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Abstract

Inverse probability weights are increasingly used in epidemiological analysis, and esti-

mation and application of weights to address a single bias are well discussed in the liter-

ature. Weights to address multiple biases simultaneously (i.e. a combination of weights)

have almost exclusively been discussed related to marginal structural models in longitu-

dinal settings where treatment weights (estimated first) are combined with censoring

weights (estimated second). In this work, we examine two examples of combined

weights for confounding and missingness in a time-fixed setting in which outcome or

confounder data are missing, and the estimand is the marginal expectation of the out-

come under a time-fixed treatment. We discuss the identification conditions, construc-

tion of combined weights and how assumptions of the missing data mechanisms affect

this construction. We use a simulation to illustrate the estimation and application of the

weights in the two examples. Notably, when only outcome data are missing, construc-

tion of combined weights is straightforward; however, when confounder data are miss-

ing, we show that in general we must follow a specific estimation procedure which

entails first estimating missingness weights and then estimating treatment probabilities

from data with missingness weights applied. However, if treatment and missingness are

conditionally independent, then treatment probabilities can be estimated among the

complete cases.
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Introduction

Inverse probability weighted (IPW) estimators are commonly

used in epidemiological analysis.1 Historically developed for

population sampling,2 IPW has since been extended to

address confounding,3–5 censoring (i.e. selection),6,7 missing

data8–10 and generalizability.11–13 Estimation and application

of weights to address a single bias are well discussed in the lit-

erature6,10,12,14; however, guidance on the construction of
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weights to account for multiple biases simultaneously, such

as the order in which weights should be estimated, is more

limited. Most examples of combining weights come from

time-varying settings, e.g.1,15 where treatment weights to ad-

dress confounding are combined with weights to address po-

tentially informative censoring (a type of missingness weight).

In these examples, the treatment weights are estimated before

estimating the missingness weights. In this work, we show

that the order of estimation of weights (i.e. whether missing-

ness weights should be estimated before or after treatment

weights) requires careful consideration of the underlying

causal structure and, in some settings, the missingness weights

must be used in the estimation of the treatment weights to

avoid bias. We examine two examples in which we construct

weights that account for both confounding and missing data

in a time-fixed setting and the required order for estimating

the weights differs.

Notation and estimand

In a cohort study of subjects randomly selected from a tar-

get population, let index i denote subjects, Xi denote a

time-fixed categorical treatment assessed at baseline and Yi

denote a binary or continuous outcome observed by the

end of follow-up. We assume subjects are independent and

identically distributed and, for notational simplicity, we

drop the subject-level index. The estimand (i.e. parameter

of interest) is the marginal expectation of the outcome un-

der different treatments, E Yx½ �, where Yx is the potential

outcome that would occur if the treatment were set to

x.14,16 For many epidemiological studies, the estimand is a

contrast of the mean potential outcomes under two treat-

ments (e.g. E½Y1� � E½Y0�). We focus here on estimation of

the marginal mean outcome under a fixed treatment (e.g.

E½Y1�), as any contrast of marginal mean outcomes be-

tween treatments will be valid when E Yx½ � is valid for each

value of X.

Identification

First, we discuss identification of the estimand when con-

founding is present and all data are fully observed (i.e. no

missing data). To estimate causal effects, it is necessary to

assume that a set of untestable identification conditions

holds.17 One sufficient set of conditions comprises

conditional exchangeability with positivity and causal con-

sistency. Conditional exchangeability3,14 means that, condi-

tional on a set of measured common causes of treatment

and outcome (Z), the potential outcomes are independent of

treatment (i.e. Yx
‘

XjZ) such that E YxjZ½ � ¼
E YxjX ¼ x;Z½ �: Unmeasured confounding is a threat to con-

ditional exchangeability and is present when there are unac-

counted-for common causes of the treatment and outcome

such that the potential outcomes are not conditionally inde-

pendent of treatment and thus E YxjZ½ � 6¼ E YxjX ¼ x;Z½ �.
Positivity means that we observe subjects under each treat-

ment in all observed strata of Z.3,14,18 Causal consistency

means that when the observed exposure is X ¼ x; the ob-

served outcome Y is equal to the potential outcome Yx.14,19

Applying these conditions, we have:

