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ABSTRACT: Hybrid quantum mechanics/molecular mechanics (QM/MM) simula-
tions have advanced the field of computational chemistry tremendously. However, they
require the partitioning of a system into two different regions that are treated at different
levels of theory, which can cause artifacts at the interface. Furthermore, they are still
limited by high computational costs of quantum chemical calculations. In this work, we
develop the buffer region neural network (BuRNN), an alternative approach to existing
QM/MM schemes, which introduces a buffer region that experiences full electronic
polarization by the inner QM region to minimize artifacts. The interactions between the
QM and the buffer region are described by deep neural networks (NNs), which leads to
the high computational efficiency of this hybrid NN/MM scheme while retaining
quantum chemical accuracy. We demonstrate the BuRNN approach by performing NN/
MM simulations of the hexa-aqua iron complex.

Molecular dynamics (MD) simulations are powerful tools
for studying the dynamics of systems consisting of

hundreds of thousands of atoms. The energy of the system can
be described fully classically by a molecular mechanics (MM)
force field, by a quantum mechanical (QM) method, or by a
hybrid quantum mechanics/molecular mechanics (QM/MM)
technique. The latter approach is very powerful, as it enables
an accurate description of a small important part of a system at
the appropriate level of quantum chemistry, while the
remainder is treated by MM to simulate large system sizes at
relevant time scales.1

In QM/MM approaches, the electrostatic coupling between
the partitioned regions can be treated with different levels of
mutual interaction, i.e., embedding schemes.2−5 Mechanical
embedding is the simplest and least accurate approach.
Interactions are described via classical point charges only. In
contrast, electrostatic embedding is physically better moti-
vated, as the QM system experiences the MM charge
distribution being embedded in the QM Hamiltonian.
However, QM particles see MM particles as fixed point
charges, which neglects polarization in the MM region. To
account for polarization effects in the MM region, as well,
polarizable force fields can be used.6,7

Independently of the scheme, all QM/MM methods are
limited by high computational costs of the quantum calculation
and issues at the interface, such as overpolarization.8

Particularly prone to such artifacts are boundaries that cross
covalent bonds, although a careful choice of the bond splitting
scheme can alleviate them.4 Furthermore, discrepancies
between the forces derived for the QM and MM region can
lead to artifical crowding or depletion at the interface, when

particles are allowed to change character during a simulation.
Several approaches have been proposed to address boundary
artifacts either by introducing an intermediate region9,10 or by
restricting the boundary transition.11

Alternatively, the whole system can be treated using
machine-learned interatomic potentials based on ab initio
data.12 Machine learning (ML) is especially effective for MD
simulations as it can learn the relation between a descriptor,
i.e., the structure of a system, and a targeted output, i.e.,
energies and forces, with the accuracy of the reference method,
but much lower computational costs. Such ML potentials are
available for specific materials at different levels of theory.13−17

However, universal ML potentials for more complex systems,
such as biomolecules, still pose a challenge and are limited by
the computational expenses of the reference calculations.2,12

Very recently, ML potentials have been combined with QM/
MM concepts and were shown to be powerful for, e.g.,
calculating free energies or transition paths.18−24 However,
these approaches are complicated as ML models need to
capture the effects of the environment (MM region) even
though only the QM region has to be learned. The
introduction of a cutoff, up to which the MM region is
included, has emerged as a solution.21,22,25 One example is
FieldSchNet,20 which circumvents this problem by sampling
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the environment while keeping the QM region fixed. This
model has been shown to be powerful in predicting spectra and
chemical reactions with neural networks (NNs) using
electrostatic embedding but requires extended sampling. Due
to the nature of electrostatics, artifacts at the interfaces are not
reduced in the aforementioned approaches.
To circumvent boundary problems and with the aim of

