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Abstract

Thermal noise and acoustic clutter signals degrade ultrasonic image quality and contribute to 

unreliable clinical assessment. When both noise and clutter are prevalent, it is difficult to 

determine which one is a more significant contributor to image degradation because there is 

no way to separately measure their contributions in vivo. Efforts to improve image quality 

often rely on an understanding of the type of image degradation at play. To address this, we 

derived and validated a method to quantify the individual contributions of thermal noise and 

acoustic clutter to image degradation by leveraging spatial and temporal coherence characteristics. 

Using Field II simulations, we validated the assumptions of our method, explored strategies for 

robust implementation, and investigated its accuracy and dynamic range. We further proposed 

a novel robust approach for estimating spatial lag-one coherence. Using this robust approach, 

we determined that our method can estimate the signal-to-thermal noise ratio (SNR) and signal-to-

clutter ratio (SCR) with high accuracy between SNR levels of −30 to 40 dB and SCR levels of −20 

to 15 dB. We further explored imaging parameter requirements with our Field II simulations and 

determined that SNR and SCR can be estimated accurately with as few as two frames and sixteen 

channels. Finally, we demonstrate in vivo feasibility in brain imaging and liver imaging, showing 

that it is possible to overcome the constraints of in vivo motion using high-frame rate M-Mode 

imaging.
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I. Introduction

Image quality is highly variable in medical ultrasound. Poor image quality is common in 

many applications, often leading to a high failure rate of clinical exams. For example, 

clinical failure rates range from 11% to 64% in obstetrics and 9% to 64% in transthoracic 

echocardiography [1]–[7]. High failure rates in these challenging clinical scenarios are due 

to various forms of image degradation such as thermal noise and acoustic clutter which 

obscure or confound on-axis signals of interest.

Measuring the contributions of each type of image degradation is crucial to the development 

of better beamforming and signal processing algorithms and for the optimization of pulse 

sequences to achieve higher success rates in clinical exams. Depending on whether thermal 

noise or acoustic clutter dominates, different approaches can be taken to achieve the greatest 

improvements. For example, when thermal noise dominates, coded excitation or contrast 

agents may be the most appropriate next steps, whereas when clutter dominates, adaptive 

beamforming approaches or harmonic imaging may be more appropriate [8]–[16]. Although 

both thermal noise and clutter contribute to image degradation, it is not always straight-

forward to determine which one is more significant for a given scenario because there is 

currently no way to separately measure their contributions in vivo. This work proposes 

a solution based on spatiotemporal coherence to separate and quantify sources of image 

degradation in order to shed light on their role in reducing image quality. These sources 

include attenuation, reverberation or multiple scattering, phase aberration, and off-axis 

scattering [13], [17]–[23].

Attenuation leads to a low signal-to-noise ratio (SNR) which causes thermal noise from 

the electronic components of the imaging system to dominate and reduces image quality. 

Phase aberration also leads to a reduction in SNR due to focusing errors [24]. SNR can 

be estimated using temporal correlation since thermal noise is incoherent across repeated 

acquisitions [25], [26]. Another approach to estimating thermal noise involves acquiring a 

“noise frame” with no prior ultrasonic transmission [27]. However, it is not known for sure 

if the noise characteristics of the imaging system are the same when it is not transmitting, 

which limits this approach. Furthermore, none of these techniques are able to separately 

measure both thermal noise and acoustic clutter and as such cannot be used to understand 

the relative contributions of each.

Other forms of image degradation such as reverberation create acoustic clutter, a temporally 

stable haze that reduces visibility and contrast of structures [13], [17]–[20]. For the purposes 

herein, acoustic clutter will be defined in the anatomical imaging sense, meaning that it will 

refer to sources of non-diffraction limited image degradation that arise due to interactions 

between the sound waves and the imaging medium instead of from the imaging system 

itself. High amounts of clutter lead to a low signal-to-clutter ratio (SCR) which also reduces 

image quality. Reverberation, also known as multiple scattering, is the largest source of 

clutter in fundamental frequency imaging [18], [28]. Reverberation is incoherent across 

the aperture (channel) dimension [29]. Note that throughout this work, spatial coherence 

will refer to coherence measured across the aperture dimension, i.e., across the transducer 

elements on the delayed channel data.
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Since both thermal noise and acoustic clutter lead to spatial decorrelation, aperture domain 

techniques that leverage the coherence properties of acoustic backscatter have been used to 

assess sources of image degradation [12], [26], [29], [30]. These methods are sensitive to 

thermal noise and most acoustic clutter but do not fully characterize the relative contribution 

of each [12], [30]. Clever simulation approaches and well-designed phantom or ex vivo 
experiments can accomplish this by imaging a medium with and without a layer of material 

(such as an abdominal wall) that creates clutter, but this cannot be performed in vivo 
noninvasively [18], [31]–[33].

