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Abstract

Objectives—Population sexual mixing patterns can be quantified using Newman’s assortativity 

coefficient (r). Suggested methods for estimating the SE for r may lead to inappropriate statistical 

conclusions in situations where intracluster correlation is ignored and/or when cluster size is 

predictive of the response. We describe a computer-intensive, but highly accessible, within-cluster 
resampling approach for providing a valid large-sample estimated SE for r and an associated 95% 

CI.

Methods—We introduce needed statistical notation and describe the within-cluster resampling 
approach. Sexual network data and a simulation study were employed to compare within-cluster 
resampling with standard methods when cluster size is informative.

Results—For the analysis of network data when cluster size is informative, the simulation study 

demonstrates that within-cluster resampling produces valid statistical inferences about Newman’s 

assortativity coefficient, a popular statistic used to quantify the strength of mixing patterns. 

In contrast, commonly used methods are biased with attendant extremely poor CI coverage. 

Within-cluster resampling is recommended when cluster size is informative and/or when there is 

within-cluster response correlation.

Conclusions—Within-cluster resampling is recommended for providing valid statistical 

inferences when applying Newman’s assortativity coefficient r to network data.

Sexually transmitted infection (STI) epidemic trajectory is largely determined by patterns 

of sexual contact within and between population groups (commonly referred to as sexual 

mixing).1 By convention, sexual mixing (mixing for simplicity) is expressed on a continuum 

ranging from perfectly ‘assortative’ to perfectly ‘disassortative’.2 3 Assortative mixing 

occurs when people select sexual partners from within their own group (ie, characteristically 
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or behaviourally similar to themselves).4 In contrast, disassortative mixing occurs when 

people choose sexual partners from outside their own group (ie, unlike themselves).5 

If people selected sexual partners without regard to group, mixing would be considered 

random.6

Evidence suggests that sexual partnering patterns (and hence the networks generated by 

these patterns) are in fact non-random, and this non-randomness has substantial implications 

for both the rate and degree to which STIs, including HIV, may spread throughout a 

population.2 6–8 Assortative mixing implies that people tend to mix within closed groups, 

say, young men with young men, injection drug users (IDUs) with other IDUs, etc. Under 

such conditions, infection generally persists within the closed groups into which it was 

introduced; this typically results in multiple, distinct and quickly evolving epidemics within 

a population.9 10 Under disassortative mixing conditions, such as when people from a low 

STI prevalence group mix with people from a high STI prevalence group (eg, young girls 

with older promiscuous men, non-IDUs with IDUs, etc.), the result is typically a sustained 

epidemic that progresses slowly from high prevalence (ie, high-risk) groups to the general 

population.9 11

Given that an enhanced understanding of mixing patterns can guide the development of 

targeted intervention programmes to reduce STIs among those groups most at risk, a 

number of studies have attempted to quantify population-level mixing patterns using both 

sociometric12 13 and egocentric14–16 network data to construct a mixing matrix.3 A mixing 

matrix is a cross-tabulation of the value of a characteristic (eg, HIV status, race, age group) 

of an index participant (row entry) with the corresponding value of the characteristic of a 

named partner (column entry). More specifically, the (i,j)th cell of a mixing matrix contains 

the observed proportion of dyads (ie, ‘edges’ in network terminology) in which index 

participants have level i and named partners have level j of the characteristic under study.

An example of a mixing matrix is given in table 1, which provides real dyadic data on HIV 

status from 253 male indexes at high risk for HIV and their up to five nominated sexual 

partners. These data were collected as part of an FHI 360 sexual network study, Sexual 
Behavioral Relationships and HIV Infection in Ho Chi Minh City, Vietnam. Partner HIV 

status in table 1 is as reported by the index subjects and was set to ‘negative’ in cases where 

it was unknown. Although this induces some potential misclassification into the observed 

negative partner status indicators (see ‘Discussion’), we treat the resulting HIV status data at 

face value for the illustrative purposes targeted in this paper.

Newman3 provides an excellent discussion of the pros and cons of suggested methods 

for analysing mixing patterns using data cast in the form of a mixing matrix. In his well-

cited paper, Newman introduces an assortativity coefficient r, discusses its properties and 

interpretation, and suggests two methods for estimating a SE for r. Newman’s r and his SE 

estimation methods have been used by numerous authors.15–17

Newman’s suggested methods for estimating a SE for r are based on the assumption that 

the edges (or dyads) in a mixing matrix are mutually independent. However, this assumption 

is often not appropriate since, for network data, a particular index subject typically is 
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a member of more than one dyad. More specifically, dyads sharing the same index 

subject form a cluster of potentially correlated observations, and ignoring such intracluster 

correlation can lead to the use of incorrect SE estimates and hence to inappropriate statistical 

conclusions.18 Bohl et al17 recognised this non-independent dyad issue, but offered only an 

ad hoc remedy without rigorous statistical justification for its use.