avoiding extensive force field parametrizations, we propose an
alternative approach. We introduce an additional buffer region
that experiences full electronic polarization by the inner QM
region. The buffer region is described at the QM and MM
levels. Effectively, the interactions with the QM region are
calculated entirely at the QM level while the interactions with
the MM region are described at the MM level. Within the
buffer region, the interactions are a combination of MM
interactions and the effect of the QM region on the electronic
degrees of freedom of the buffer region. While this approach
minimizes the artifacts that arise from mixing two levels of
theory, it comes at considerable computational costs as two
QM calculations are required. By using ML to describe QM-
derived energy surfaces, an elegant solution emerges. In this
work, we train deep NNs to directly predict the difference
between the two required QM calculations. Thus, this scheme
automatically includes the mutual influence of the QM and the
buffer region, without the need for additional external forces in
the ML setup.20 The calculation of all relevant energies in a
simulation can efficiently be done with a single evaluation of
the NN. Due to the fact that interaction energies are often
easier to learn with NNs than potential energies, outstanding
accuracy can be achieved with mean absolute errors in the
range of a few kilojoules per mole. This range is well below the
often-desired chemical accuracy of machine learning models
and is independent of the size of the inner region. We refer to
this NN/MM approach as a buffer region neural network
(BuRNN). Although schemes like ONIOM with different
regions exist, this approach is, to the best of our knowledge,
novel.
The BuRNN approach partitions a system into an inner

region , a buffer region , and an outer region  (Figure 1).
The total potential energy, Vtot, contains the QM energy of the
inner and buffer region,  +V QM , and the MM energy coupling of

the outer region to all other regions,    + +V ( )
MM . The buffer

region is calculated at both levels of theory. The difference of
the two buffer terms,  −V VMM QM, is included in Vtot and
helps to smooth the transition between the QM energy of the
inner region and the MM energy of the outer region. In
addition, artifacts in the electronic degrees of freedom at the
outer edge of the buffer region will largely cancel in the
difference   −+V VQM QM. Further details are discussed below.
Adding all terms for the total potential energy together leads to

       = − + ++ + +V V V V Vtot
QM QM MM

( )
MM

(1)

The subscripts for the potential energy denote the calculated
region, and the superscripts the method. Even though
interactions in QM are not pairwise additive, it is instructive
to consider them as hypothetical pairwise interactions within
or between regions. They are indicated with a comma-
separated subscript.  +V QM can then be separated into three
terms, i.e., the energy that results from interactions within the

inner region,  V ,
QM, between the inner and buffer region,  V ,

QM,

and within the buffer region,  V ,
QM:

       = + ++V V V VQM
,

QM
,

QM
,

QM
(2)

The potential energy of the buffer region, V QM, is separately
calculated at the QM level, as well, and is denoted as

 V ,
QM(isolated). This should emphasize that the inner region is not

part of this particular calculation and term.  V ,
QM as a

hypothetical pairwise interaction within the buffer region as
used in eq 2, though, includes the influence of the inner region
on the buffer. The difference of the two terms can be seen as
the polarization of the buffer, which is denoted as  V ,

QMpol:

     = −V V V,
QMpol

,
QM

,
QM(isolated)

(3)

The energy of the buffer is also described at the MM level,

  =V VMM
,

MM. If this term agrees with QM exactly, it will

cancel with  V ,
QM(isolated). The outer region with all involved

interactions  V ,
MM,  V ,

MM, and  V ,
MM is treated at the MM level,

but with partial charges of the inner and buffer regions derived
from the QM calculation of the inner and buffer region
together. Hence, it also includes a representation of the
polarization of the inner and buffer regions:

         = + ++ +V V V V( )
MM

,
MM

,
MM

,
MM

(4)

The total energy in terms of hypothetical interaction
energies can then be written as

             = + + + + + +V V V V V V V Vtot ,
QM

,
QM

,
MM

,
QMpol

,
MM

,
MM

,
MM

(5)

Thus, BuRNN ensures that the interactions within and
between neighboring regions are computed at the appropriate