Currently, the only technique to measure clutter magnitude in vivo requires measuring signal 

power within a large anechoic or hypoechoic region such as the bladder, a large fluid-filled 

cyst, or a large blood vessel [17]. This will suffice if such a region can be manually 

identified, but that is not always the case in many clinical imaging scenarios. Furthermore, 

this measurement of clutter is not generally representative of all types and sources of clutter 

[23]. In addition, this approach only provides information about clutter at that particular 

depth or region of the image rather than throughout the entire field of view. This makes it 

difficult to understand the spatial distribution of clutter in a given imaging scenario.

More recently, Long et al. reported a spatial coherence-based approach to measure 

incoherent noise and phase aberration, but this approach groups thermal noise with 

incoherent clutter rather than separating them [20]. Morgan et al. also reported a method 

based on spatial coherence to estimate signal components for image formation, but again 

they grouped thermal noise together with incoherent acoustic clutter [12].

Herein, we present a technique to separately measure the thermal noise power and the 

incoherent acoustic clutter power [34]. Instead of relying on the presence of an anechoic 

region, our approach only requires the presence of speckle. This simplification makes our 

method more practical for in vivo application. In the following sections, we present the 

theoretical framework on which this technique is based and we validate it across a wide 

range of clinically relevant noise and clutter levels using simulations. We further explore 

strategies for robust implementation and study how the number of available frames and 

channels affects accuracy. Finally, we demonstrate in vivo feasibility in the presence of 

motion.

II. Theory

A. Components of the Observed Signal

The acoustic signal measured by the transducer during an in vivo image acquisition (Y) will 

be a combination of uncorrupted tissue signal (S), thermal noise (N), and acoustic clutter 

(C). This observed signal is given by Eq. (1).

Y = S + N + C (1)

The power of the observed signal, PY, can be written according to Eq. (2).
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PY = ∑Y2 = ∑ S + N + C 2
(2)

Assuming that the tissue, noise, and clutter signals are uncorrelated spatially and temporally 

[25], [29], the cross-terms in Eq. (2) go to zero and the power of the observed signal can be 

written according to Eq. (3), where PS = ∑S2, PN = ∑N2, and PC = ∑C2 are the power 

of the signal, noise, and clutter, respectively.

PY = PS + PN + PC (3)

B. Spatial Coherence of Signals

The van Cittert-Zernike (VCZ) theorem describes the coherence of a wave emitted from an 

incoherent source such as ultrasonic echoes backscattered from a random field of diffuse 

sub-resolution scatterers. This spatial coherence can be described by the autocorrelation 

of the aperture function or the scaled Fourier transform of the transmitted intensity field 

[35]–[37]. For a rectangular aperture and apodization, this becomes a triangle function with 

a base twice the width of the aperture. The VCZ theorem is therefore able to predict the 

spatial coherence of a signal reflected from a diffusely scattering medium across the aperture 

domain, i.e., the time-delayed channel data. In the absence of thermal noise and acoustic 

clutter, the tissue speckle signal is expected to have a spatial coherence at the focus given by 

the triangle function, Λ[m/M], where m is the channel separation or lag and M is the total 

number of channels used for transmit focusing (blue curve of Fig. 1a).

For zero-mean Gaussian noise, the spatial coherence is a delta function on average (purple 

curve of Fig. 1a) [26]. Acoustic clutter has also been shown to rapidly decorrelate across 

the aperture, producing an approximate delta function as well (orange curve of Fig. 1a) [29]. 

Provided that Eq. (3) holds, the spatial coherence of such a signal is therefore given by Eq. 

(4) and the pink curve of Fig. 1a [26], [29].

