate immune responses. Thus, this level of epigenetic regulation 

may be leveraged for selective therapies in the clinic that target inflammation versus 

antimicrobial responses.

Innate immune training has mostly been observed in monocytes exposed to the fungus 

C. albicans or its cell wall component β-glucan for a training period, then allowed to 

return to steady state, and rechallenged (5,7). C. albicans- and β-glucan-induced innate 

immune training results in a stable increase in H3K4me3 at gene promoters in monocytes 

and peritoneal macrophages that promotes training [56]. This H3K4me3 deposition is 

facilitated by lncRNAs [57]. In addition to inflammatory genes, many of the genes with 

altered promoter H3K4me3 were involved in glycolysis [58] suggesting a metabolic switch 

accompanies epigenetic reprogramming in innate immune training.

In experimental animal models, the memory of exposure surpasses that of the typical 

lifespan of innate immune cells. Recent studies have now demonstrated that immune training 

occurs within the hematopoietic stem cell compartment in bone marrow [59]. Evidence 

for transmission of trained immunity was also recently demonstrated across generations to 

murine progeny that survived a sublethal systemic infection with C. albicans [60].

Although innate immune training can enhance pathogen responses, maladaptive innate 

immune training has been proposed to promote chronic immune disease [52]. Furthermore, 

in addition to peripheral memory, exposure to western diet, exercise, chronic stress, and 

sleep fragmentation directly alter the chromatin accessibility of the bone marrow progenitor 

epigenome. Some of these chromatin changes are maintained over time and importantly 

impact progenitor proliferation, lineage commitment, and functional response to secondary 

recall challenges [61–63].

Cross-regulation of metabolic and epigenetic pathways in macrophages

As has been thoroughly reviewed previously [64], metabolic and epigenetic pathways are 

tightly linked (Figure 2). Chromatin regulating proteins rely on available metabolites for 

their catalytic activity. Thus, when metabolic switches occur following PRR activation or 

when metabolite availability is altered by the presence of microorganisms, macrophage 

transcriptional programs adapt or maladapt via epigenetic regulation. For instance, histone 

acetyltransferases require acetyl coenzyme (acetyl-CoA) for activity, fumarate inhibits 

the KDM5 family of histone demethylases, and α-ketoglutarate (α-KG) is as cofactor 

for histone demethylases [65,66]. The tight coupling between metabolism and epigenetic 

regulation of transcription is also exemplified by recent discoveries of novel epigenetic 

marks, including histone succinylation [67,68], crotonylation [69], and lactylation [70] that 

rely on the substrates succinyl-coA, crotonyl-coA and lactate levels, respectively.
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The activity of the tricarboxylic acid (TCA) cycle from which these metabolites are 

produced is thus a major regulator of chromatin state. Accumulated citrate in LPS activated 

macrophages is used for production of the potent anti-inflammatory metabolite, itaconate, 

via the LPS and IFN-inducible enzyme immune-responsive gene 1 protein (IRG1) [71]. 

Itaconate exerts its anti-inflammatory functions through the transcription factor nuclear 

factor erythroid 2-related factor 2 (NRF2), although how it regulates chromatin modifying 

enzymes remains to be established.

Succinate acts as a proinflammatory metabolite that directly inhibits histone lysine 

demethylases (KDM2–7) and the ten-eleven translocation hydroxylases (TET1–3) involved 

in DNA demethylation. Certainly, in macrophages, an important functional role has 

been attributed to the αKG/succinate ratio regulating anti-inflammatory versus pro-

inflammatory macrophage state. Macrophages polarized with IL4 have increased acetyl-

CoA and an increased α-KG:succinate ratio for epigenetic reprogramming via HATS 

and JMJD3, respectively [72,73]. Conversely, a low α-KG:succinate ratio strengthens the 

proinflammatory phenotype in LPS activated macrophages. In addition, αKG contributes to 

endotoxin tolerance after LPS activation [73]. TET2, an LPS inducible DNA demethylase 

and a target of α-KG was shown to be essential for inflammation resolution [74], and TET2 

may be involved in the mechanism by which α-KG promotes LPS tolerance. Thus, pathways 

involved in α-KG production may be attractive therapeutic targets to reset the epigenome in 

diseases associated with macrophage malfunction.

Fumarate also has a proinflammatory role in controlling chromatin modifications. 

Specifically, the accumulation of fumarate in response to pro-inflammatory insults has been 

shown to be necessary for trained immunity and inflammation by inhibiting KDM5 histone 

demethylase activity [75]. The inhibition of KDM5 increases the levels of H3K4me3, a 

marker of active gene transcription at the promoters of Tnf and Il6 cytokines. Notably, 

fumarate derivatives like dimethyl fumarate (DMF) are currently being used in the clinic to 

treat autoimmune conditions, including multiple sclerosis (MS) and psoriasis.