Figure 1. Scheme of the BuRNN approach, which distinguishes three
regions: (1) inner region  (orange), which is described entirely by
quantum mechanics (QM), (2) buffer region  (blue), which is
described by both QM and molecular mechanics (MM), and (3)
outer region  (gray), which is described entirely by a classical MM
force field.
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levels. One of the benefits is that any artifacts in the electronic
degrees of freedom will cancel in the difference   −+V VQM QM,
as mentioned above. This is true with the assumption that
these artifacts are due to the interface with the outer region
and that the relevant polarization of the buffer region
predominantly takes place at the interface between the inner
and buffer regions. More specifically, artifacts in the QM
calculation may arise in the electron density at the outer
boundary of the buffer region, which differs from a solvated
boundary. However, these artifacts will cancel in the difference
as it will be very similar in both QM terms. Any remaining
artifacts potentially arising at the interface between the buffer
and the outer region are, furthermore, relatively far from the
inner region of interest.
The interactions between  and and between  and

are computed using a mechanical-embedding scheme with
charges assigned from the QM calculation, which is
appropriate because of the large distances between the inner
and outer regions. The direct electronic influence on the inner
region due to the outer region will be relatively small, and the
interaction is largely electrostatic. The remaining artifacts may
arise from the fact that particles moving from the outer region
into the buffer region switch from a mechanically embedded
MM interaction to a full QM interaction with the inner region.
Also in this case, the interaction is a relatively long distance
from the inner region, where the  , interaction will be largely
electrostatic in nature, such that these artifacts can be expected
to be small.
Despite the accuracy and benefit of this scheme, the burden

lies in the high computational costs that remain because two
computationally expensive QM calculations are required. To
overcome this limitation, we describe the first two terms of eq
1 directly using a deep NN:

    ≅ −+Δ +V V VNN QM QM
(6)

which is equal to

       = + ++ΔV V V VNN
,

QM
,

QM
,

QMpol
(7)

It now becomes clear that the introduction of a buffer region
into the BuRNN is akin to a polarizable embedding with the
polarization described at the full QM level. Thus, the NN
represents the full interactions within the inner region, the
interactions between the inner and buffer regions, and the
polarization of the buffer region due to the inner region in a
single term,  +ΔV NN . The Δ sign is used to emphasize that the
BuRNN essentially includes a Δ learning,26 bringing
interactions of the buffer region from the MM to the QM
level. The total BuRNN energy can finally be rewritten as

         = + + + ++ΔV V V V V Vtot
NN

,
MM

,
MM

,
MM

,
MM

(8)

All MM terms can be computed classically from a single call
to the force field. The workflow of an NN/MM BuRNN
simulation is illustrated in Figure 2. The training data set is
based on QM calculations and can be generated via sampling
from MD simulation snapshots of the targeted system and
extended using adaptive sampling.27 The training set
generation and sampling of initial data are explained in detail
in sections S1.1 and S1.2 of the Supporting Information. We
employ NNs to predict interaction energies, interaction forces,
and charges to carry out NN/MM simulations. As NN models,
we use SchNet,28,29 a deep convolutional continuous-filter NN,

that was adapted to allow for charge fitting. A full description
of the NN models, including learning curves, model accuracy,
and hyperparameter optimization, can be found in section
S1.3. The mean absolute error assessed from five independ-
ently trained NN models is 1.7 ± 0.3 kJ/mol for energies, 8.4
± 0.4 kJ mol−1 nm−1 for forces, and 0.027 ± 0.001 au for
partial charges. Models trained on a larger inner region are
comparable in accuracy, as the NN models are always trained
on the whole system, i.e., the inner and buffer regions, which
have >50 atoms. For all of the outputs, these are very small
errors, well below the chemical accuracy defined as 1 kcal/mol
in recent (machine learning) studies.26,30 We have imple-
mented the BuRNN approach in the GROMOS simulation
software31 (see section S1.3). Importantly, we generate the
training set and conduct MD simulations by applying two
initially trained NNs, A and B. In adaptive sampling, their
prediction differences can be used to assess the reliability of
NN models during the MD simulation. Whenever the NN
predictions for interaction energies are similar, i.e., when

   ≈+Δ +ΔV VNN(A) NN(B), predictions are deemed accurate and the
simulation is continued. If predictions start to diverge from
each other and exceed a predefined threshold, additional
reference QM calculations (  +V QMand V QM) are performed for
relevant configurations and added to the training set. In this
work, we carried out four rounds of adaptive sampling, i.e.,
until dynamics could be run up to 1 ns without further
interruptions. By replacing QM calculations with NNs during
MD simulations, the BuRNN reduces the computational costs
considerably and enables long time scales while retaining high
accuracy.
Here, we demonstrate the use of the BuRNN for the hexa-

aqua iron [Fe(H2O)6]
3+ complex in water as a model system.