E½Yx� ¼ E½E½YxjZ��
¼ E½E½YxjX ¼ x;Z��
¼ E½E½YjX ¼ x;Z��:

The first equality holds by the law of iterated expecta-

tions, the second by conditional exchangeability with posi-

tivity and the last by causal consistency. With these

assumptions, we have expressed our estimand E Yx½ �, in

terms that can be estimated from observed data,

E E YjX ¼ x;Z½ �½ �.
However, if the data are not fully observed, we may only

be able to estimate E E YjX ¼ x;Z;R ¼ 1½ �½ �, where R is a

subject-level indicator of whether data are missing (for a

given subject, R ¼ 1 when all variables are measured, i.e. a

complete case, and R ¼ 0 if any values of variables are miss-

ing). When data are missing, we require additional

Key Messages

• Inverse probability weighting can be used to address multiple sources of bias simultaneously if the weights are

constructed and combined appropriately.

• To address confounding and missing data bias, weights are constructed as the product of two components: (i) a

missingness probability; and (ii) a treatment probability.

• Neither component typically includes the outcome, so estimation of the combined weights when only outcome data

are missing is straightforward.

• When confounder data are missing, treatment probabilities must generally be estimated using data weighted to

correct for missingness, unless it is assumed that missingness and treatment are conditionally independent.
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identification conditions.20 The exact additional conditions

needed are dependent on the specific causal structure and

what data are missing.

Inverse probability weighting

A common IPW formula that addresses confounding and

missing data is:

E
I X ¼ x;R ¼ 1ð ÞY

Pr R ¼ 1jX ¼ x;Zð ÞPr X ¼ xjZð Þ

� �
; (1)

where Ið�Þ is the indicator function that takes the value 1

when ð�Þ is true and 0 otherwise (see the Supplementary ma-

terial, available as Supplementary data at IJE online, for

proof of identification).21 Identification of this IPW formula

relies on the conditional exchangeability, positivity, and

causal consistency conditions described above as well as on

conditional exchangeability for missingness—that the out-

come is conditionally independent of missingness (i.e.

Y
‘

RjX;Z). The numerator of the IPW formula is the out-

come only among complete cases (R ¼ 1) with X ¼ x. The

denominator is a weight, obtained as the inverse of the prod-

uct of a missingness probability Pr R ¼ 1jX ¼ x;Zð Þ, and a

treatment probability, Pr X ¼ xjZð Þ. Of note, the treatment

probability is not conditional on R ¼ 1 and thus reflects the

treatment probability in the full cohort. Because these prob-

abilities are usually unknown in observational studies, they

must be estimated from the data.

Figure 1 displays two causal diagrams that depict possi-

ble scenarios where outcome data are missing (1A) or con-

founder data are missing (1B) (see the Supplementary

material for narrative examples of such scenarios). In these

diagrams, the missingness indicator R includes a subscript

to denote which variable has missingness. In Figure 1B, the

set of confounders Z is partitioned into a set of fully ob-

served confounders, Z1, and a single confounder that is not

fully observed, Z2 (for simplicity, we consider missingness

of a single confounder, though the principles presented

here can be applied when multiple confounders are not

fully observed). Notably, the absence and direction of

arrows in the diagrams correspond to assumptions regard-

ing the causal structure which may potentially be used to

identify the estimand.20

When outcome data are missing as in Figure 1A, condi-

tioning on the confounders and treatment is required for

conditional exchangeability for missingness (i.e. Y and RY

are d-separated conditional on Z and XÞ and this ex-

changeability condition is equivalent to the missing at ran-

dom (MAR) assumption (conditional on observed data,

missingness is independent of unobserved data).22 In this

example, the process of estimating formula (1) is straight-

forward because the variable with missingness, the out-

come, is not included in the weight. Recall that the

probability of treatment is not conditional on RY ¼ 1 (i.e.

the probability of treatment is among all subjects regard-

less of whether the outcome is observed). Because only the

outcome is missing, we can estimate the probability of

treatment unconditional on RY ¼ 1 before or after estimat-

ing the probability of missingness.