RY[m] ∝ PSΛ[m/M] + PNδ[m] + PCδ[m] (4)

Equation (4) implies that the spatial coherence curve will have a drop at lag one proportional 

to the combined noise and clutter power. The lag-one coherence therefore encapsulates the 

total power of the noise and clutter [13], [26], [30].

The lag-one coherence (LOC) is calculated from the real-valued delayed channel data, 

denoted by s, according to Eq. (5), where the lag m is equal to 1, M is the total number 

of channels, i indexes the channel dimension, b indexes the beam dimension, j indexes the 

frame dimension, k indexes the axial dimension, and k1, k2 are the bounds of the axial 

kernel.
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Rchan[k, m] = 1
M − m ∑

i = 1

M − m ∑k = k1
k2 si[k]si + m[k]

∑k = k1
k2 si2[k]∑k = k1

k2 si + m2 [k]
(5a)

Rchan[m] = ℳ Rchan[k, m, b, j] (5b)

The function ℳ( ⋅ ) in Eq. (5b) represents computing the mean or median over axial samples, 

beams, and frames. Alternatively, the ensemble spatial coherence estimate proposed by 

Hyun et al. could be computed instead according to Eq. (6) [38].

Rchan[k, m] = ∑k, isi[k]si + m[k]
∑k, isi2[k]∑k, isi + m2 [k]

, k ∈ k1, k2 , i ∈ [1, M − m] (6a)

Rchan[m] = ℳ Rchan[k, m, b, j] (6b)

Eq. (6b) is evaluated by computing the mean or the median over axial samples, beams, and 

frames. As compared to the spatial coherence estimator in Eq. (5), the ensemble estimator 

in Eq. (6) applies normalization differently to improve the stability and robustness of the 

estimate [38]. The use of Eq. (5) versus Eq. (6) as well as the mean versus the median is 

discussed further in Section IV-B.

After estimating the lag-one spatial coherence, it can then be used to calculate the channel 

SNR according to Eq. (7) [30].

SNRchan = Rchan[1]
1 − 1

M − Rchan[1] (7)

From Eq. (4) and Fig. 1a, it is evident that tissue is partially coherent across the aperture 

whereas clutter and noise are incoherent across the aperture. In other words, the noise and 

clutter are indistinguishable from each other across the aperture dimension and will both 

contribute to the “noise” term in the channel SNR calculation. From this result, we can 

further write channel SNR in terms of tissue, noise, and clutter power according to Eq. (8).

SNRchan = PS
PN + PC

(8)

Together, Eqs. (7) and (8) suggest a relation between the spatial lag-one coherence and the 

tissue, noise, and incoherent clutter power.

C. Temporal Coherence of Signals

Across repeated acquisitions, stationary tissue signal is coherent since speckle is temporally 

deterministic (blue curve of Fig. 1b). In addition, acoustic clutter is also temporally stable, 

making tissue and clutter indistinguishable in this dimension (orange curve in Fig. 1b) [19], 

[29]. However, thermal noise is uncorrelated and can be modeled as a delta function (purple 
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curve of Fig. 1b). The temporal lag-one coherence therefore encapsulates the thermal noise 

power only (pink curve of Fig. 1b). The temporal lag-one coherence can be calculated 

according to Eq. (9), where the lag n is equal to 1, N is the total number of frames, and all 

other variables have been defined previously. Note that this is still computed on the delayed 

channel data to facilitate comparison with the spatial lag-one coherence defined in Eq. (5).

Rtime[k, n] = 1
N − n ∑

j = 1

N − n ∑k = k1
k2 sj[k]sj + n[k]

∑k = k1
k2 sj2[k]∑k = k1

k2 sj + n2 [k]
(9a)

Rtime[n] = ℳ Rtime[k, i, b, n] (9b)

The function ℳ( ⋅ ) in Eq. (9b) represents computing the mean or median over axial samples, 

channels, and beams. Alternatively, an ensemble temporal coherence estimate analogous to 

Eq. (6) could be computed according to Eq. (10).

Rtime[k, n] = ∑k, jsj[k]sj + n[k]
∑k, jsj2[k]∑k, jsj + n2 [k]

, k ∈ k1, k2 , j ∈ [1, N − n] (10a)

Rtime[n] = ℳ Rtime[k, i, b, n] (10b)

Again, to evaluate Eq. (10b), the mean or the median is computed across axial samples, 

channels, and beams (see Section IV-B).