An even more problematic issue that can invalidate the standard application of Newman’s 

assortativity coefficient to network data is informative cluster size (ICS).19 ICS refers to 

the phenomenon where cluster size is predictive of (ie, is correlated with) the response 

under consideration. Table 2 illustrates the ICS phenomenon using our example of high-risk 

partnership data from HCMC, Vietnam. Here, we can see that the highest proportion of 

HIV-positive male index subjects resides in a cluster size of 2. This likely reflects the fact 

that 81% of HIV-positive male indexes were injecting drug users (IDUs) and of these, 

more than half (65%) reported a single female primary partner. In contrast, the cluster size 

distribution tends to favour larger clusters for HIV-negative male index subjects (p<0.001). 

Despite their own low-risk behaviour, many monogamous women in Vietnam are at risk 

for infection resulting from marriages or partnerships with high-risk primary partners, 

including IDUs.20–22 Thus, one consequence of interdependence is that the behaviours of 

HIV-positive male indexes may influence the HIV status of their female partners. These 

considerations motivate the need to estimate Newman’s r in the presence of ICS. The ICS 

issue is especially troubling because, as we will see, ICS can introduce bias not only into 

SEs but into the estimate of r itself.

In this paper, we describe and demonstrate a computer-intensive approach for providing a 

valid estimate and CI for Newman’s assortativity coefficient. This approach, called within-

cluster resampling (WCR),19 is easily understood, has strong theoretical justification, is 

readily implemented and is valid whether or not cluster size is informative. In section 

‘Methods’, we introduce needed statistical notation and describe the WCR approach. In 

section ‘Results’, WCR is compared with the so-called ‘naive’ method, which assumes 

that dyads are mutually independent. Both methods are used to compute Newman’s r and 

to construct an associated 95% CI for the mixing matrix in table 1. We also provide 

simulation results that compare the statistical properties of these two methods when 

cluster size is informative. Section ‘Discussion’ contains a discussion of our findings and 

recommendations.

METHODS

The notation used in this paper is the same as that used by Newman.3 In particular, for 

a (k×k) mixing matrix, eij is the proportion of all dyads associated with level i for an 

index participant and level j for a named partner. Also, ai = ∑j = 1
k eij is the sum of the 

proportions in row i, and bj = ∑i = 1
k eij is the sum of the proportions in column j; clearly, 

∑i = 1
k ai = ∑j = 1

k bj = 1. Newman’s assortativity coefficient r is defined as
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r =
∑i = 1

k eii − ∑i = 1
k aibi

1 − ∑i = 1
k aibi

,

a quantity that is identical in structure to the well-known kappa statistic.23 The maximum 

value of r is equal to +1, a value that indicates perfect assortativity; this maximum value 

of +1 occurs when the observed proportion of agreement ∑i = 1
k eii is equal to 1 so that 

all off-diagonal elements of the mixing matrix are equal to 0. When there is essentially 

only random mixing, so that ∑i = 1
k eii is close in value to the expected proportion of 

chance agreement ∑i = 1
k aibi, then r ≈ 0. Newman’s r can also take negative values, 

suggesting the presence of disassortativity. The minimum possible value of r is equal to 

−∑i = 1
k aibi/ 1 − ∑i = 1

k aibi , a quantity that depends on the marginal totals of the mixing 

matrix. Only in the limit, as k decreases to 2, as the correlation between the row and column 

totals approaches +1, and as the variances of the marginal totals increase, does r approach 

the value −1.

In the description of WCR to follow, let us assume that we have C index subjects (or 

clusters), and let ni (≥1) be the number of partners associated with the ith index subject, i = 

1, 2, …, C. So, there are ni presumably non-independent dyads (or edges) in the ith cluster.

To implement WCR, we randomly sample with replacement one dyad (ie, partner) from 

each of the C clusters. This resampled data set would then involve C mutually independent 

dyads (assuming no study subject appears in more than one cluster), and so we can validly 

analyse such a data set using standard methods for computing a kappa-type statistic (like 

Newman’s r) and its estimated variance based on a multinomial distribution assumption for a 

(k×k) table.24 We then generate Q of these resampled data sets (each of size C), where Q is 

large (in our experience, Q=200 seems sufficiently large to guarantee reliable results).

Now, for the qth resampled data set, q = 1, 2, …, Q, suppose that we obtain k2 cell entries 

{eqij}, the k row totals {aqi} and the k column totals {bqj}. Using these data, we compute 

Newman’s assortativity coefficient as

rq =
∑i = 1

k eqii − ∑i = 1
k aqibqi

1 − ∑i = 1
k aqibqi

and its estimated kappa-type variance as
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V rq = 1

C 1 − ∑i = 1
k aqibqi

2 ∑i = 1
k eqii 1 − aqi + bqi 1 − rq

2

+ 1 − rq
2 × ∑

all i≠j
eqij bqi + aqj

2

− rq − ∑i = 1
k aqibqi 1 − rq

2
.