When confounder data are missing as in Figure 1B,

Z can be partitioned into fully observed confounders,

Z1, and a confounder that is not fully observed, Z2;

in formula (1), the denominator is now

Pr RZ2
¼ 1jX ¼ x;Z1;Z2

� �
Pr X ¼ xjZ1;Z2ð Þ. In the dia-

gram, conditioning on all fully observed confounders and

treatment is required for conditional exchangeability for

missingness (i.e. Y and RZ2
are d-separated conditional on

Z1 and XÞ: Because the variable with missingness, Z2, is in-

cluded in the weight, estimation is less straightforward than

when only outcome data are missing. First, in the missing-

ness probability, we can remove Z2 from the right side of

the conditioning bar because Z2

‘
RZ2
jX;Z1, so

Pr RZ2
¼ 1jX ¼ x;Z1;Z2

� �
¼ PrðRZ2

¼ 1jX ¼ x;Z1Þ. This

conditional independence (Z2

‘
RZ2
jX;Z1) is a MAR as-

sumption and is an additional condition needed for identifi-

cation in this example. Second, the treatment probability,

Pr X ¼ xjZ1;Z2ð Þ, cannot be directly estimated because it is

not conditional on RZ2
¼ 1 and Z2 is not fully observed.

However, this treatment probability can be estimated

among the complete cases weighted to correct for missing-

ness, i.e. weighted by the inverse of PrðRZ2
¼ 1jX ¼ x;Z1Þ

(see the Supplementary material for proof that relies on the

MAR assumption). Therefore, the missingness weights must

be estimated prior to estimation of the treatment probabili-

ties. Intuitively, confounder data are missing and we need to

recover the distribution of the confounders (using

Figure 1 Causal diagrams for missing outcome data (A) and missing

confounder data (B). Treatment, X ; outcome, Y ; confounders, Z , Z1, Z2;

indicator of missing outcome data, RY ; indicator of missing confounder

Z2 data, RZ2
. In Figure 1B, if Z2 is measured prior to assignment/receipt

of X , the diagram may be altered to include an unmeasured common

cause of X and RZ2
without change to assumptions of conditional ex-

changeability or construction of weights
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weighting) in order to estimate the treatment probabilities

without bias.

If, alternatively, missingness is independent of treatment

conditional on confounders (i.e. X
‘

RjZ), then the treat-

ment probabilities can be estimated among complete cases

because Pr X ¼ xjZð Þ ¼ Pr X ¼ xjR ¼ 1;Zð Þ. However, as-

suming that missingness is independent of treatment is of-

ten not appropriate.

Application to simulated data

To illustrate application of the IPW estimator in these

examples, we simulated a superpopulation (n¼ 5 000 000)

under the two scenarios depicted in Figure 1 (see the

Supplementary material for data generation and code for

simulation).

In the first scenario (Figure 1A), missingness of the out-

come was caused by a single confounder and treatment. In

the second scenario (Figure 1B), missingness of a con-

founder, Z2, was caused by another confounder;Z1, and

treatment, X. Treatment and confounders were binary and

outcome was continuous. We estimated the weighted mar-

ginal counterfactual risks using weights estimated two

ways. Approach A used the estimator shown in formula

(1). In the example where confounder data were missing,

the treatment probabilities were estimated using the miss-

ingness weights and then the two weights were combined.

In the example where outcome data were missing, the

weights were estimated separately and then combined.

Approach B used weights constructed as the inverse of the

product of the treatment probability conditional on R ¼ 1

(i.e. estimating the treatment weights among the complete

cases) and the missingness probability conditional on X

and Z, Pr X ¼ xjZ;R ¼ 1ð ÞPr R ¼ 1jX ¼ x;Zð Þ½ ��1.

Table 1 shows the point estimates of each analysis. We

observe that using the weights constructed following for-

mula (1) (approach A) produces consistent estimates.

However, estimating the treatment probability among the

complete cases (approach B) was biased because treatment

was not conditionally independent of missingness. In the

absence of careful consideration of formula (1), an investi-

gator may accidentally implement this latter biased ap-

proach when confounder data are missing, by estimating

the treatment weights without using the missingness

weights (see the Supplementary material for proof).

Discussion

This work illustrated that IPW can effectively address con-

founding and missing data biases simultaneously if weights

are constructed appropriately. Importantly, we showed

that appropriate construction must consider the assumed

causal structure and the conditions encoded in the struc-

ture that may be leveraged for identification. In the settings

examined, the weights could not be constructed using the

treatment probabilities estimated from the complete cases.