This system has the advantage of being relatively simple for
testing our approach, but the classical description of transition
metal interactions is notoriously difficult, which makes it a
good use case of the BuRNN for simulating this system.
Especially challenging is the coordinative bond between Fe and
O as it is somewhat between a covalent bond and an ionic
bond and is often addressed with specialized force fields.32,33

In our test case, the Fe3+ ion comprises the inner region, and
water molecules up to 0.5 nm are treated as the buffer region,

Figure 2. Process of a BuRNN simulation that includes adaptive
sampling. At every xth time step during MM, two neural networks (A
and B) are compared. When predictions diverge, the training set is
expanded by additional QM calculations.
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which roughly accounts for the first two solvation shells, where
the first solvation shell is expected to be formed by the
hexacoordinated waters. During extensive MD simulations (10
ns), the water molecules are freely diffusing between the buffer
and outer regions, smoothly switching interactions between the
NN (QM) level and the MM level of theory. BuRNN
simulations are validated using experimental data and are
compared to QM/MM simulations of the Fe(H2O)6

3+

complex (QM region) in classical SPC water and two distinct
fully classical descriptions. In addition, we performed BuRNN
simulations using a larger inner region that additionally
comprises the first solvation shell.
To validate the method, we first look at the Fe−O radial

distribution functions (RDF) g(r) in Figure 3a. All simulations

show a distinct peak at ∼0.20 nm, corresponding to the first
coordinative solvation shell of mostly six water molecules,
which is slightly narrower and more pronounced in the
classical description (blue curve). In contrast, the second
solvation shell is more pronounced in the BuRNN (orange
curve) and corresponds to an average of 12.7 water molecules.
It shows a maximum at ∼0.41 nm, while the MM simulation
shows a broader peak with a maximum at 0.40 nm. Simulations
with a larger inner region yield almost identical results (Figure
S4). In the QM/MM simulation with electrostatic embedding,
the second shell also has a maximum at 0.40 nm (gray curve),
while a QM/MM simulation with mechanical embedding leads
to a maximum at 0.41 nm (Figure S4), as in the BuRNN.
Experimentally, it was found at 0.415 nm and comprises 12
water molecules, hence agreeing well with our simulations.34

We have also performed simulations using the 12−6−4
Lennard-Jones potential35 and the SPC/E water model36 and
found that the g(r) shows an additional peak at 0.31 nm,
representing one additional molecule pushing into the first
solvation shell (Figure S4). The transition at 0.5 nm in the
RDF obtained with the BuRNN is smooth and does not show

any artifacts. This is remarkable as the buffer region ends and
the water molecules beyond this distance interact completely
according to a pure MM description.
To investigate the robustness of the BuRNN, we performed

MD at different temperatures (Figure S5) and show the RDF
obtained at 400 K in Figure 3a. As one can see, there is a slight
smoothing between 0.5 and 1.0 nm due to the increased level
of thermal motion, but the BuRNN simulation remains stable.
The two NN models deviate on average by 0.39 ± 0.02 kJ/
mol.
In addition, we sought to investigate the propensity of the