After estimating the temporal lag-one coherence, it can then be used to calculate the 

temporal SNR according to Eq. (11) [25].

SNRtime = Rtime[1]
1 − Rtime[1] (11)

Since tissue and clutter are temporally stable and thermal noise is temporally uncorrelated as 

shown in Fig. 1b, we note that tissue and clutter are indistinguishable from each other across 

this dimension and as such will both contribute to the “signal” term in the temporal SNR 

calculation. From this result, we can further write temporal SNR in terms of signal, noise, 

and clutter power according to Eq. (12).

SNRtime = PS + PC
PN

(12)

Equations (11) and (12) relate temporal lag-one coherence to signal, noise, and clutter 

power.

D. Solving for Signal, Noise, and Clutter Power

Equations (3), (8), and (12) can be algebraically manipulated to solve for the three 

unknowns (PS, PC, and PN). PS is given by Eq. (13), where PY is estimated directly 
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by computing the power of the channel data and SNRchan is estimated from the channel data 

according to Eq. (7).

PS = SNRchanPY
SNRchan + 1 (13)

Either PC or PN can be solved for next, and either approach leads to equivalent results. 

Solving for PC first yields Eq. (14), where PY and SNRchan are estimated from the channel 

data as explained above and SNRtime is estimated from the channel data according to Eq. 

(11).

PC = PYSNRtime − PS SNRchan + 1
SNRtime + 1 SNRchan + 1 (14)

Finally, PN can be solved for according to Eq. (3). Once PS, PC, and PN are solved for, 

the signal-to-thermal-noise ratio (15), signal-to-clutter ratio (16), and signal-to-clutter-plus-

noise ratio (17) can be calculated.

SNR ≡ PS
PN

, SNRdB ≡ 10log10
PS
PN

(15)

SCR ≡ PS
PC

, SCRdB ≡ 10log10
PS
PC

(16)

SCNR ≡ PS
PN + PC

, SCNRdB ≡ 10log10
PS

PN + PC
(17)

Note that Eq. (17) is equivalent to Eq. (8), but Eqs. (15) and (16) would be impossible to 

estimate without first separating the thermal noise and acoustic clutter. Using Eqs. (15) and 

(16), the contributions of thermal noise and acoustic clutter can be evaluated separately and 

compared to determine which one contributes more to image degradation in any in vivo 
scenario and throughout any field of view, assuming valid application of the VCZ theorem.

III. Methods

A. Field II Simulations

In order to validate the theory presented in Section II as well as determine the accuracy 

and dynamic range of this method, simulations were conducted using Field II in MATLAB 

R2021a (Mathworks, Natick, Massachusetts) [39], [40]. Simulations are advantageous in 

this scenario because they offer a ground truth; by simulating the tissue, clutter, and 

thermal noise separately and coherently combining them with known relative magnitudes, 

the accuracy of this technique can be tested over a wide range of SNR and SCR levels.

To create the uncorrupted channel data (Fig. 2a), a 20 mm × 50 mm (xz) tissue phantom 

with uniform speckle was first created. The tissue phantom speed of sound was 1540 m/s 

Vienneau et al. Page 7

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and there were 16 scatterers per resolution cell. Imaging was simulated with a 64-element 

linear array with 0.3 mm pitch (0.53λ) and 65% fractional bandwidth operating at a center 

frequency of 2.72 MHz. The Field II sampling frequency was 80 MHz. The imaging 

procedure consisted of 128 focused transmissions and receptions with a transmit focal depth 

of 4 cm. The 128 beams were evenly spaced across the 20 mm aperture. Dynamic receive 

beamforming with uniform apodization was performed. Ten frames were simulated.

The clutter channel data were created using a previously reported pseudo-nonlinear 

approach to simulating reverberation with Field II [33]. Briefly, this approach involves 

simulating single-path scattering from a set of points whose axial locations are drawn from 

an exponential distribution such that most of them are close to the surface of the transducer. 

This distribution led to simulation outcomes that match well with in vivo measurements. 

Additionally, this is conceptually similar to in vivo imaging through the abdominal wall or 

the skull where most of the clutter generation occurs in near-field tissue layers or near-field 

skull bone.

Each point was simulated individually in Field II. However, an extra delay was applied to 

the received channel data for each individual point to simulate multipath scattering, making 

it appear as though the echoes arrived from deeper locations. The shifted channel data from 

each point were summed coherently before applying standard dynamic receive focusing. 