And in the example in which confounder data were miss-

ing, estimating the treatment probabilities required use of

the missingness weights.

Marginal structural models in longitudinal settings are

typically weighted to address confounding and censoring

(missing outcome)1,15 and the treatment weights are usu-

ally estimated prior to the censoring weights. Since the

treatment probability for the weights does not use outcome

data, all individuals are included regardless of censoring

status, thus obviating the need to first correct for missing-

ness. However, for our estimand, estimating treatment

weights before missingness weights is not valid generally.

In the example illustrated above, when confounder data

were missing, missingness weights were estimated first and

then used in estimation of treatment weights.

For illustration, we have used a simple cohort study de-

sign with a time-fixed exposure. The intuition that we need

to recover the distribution of missing confounders before

estimating treatment weights is applicable to other study

designs leveraging IPW, including case-control studies23,24

and longitudinal studies with time-varying exposures.25

Table 1 True and estimated marginal expectation of the

outcome

Inverse probability weighted

mean

Truth Crude Formula 1a Treatment proba-

bility conditional

on R ¼ 1b

Outcome missingc

Treated

(X ¼ 1)

20.0 24.4 20.0 17.2

Untreated

ðX ¼ 0)

20.0 15.7 20.0 22.5

Confounder missingd

Treated

(X ¼ 1)

20.0 16.0 20.0 21.2

Untreated

ðX ¼ 0)

20.0 21.8 20.0 18.6

aWeight when outcome missing: P̂r X ¼ xjZð ÞP̂r R ¼ 1jX ¼ x;Zð Þ
h i�1

; weight

when confounder (Z2) missing: P̂r X ¼ xjZ1;Z2ð ÞP̂r R ¼ 1jX ¼ x;Z1ð Þ
h i�1

where P̂r X ¼ xjZ1;Z2ð Þ was estimated by logistic regression weighted by

P̂r R ¼ 1jX ¼ x;Z1ð Þ.
bWeight when outcome missing: P̂r X ¼ xjR ¼ 1;Zð ÞP̂r R ¼ 1jX ¼ x;Zð Þ

h i�1

;

weight when confounder (Z2) missing: . P̂r X ¼ xjR ¼ 1;Z1;Z2ð ÞP̂r R ¼ 1ð
h

jX ¼ x;Z1Þ��1.
cCausal diagram Figure 1A.
dCausal diagram Figure 1B.
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However, the exact form of the estimator and the weights

will vary in these settings as the causal structure varies (e.g.

outcome directly causes missingness in a case-control set-

ting). Previous work has examined combining weights for

missing confounder data and treatments weights in the set-

ting with time-varying treatment.26,27 However, in most

simulated scenarios, treatment and missingness were con-

ditionally independent, thus missingness weights were not

needed for estimation of the treatment weights. In real

data, it is likely more common that there is missingness in

multiple confounders than in a single confounder as in our

example. When multiple confounder variables have miss-

ingness, the pattern may be uniform, monotone or non-

monotone, and the estimation procedure for the missing-

ness weights will vary depending on the pattern.10,28

Regardless of how the missingness weights are estimated,

careful consideration of the causal structure is needed to

determine the appropriate form of the estimator and con-

struction of the weights.

This work focuses on the use of weights to address miss-

ingness; however, other approaches exist (e.g. multiple im-

putation) and the choice of a particular approach depends

on the specific situation.8–10,29–31 A complete case analysis

(i.e. dropping records with any missing data) will be unbi-

ased in some settings such as when data are missing

completely at random (MCAR), and in even some scenar-

ios when data are MAR or missing not at random

(MNAR).29,32–34 In our examples, consistency of IPW esti-

mates relied on untestable assumptions including condi-

tional exchangeability with positivity, causal consistency,

conditional exchangeability for missingness and that data

were MAR (these latter two conditions were equivalent

when outcome data were missing). However, the condi-

tions for identification are context specific. Sensitivity of

conclusions to violations of these assumptions can be ex-

plored in quantitative bias analysis or by estimating

bounds.35–37

IPW is an important epidemiological tool that can be

used to address systematic biases. When estimating weights,

it is important to consider the assumed causal structure, par-

ticularly when estimating and combining weights to address

multiple biases.

Supplementary data

Supplementary data are available at IJE online.
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