In addition to host metabolic pathways, the microbiome serves as the other major source 

of metabolites in mammals and is emerging as a major influence on host cell epigenetic 

enzyme activity [76]. Microbiota exclusively metabolize complex carbohydrates derived 

from dietary fibers in the colonic lumen via fermentative reactions to produce small 

organic acids, the bulk of which are short chain fatty acids (SCFAs) acetate, propionate, 

and butyrate – all of which are HDAC inhibitors. Notably, supplementation of SCFAs in 

germfree mice recapitulated global chromatin states and gene expression patterns observed 

with complete gut colonization [77]. Other commensal bacteria-derived metabolites, such 

as inositol-1,4,5-trisphosphate (InsP3), have been shown to stimulate HDAC3 activity in the 

gut [78]. Recently, butyrate was shown to have a profound impact on macrophage function 

by promoting antimicrobial transcriptional programs via HDAC3 inhibition [30], but the 

ability of other microbiota-derived metabolites to dictate innate immune transcription via the 

epigenome is a fertile area of investigation.
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Disease Relevance and Therapeutic Opportunities

The rapid rise in the prevalence of chronic immune diseases that cannot be explained by 

genetics alone lend support to the critical role of environmental factors and epigenetics in 

these diseases. Analysis of longitudinal twin cohort studies reveal that by the age of 65, 70% 

of variance in chromatin modifications can be largely attributed to environmental influences 

[79]. Genome-wide association studies have identified mutations within genetic loci for 

chromatin readers, writers, and erasers that are significantly associated with inflammatory 

disease susceptibility (Table 2). However, in addition to mutations that directly affect 

expression or function of epigenetic enzymes in immune disease, mutations can lie in 

non-coding epigenetic regulatory regions, such as enhancers. In fact, 60% of autoimmune 

disease variants map to active immune cell enhancers, but it is unknown how causal 

variants affect gene transcription as most mutations do not lie in known transcription factor 

binding motifs [80]. There is also a gap in knowledge in which epigenetic regulators 

integrate changes from environmental cues and whether genetic variants in these epigenetic 

regulators are sufficient for disease pathogenesis or require environmental perturbations as 

a “second hit”. Furthermore, heterogeneity in clinical phenotypes (penetrance and disease 

expressivity) commonly observed in different patients with the same mutation could be 

due to contributions from different environmental cues occurring at critical windows of 

development.

Epigenetic Therapeutics in Inflammatory Disease

Due to the role of chromatin modifying enzymes in dictating precise gene transcription 

programs in homeostasis and inflammation, targeting this class of proteins raises the 

possibility to regulate and reduce the magnitude of entire gene expression programs instead 

of targeting individual inflammatory mediators. Moreover, many epigenetic modulating 

drugs have current FDA approval for cancer and can potentially be repurposed to treat 

epigenetic disruptions in the context of autoimmunity or inflammation.

As outlined in the above sections, H3K27me3 prevents promoter accessibility and 

suppresses the expression of proinflammatory gene programs in macrophages. GSK-J4, an 

α-ketoglutarate mimic, binds to the catalytic pocket of the H3K27 demethylases JMJD3 

and UTX [48]. Thus, GSK-J4 prevents the demethylation of the repressive H3K27me3 

and inhibits LPS-induced inflammation [48]. Recently, GSK-J4 prevented abdominal aortic 

aneurysms and aortic inflammation in mice that stemmed from monocytes and macrophages 

[81]. Similarly, pharmacological inhibition of EZH2 specifically resolved H3K27me3 at 

bivalent gene promoters and attenuated cardiac dysfunction in a mouse model of myocardial 

infarction [82], ameliorated DSS-induced colitis [83], and alleviated lung injury and fibrosis 

in the LPS-induced acute respiratory distress syndrome model [84].

Class I and Class II pan HDAC inhibitors have exhibited anti-inflammatory effects in vitro 
and in vivo [31,85–87]. Specific HDAC1 or HDAC3 inhibitors also prevent inflammation in 

animal models of inflammatory diseases and in peripheral blood mononuclear cells (PBMC) 

from rheumatoid arthritis patients [85,88]. Despite the reasonable success of HDAC 

inhibitors as anti-inflammatory agents, the details of how such epigenetic alteration prevents 

inflammation is unclear. Histone acetylation is exclusively “read” by bromodomains, which 
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have defined lysine acetylation affinities and recruit distinct proteins, such as transcriptional 

elongation machinery, to the chromatin [32,89,90]. Rather than drugging the enzymes that 

“write” and “erase” the epigenome, targeting the “readers” of histone modifications may 

inhibit the function of specific epigenetic modifications without altering the cell’s overall 

epigenetic landscape determined by “writers” and “erasers.” By designing small molecules 

that act as histone mimics and bind to reader domains, such as a bromodomain, this class 

of therapeutics can disrupt histone binding activity. Most work thus far has focused on 

targeting the bromodomain and extra-terminal (BET) subfamily. I-BET762 (also known as 

GSK525762A) specifically interacts with BRD2, 3, and 4 and competitively interacts with 

the acetylated lysine binding pocket of BET bromodomains, acting as a histone mimic [33]. 

