Skip to main content
. 2018 Jun 27;8(41):23411–23420. doi: 10.1039/c8ra02792g

Results of applying first-order algorithms to validation samples.

Model LVsa PPb δ PDCc RMSECV RMSEP REP (%) R 2 Q 2
PLS-1 3 0.0121 0.0144 15.3069 0.6921 0.7001
MC-PLS-1 2 0.0044 0.0067 7.1529 0.8120 0.8097
ASC-PLS-1 2 0.0033 0.0064 6.8227 0.8199 0.8123
CPR 2 1 0.0011 0.0062 6.5313 0.8341 0.8411
MC-CPR 1 1 0.0021 0.0034 3.6328 0.8540 0.8548
ASC-CPR 2 0.5 0.0088 0.0064 6.8227 0.8500 0.8533
RMC-PRM 1 10 0.0010 0.0002 0.6004 0.9121 0.9230
RLMC-PRM 1 10 0.000021 0.00001 0.0102 0.9891 0.9901
RMC-RCR 1 0.5 10 0.0038 0.002 2.1321 0.9231 0.9199
RLMC-RCR 1 0.5 10 0.0042 0.002 2.1317 0.9188 0.9321
MLR-SPA 1 0.2109 0.1931 204.97 0.5411 0.4830
a

Latent variables.

b

Power parameter.

c

Percentage of data contamination.