When k=2, so that we have a 2×2 table, the variance estimator accompanying Newman’s r 

(ie, the unweighted kappa statistic) is seen to simplify as follows:

V rq = 1
C 1 − aq1bq1 + aq2bq2

2 eq11 1 − aq1 + bq1 1 − rq
2

+ eq22 1 − aq2 + bq2 1 − rq
2 + 1 − rq

2 eq12 bq1 + aq2
2 + eq21 bq2 + aq1

2

− rq − aq1bq1 + aq2bq2 1 − rq
2 .

Then, the WCR estimator of the true population value of Newman’s assortativity coefficient 

is simply the mean of these Q rq values, namely,

r = 1
Q ∑q = 1

Q rq .

Because the Q resampled data sets contain overlapping observations, the estimated variance 

V r  of r must be appropriately determined. Hoffman et al19 provide a formula for a more 

general setting; in our particular situation, the appropriate variance expression is

V r = 1
Q ∑q = 1

Q V rq − Q−1
Q Sr2,

where

Sr2 = 1
Q−1 ∑q = 1

Q rq − r
2

is simply the sample variance of the Q rq values.

A valid large-sample (eg, C ≥ 50) 95% CI for the true population value of Newman’s 

assortativity coefficient is then

r ± 1.96 V r .
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RESULTS

For the HCMC partnership mixing matrix (253 clusters and 594 dyads), the naive method 

gave an r value of 0.465, an estimated SE of 0.062 and a 95% CI of 0.342 to 0.587 (see table 

1). In contrast, WCR (again, with Q=200) produced an r value of 0.539, an estimated SE of 

0.068 and a 95% CI of 0.407 to 0.671. Thus, for the mixing matrix in table 1, the naive and 

WCR methods produce decidedly different r values in the presence of the ICS demonstrated 

in table 2. We note that the SE estimates for the two methods are not very different, although 

the naive method would be expected to produce somewhat lower (and potentially biased) 

estimated SEs as compared with those produced by WCR when there is intracluster response 

correlation (see ‘Discussion’).

To investigate these patterns further, we conducted a simulation study designed to reflect 

the observed data (table 1) and cluster size distribution (table 2) for the male index case 

scenario. We first generated an indicator of index status using a Bernoulli random number 

generator, according to the observed proportion of index subjects that were HIV-positive. 

A partner status indicator was then generated using a logistic regression model with index 

case status as a binary predictor, and with true coefficients equal to the estimates obtained 

from fitting such a model to the observed data. Partner indicators were thus correlated (ie, 

clustered), although they were conditionally independent given the index subject’s status 

(see ‘Discussion’). We simulated 500 data sets independently under these specifications, 

with cluster sizes for ‘positive’ and ‘negative’ index subject clusters generated according 

to the distributions shown in table 2. These conditions closely mimicked the example data 

scenario, dictating a true (‘population’) value of Newman’s assortativity coefficient of 0.521 

and ensuring an average of approximately 594 dyads for each simulated sample. For each 

such data set, Q=200 resamples were obtained for the WCR method.

As shown in table 3, the naive method gave a mean r value of 0.459, a mean estimated SE 

of 0.062 and the percentage of 95% CIs that covered the population value of 0.521 as 84.2%. 

The WCR method, in comparison, gave a mean r value of 0.515, a mean estimated SE of 

0.067 and a 95% CI coverage percentage of 95.0%.

This simulation study based on the HCMC partnership data clearly illustrates the fact that, 

when cluster size is informative, the naive method is apt to produce a biased estimator of the 

population value of r with correspondingly poor CI coverage. In contrast, WCR produced 

an essentially unbiased estimator of the population value of r, along with nearly nominal CI 

coverage. Thus, for network data with ICS, WCR is recommended as the analysis method of 

choice.

DISCUSSION

The crucial issue highlighted in this paper is the fact that a standard application of 

Newman’s assortativity coefficient r (equivalent to Cohen’s kappa statistic) is subject to 

bias and potentially invalid conclusions under many realistic scenarios in studies of sexual 

mixing. In particular, the usual estimator for r is generally biased whenever cluster size 

is informative (ie, associated with index subject status), as is the case in our motivating 
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study of HIV positivity. In our simulation study (table 3) designed to mimic the example 

conditions, we clearly demonstrate this bias and show that WCR provides an excellent 

solution to the problem.