Inhibition of BET proteins prevents the assembly of chromatin activating and transcription 

elongation complexes at a subset of LPS-inducible promoters [33]. Importantly, I-BET 

prevented LPS-induced endotoxic shock and bacteria-induced sepsis in mice [33]. Beyond 

BET family members, other classes of bromodomains are also predicted to have good 

druggability [91].

Additional chromatin factors such as topoisomerases (TOP) were recently reported to play 

key roles in infection-induced gene transcription and leveraged for therapeutic benefit. 

Certainly, TOP inhibition at low and clinically tolerized doses specifically modulated 

bacteria and virus-inducible inflammatory gene expression programs and demonstrated pre-

clinical efficacy in sepsis and COVID-19 [92,93]. Similarly, TOP inhibition can be utilized 

to repress aberrant gene expression programs upregulated in immune diseases driven by 

epigenetic reader SP140 loss-of-function [26]. In addition to TOP inhibitors, inhibitors to 

the positive transcription elongation factor b (P-TEFb) subunit cyclin-dependent kinase 9 

(CDK9), also prevent transcription and are being developed as a new line of therapeutics to 

alleviate inflammation and autoimmunity [94].

Concluding remarks.

Effective innate immunity depends on the fidelity of immune cell differentiation and 

rapid adaptability of mature cells to the tissue milieu and other environmental factors, 

such as pathogen invasion. In these contexts, epigenetic mechanisms allow cells to 

dynamically initiate or terminate transcriptional programs to appropriately respond to 

changes in the tissue microenvironment, microbial threats, or the resolution of infection. 

Failure to fine-tune transcriptional programs to prevent exaggerated responses will cause 

hyper-inflammatory and autoimmune disorders (Figure 3). As our understanding of innate 

immune ‘training’ and innate immune metabolism grows, it is appealing to speculate that 

epigenetic mechanisms that integrate these signals may contribute to the persistence of 

disease-associated phenotypes, even in the absence of the initial trigger. Moreover, there are 

emerging examples of genetic mutations within chromatin modifying enzymes or chromatin 

regulatory regions that directly contribute to human immune disorders. Thus, resetting 

metabolic states to alter epigenetic enzyme function or directly epigenetic enzymes may 

allow resetting of the disease ‘epigenetic scar’ and restoration of normal transcriptional 

programs.
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Highlights

• Chromatin dynamics regulate pattern, timing and magnitude of gene 

expression

• Signal transduction downstream of TLR4 regulate histones for inducible gene 

transcription

• Metabolic shifts and epigenetics of innate immune cells are intimately linked

• Chromatin dynamics enable memory of microbial exposure for tolerance or 

trained immunity

• Epigenetic therapies demonstrate promise for inflammatory disease
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Figure 1. Signaling to chromatin mediates inflammatory responses.
(A) First, kinases, such as MSK1, MSK2, and IKKα, phosphorylate histone modifications, 

such as H3S28, H3S10, and H3.3S31. Specifically, H3.3S31ph promotes the ejection of 

ZMYND11 from H3.3K36me3. (B) ZMYND11 ejection allows for increased H3.3K36me3 

whereas H3S28ph promotes P300/CBP-mediated acetylation of H3K27 – events that 

enhance transcription.
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Figure 2. Crosstalk between metabolism and innate immune chromatin architecture.
(A) ATP-citrate lyase (ACLY) synthesizes acetyl coenzyme (acetyl-CoA), a coenzyme for 

histone acetyltransferases (HATs). However, citrate can also be a source for itaconate, an 

anti-inflammatory metabolite. (B) α -ketoglutarate (α-KG) promotes the function of histone 

demethylases, such as JMJD3, and DNA demethylases, such as TET2. (C) Fumarate and 

succinate inhibit histone demethylases, such as JMJD3 and KDM5.
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Figure 3. 
Environmental factors dictate chromatin modifications and accessibility to determine innate 

immune cell state and function.
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Table 1.

Emerging technologies for immunologists studying chromatin dynamics.