BuRNN to describe water exchange. Hence, we used umbrella
sampling37 to pull a water molecule away from the complex
and observed the spontaneous exchange of this water molecule
with another (see Supporting Movie S1). The energy
predictions and MD simulations are stable during this process.
In the regular simulations, the hexacoordination is stably
maintained. Water molecules in the second solvation shell
(within the buffer region) readily exchange with water
molecules from the outer region. All water molecules (786
molecules) visit the buffer region at least once during the
simulation, with an average lifetime of 14.4 ps. This agrees with
estimates from NMR experiments that determine a lifetime
that is below their resolution limit of 100 ps.38 We further
computed the self-diffusion rate for BuRNN and MM only
simulations and found values of 0.98 × 10−5 and 0.92 × 10−5

cm2/ps, respectively. Both approaches overestimate the
diffusion constant compared to experimental estimates of
0.55−0.68 × 10−5 cm2/ps,38−41 in line with the observation
that bulk SPC (simple point charge) water has a diffusion
constant that is slightly too large.42

Figure 3b shows the distribution of the O−H−H−Fe
improper dihedral angles defining the co-planarity of the iron
and a water molecule. A value of 0°, which is predominant in
pure MM simulations, implies that the water molecule and the
Fe3+ ion are in the same plane. Larger values as observed for
the BuRNN with a mean angle of 19.3° and for QM/MM
simulations (mean angle of 20.3°) indicate a more tetrahedral
arrangement in which the iron interacts with the lone pairs on
the oxygen. For comparison, a BP86-D3/def2-TZVP/COSMO
estimate for this angle in [Fe(H2O)18]

3+ lies at 16°.43

MD simulations are further compared by the geometries
visited during the simulations. Figures 3c shows radial
distances between the Fe and O that agree well with the
range of experimental estimates for the Fe−O bond lengths of
0.199−0.210 nm.34,44−50 O−Fe−O angles are almost identical
among the BuRNN, QM/MM, and “MM only” and reflect
angles expected for an octahedral arrangement (peaking at
around 90° and 175°). Figure 3d shows that there are clear
differences for the frequencies at which the Fe−O bonds
vibrate, implying that the Fe−O interaction is indeed not
captured well by a purely classical description. In the QM/MM
simulations and when using the BuRNN, the vibrations take
place at lower frequencies and are in better agreement with
experimental bands observed at ∼180, ∼310, and ∼500
cm−1.50−52 The frequencies obtained with quantum chemistry
are better aligned with experiment and the BuRNN than with
pure MM (Figure S4b), while those obtained from 12−6−4
Lennard-Jones potential simulations are even higher than those
observed with the simple MM only approach (Figure S4).
In this work, we have introduced the BuRNN, a buffered

region neural network NN/MM scheme, as an alternative to
QM/MM simulations that experiences full electronic polar-

Figure 3. Coordination of Fe3+ by water molecules with BuRNN
simulations and when using MM only. (a) Radial distribution
function for BuRNN at temperatures of 300 and 400 K, with MM
only and a QM/MM simulation using electrostatic embedding (EE).
The dashed lines indicate the second BuRNN peak and the cutoff
used to define the buffer region. (b) Probability distribution of the
O−H−H−Fe improper dihedral. (c) Distribution of the Fe−O
distance. (d) Power spectrum of the Fe−O coordinative bond for
different simulations. Experimental data were taken from refs 50−52.
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ization by the inner QM region. The BuRNN minimizes
artifacts at the interface between regions by ensuring that
interactions that go over boundaries are treated at a consistent
level of theory. Inconsistencies at the edges of the buffer (i)
can be expected to cancel in the difference between two QM
terms and (ii) are far removed from the inner region. These
advantages come at the cost of an additional QM calculation,
which is elegantly solved by training NNs directly on the
energy difference. A single evaluation of the NN is required to
evaluate the energies, and a second NN is used to derive
charges for full mutual polarization. The BuRNN allows fast
hybrid NN/MM simulations and has the advantage of being
applicable to any system and usable with any molecular ML
model.
We have demonstrated the use of the BuRNN by realistic

simulations of hexa-aqua iron in water. This shows that it can
be applied for metal−ligand interactions without the need for
additional force field parameters. The good agreement and
high stability of BuRNN for long time-scale MD simulations,
including external perturbation, such as changing temperature
or forces that lead to water exchange, make our method very
promising for future application in the simulation of more
complex systems.
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