As indicated in section ‘Methods’, the male index partnership data were used for the primary 

purpose of illustrating the fallibility of the standard estimator of Newman’s r in the presence 

of ICS, and the benefits of the WCR approach. Thus, for our current purposes, we ignore 

possible misclassification of negative status indicators in cases where the index subject 

reported a partner’s HIV status as unknown. Future work in this area could involve the 

development of methodology to correct a WCR-based assortativity coefficient estimator for 

such misclassification either via sensitivity analysis based on putative misclassification rates 

or via the direct incorporation of validation data.

A clever alternative methodology for validly analysing clustered data when cluster size 

is informative is a generalised estimating equations (GEE) approach described in the 

interesting paper by Williamson et al.25 In this paper, the authors demonstrate theoretically 

and by simulation using 500 clusters that their GEE method is equivalent to WCR for 

large samples. And, based on a limited small-sample simulation study involving 50 clusters, 

they claim that their method is slightly better than WCR. However, their simulation and 

numerical example results indicate that both methods lead to identical statistical inferences 

when using a Z statistic (computed as a parameter estimate divided by its estimated SE). 

Although the Williamson et al25 GEE method is a valid statistical approach, the WCR 

method is equally justifiable and we feel that it is more intuitively appealing in the setting 

of this paper. In addition, given the widespread availability of high-speed computing, 

implementation of the resampling necessary for the WCR method is straightforward, and 

appropriate SAS code for implementing our WCR calculations can be provided by the study 

authors upon request. Finally, since each resampled data set in the WCR approach contains 

mutually independent observations, WCR does not require specification of a within-cluster 

correlation structure and estimation of a variance–covariance matrix as needed with the GEE 

methodology.

Although we focus primary attention on the bias introduced by ICS, it is important to 

note that the naive application of Newman’s r is also problematic in any case where status 

indicators for non-index subjects within clusters remain correlated conditional on the status 

of the index subject (even in the absence of ICS). In that case, the usual SE estimator 

that accompanies r will typically be biased downward, leading to overly optimistic CIs. 

Although our simulation study (table 3) was conducted under ICS and an assumption of 

independent partner status indicators conditional on index status, other simulations (not 

shown) demonstrate this fallibility of the usual SE estimator. The key conclusion is that the 

standard application of Newman’s r cannot be recommended in dyadic studies similar to 

our motivating example due to the likelihood of ICS, residual within-cluster correlation, or 

both. The WCR approach provides an accessible alternative that remains statistically sound, 

protecting against bias and invalid conclusions.
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Key messages

• Once a sexually transmitted infection enters a population, epidemic trajectory 

is largely determined by patterns of sexual contact between partners (referred 

to as sexual mixing).

• Using partnership data, population-level sexual mixing patterns can be 

quantified by calculating the assortativity coefficient (r).

• Standard application of r assumes that partnerships are mutually independent, 

leading to bias and invalid statistical conclusions under many scenarios of 

sexual mixing.

• A within-cluster resampling approach provides valid estimation of r and 

accurate CI coverage in the presence of informative cluster size, residual 

within-cluster correlation, or both.
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Table 1

Male indexes’ HIV status cross-classified by female partners’ HIV status*

Female partner HIV status Newman’s r estimate (SE) (95% CI)†

Male index HIV status Negative Positive Total Naive WCR

Negative 513 (86%) 27 (5%) 540 0.465 (0.062) 0.539 (0.068)

Positive 26 (4%) 28 (5%) 54 (0.342 to 0.587) (0.407 to 0.671)

Total 539 55 594

*
Male index participants (n=253) in the Ho Chi Minh City Sex Network study (2009) provided data on their HIV status as well as the HIV status 

of up to five of their recent sexual partners (n=594). Male indexes’ HIV status was obtained via a combination of biological testing and self-report; 
partner HIV status was self-reported by male index participants.

†
Newman’s r is equivalent to the standard unweighted kappa statistic.
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Table 2

Size distributions for clusters with male index subjects (253 clusters; 594 dyads)*

Cluster size† HIV-positive indexes # of clusters (%) HIV-negative indexes # of clusters (%)

2 41 (89%) 53 (25%)

3 3 (7%) 50 (24%)

4 1 (2%) 47 (23%)

5 1 (2%) 39 (19%)

6 0 (0%) 18 (9%)

*
Fisher’s exact p value<0.0001 for association between cluster size and index status.

†
Cluster size includes index subject.
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Table 3

Simulation results assessing naive and WCR* estimators under conditions mimicking informative cluster sizes 

observed in HIV status data

Naive WCR

True assortativity coefficient=0.521

 Mean r estimate† 0.459 0.515

 Empirical SD across 500 simulations 0.065 0.067

 Mean estimated SE 0.062 0.067

 95% CI coverage 84.2% 95.0%

*
500 simulations in each case; WCR based on Q=200 resamples from each simulated data set.

†
Newman’s r is equivalent to the standard unweighted kappa statistic.
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