Technique Information Cell Numbers Reference

Bisulfite-seq DNA methylation 100,000 – 500,000 and single cell [95,96]

5(h)mC-seq DNA methylation at 5-methylcytosine 100 – 100,000 [97]

m6A RNA-seq mRNA methylation 10 million [98,99]

FAIRE-seq Chromatin accessibility 10 million [100]

DNase-seq Chromatin accessibility 1 – 10 million [101]

ATAC-seq Chromatin accessibility 500 – 50,000 and single cell [10,102]

CUTAC Chromatin accessibility with the addition of RNA Pol II occupancy 500 – 50,000 [103]

MNase-seq Chromatin inaccessibility 10,000 – 100,000 [104]

GET-seq Chromatin accessibility and inaccessibility 5,000 – 20,000 and single cell [105]

SHARE-seq Chromatin accessibility in concert with RNA transcript levels single cell [13,14]

ChIP-seq Chromatin occupancy of specific proteins 2 – 10 million [106]

CUT&Run Chromatin occupancy of specific proteins, with reduced background 500 – 50,000 [8]

CUT&Tag Chromatin occupancy of specific proteins, with reduced background 50 – 50,000 and single cell [9]

Spatial-CUT&Tag Spatial localization of histone modifications in situ N/A [107]

MINT ChIP Chromatin occupancy of up to four histone modifications, multiplexed 
in the same cell population

50,000 – 100,000 [11]

MulTI-Tag Chromatin occupancy of multiple histone modifications, multiplexed 
in the same cell

500 – 50,000 [12]

Hi-C Three-dimensional chromatin interactions 2 – 5 million and single cell [108,109]

ChIA-PET Three-dimensional chromatin interactions bound by a specific protein 100 million [110]

IGS Spatial localization of chromatin 100 [111]

CyTOF Protein abundance 300 [112]
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Table 2:

Variants of Epigenetic Regulators that associate with susceptibility of Immune Disease.

Gene Epigenetic 
Subclass

Functional Domains Disease Association

SP100 Reader SAND, PHD, Bromodomain Chronic Obstructive Pulmonary Disease [106]

SP110 Reader SAND, PHD, Bromodomain Chronic Lymphocytic Leukemia [107]

SP140 Reader SAND, PHD, Bromodomain Crohn’s Disease [108,109], Multiple Sclerosis [110], Chronic 
Lymphocytic Leukemia [107]

BRD1 Reader Bromodo main Rheumatoid Arthritis [111]

BRD2 Readei Bromodomain Crohn’s Disease [112], Rheumatoid Arthritis [113]

BRWD2/PHIP Reader Bromodomain Sjögren’s Syndrome [114]

BRWD3 Reader Bromodomain Pneumonia and COVID19 [115]

UHRF1 Reader PHD, Tudor, SRA Type II Diabetes Mellitus [116,117]

UHRF2 Reader PHD, Tudor, SRA Asthma [118], Periodontitis [119], Allergy [120], Chronic 
Sinus Infection [121]

CHD1 Reader Chromodomain Type II Diabetes Mellitus [117]

CHD4 Reader PHD, Chromodomain Type II Diabetes Mellitus [117]

TRIM66 Reader PHD, Bromodomain Type II Diabetes Mellitus [122]

L3MBTL3 Reader MBT domair Asthma [123], Multiple Sclerosis [124]

DNMT3A Writer DNA methyltransferase Crohn’s Disease [109]

DNMT3B Writer DNA methyltransferase Inflammatory Bowel Disease [108,125,126]

EHMT2/G9a Writer Histone methyltransferase Type II Diabetes Mellitus [127], Chronic Obstructive 
Pulmonary Disease [128], Asthma [129], Takayasu Arteritis 
[130]

DOT1L Writer Histone methyltransferase Osteoarthritis [131], Systemic Lupus Erythematosus [132]

SUPT3H Writer Histone acetyltransferase Osteoarthritis [128,133]

KAT2A Writer Histone acetyltransferase Coronary Artery Disease [134,135], Inflammatory Bowel 
Disease [136]

HDAC4 Eraser Histone deacetylase Chronic Obstructive Pulmonary Disease [128]

HDAC7 Eraser Histone deacetylase Inflammatory Bowel Disease [137], Allergy [138], Asthma 
[139]

HDAC9 Eraser Histone deacetylase Osteoarthritis [140]

KDM4C Eraser Histone demethylase Systemic Lupus Erythematosus [141], Asthma [142]

KDM5A/JARID1A Eraser Histone demethylase Ankylosing Spondylitis [143]

TET2 Eraser DNA demethylation Ulcerative Colitis [137], Multiple Sclerosis [110], Chronic 
Pulmonary Obstructive Disease [144]

TET3 Eraser DNA demethylation Systemic Lupus Erythematosus [145]

SMARCA2 Chromatin 
remodeler

SNF2 ATPase domain Asthma [146], Hashimoto’s Thyroiditis [147]

SMARCA4/BRG1 Chromatin 
remodeler

SNF2 ATPase domain Coronary Artery Disease [148], Multiple Sclerosis [149]
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