This results in delayed channel data with remaining curvature as opposed to properly 

delayed and focused channel data that appears flat (see Fig. 2b). The reverberation scatterers 

were placed with a density of ten scatterers per resolution cell and their axial locations were 

distributed exponentially with a mean of 0.5 mm. As discussed by Byram et al. and verified 

empirically herein (see Section IV-A), these parameters led to spatial coherence curves with 

near delta function appearance, thereby serving as a sufficient model of clutter for these 

purposes [33].

After creating the signal and clutter channel data, the noise channel data (Fig. 2c) were 

created by sampling the normal distribution. Ten independent frames were generated. To 

create the frames for the signal and clutter data, the channel data were simply replicated 

since signal and clutter are temporally stable. The signal, clutter, and noise channel data 

were then combined via coherent summation at all possible combinations of signal-to-noise 

levels and signal-to-clutter levels ranging from −30 to 40 dB in increments of 5 dB 

(225 different combinations). Note that the scaling was performed on the channel data 

by calculating power within a 2 mm ROI centered about the transmit focus. An example 

channel data set with 10 dB SNR and 10 dB SCR is shown in Fig. 2d and the B-Mode 

is shown in Fig. 2e. This process was repeated for 10 independent realizations of signal + 

clutter + noise phantoms.

B. Verification of Assumptions

To verify that the simulated signal, clutter, and noise components meet the assumptions 

of our method, the spatial and temporal coherence curves for each image component 

were calculated for representative noise and clutter levels and compared to the theoretical 

spatial and temporal coherence curves. Next, the spatial normalized cross-correlation (NCC) 

between each of the signal pairings (signal and clutter, clutter and noise, signal and noise) 
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was also computed to assess signal independence. Temporal NCC curves were not computed 

since the signal and clutter data are simply replicated to create each frame so computing 

NCC across additional temporal lags would be redundant.

C. Method Implementation

Spatial and temporal coherence were calculated on delayed, real-valued channel data using 

a 2 mm ROI centered about the transmit focus to ensure coherence behavior as predicted 

by the VCZ theorem [41]. Real-valued data were used in this work to reduce computational 

complexity, but complex-valued coherence calculations using the complex IQ data could be 

performed as well. Importantly, the axial kernel for coherence calculations was 10λ.

While previously the mean has been used to compute a spatial coherence estimate [13], 

[20], [30], [38], we evaluated alternative approaches to estimating a metric of centrality 

since spatial and temporal coherence are not normally distributed. Alternatives include using 

the median or using the Fisher z-transform to normalize the lag-one coherence data before 

computing the mean and taking the inverse Fisher z-transform. For the purposes of this 

work, another option would be to compute channel and temporal SNR before computing 

the mean or median of lag-one coherence, which would amount to not evaluating Eqs. (5b) 

or (9b) before evaluating Eqs. (7) and (11). We also evaluated estimating the temporal and 

spatial coherence values with the standard equations (Eqs. (5) and (9)) versus the ensemble 

equations (Eqs. (6) and (10)) to determine if the ensemble equations provided improved 

stability.

We additionally designed a “robust” approach to estimating spatial lag-one coherence. The 

robust approach involved estimating the entire spatial coherence curve (lags 1 through M) 

using the median as a centrality metric, fitting a first degree polynomial to the coherence 

curve from lag one to lag M in the least-squares sense, and then using the equation of 

that line to estimate the coherence at lag one. To take into account the higher variance of 

the coherence estimate at higher lags, 1/variance was computed for each lag and used as a 

weight for the fit routine so that the higher lags with more variance were weighted less than 

the lower lags with less variance. Variance was calculated according to (1 − ρ2)2/(Nsamp − 

1), where ρ is the coherence value and Nsamp is the number of samples used to form one 

estimate of ρ [42].

All of the approaches described above were investigated using the signal + clutter + noise 

phantoms described in Section III-A to evaluate their effect on coherence, SNR, and SCR 

estimation accuracy as well as the dynamic range of the method.

D. Minimum Requirements for Data Acquisition

We further evaluated the SNR and SCR accuracy as a function of the number of frames 

used for the calculation and the number of channels used for the calculation. SNR and 

SCR were estimated on the signal + clutter + noise phantoms described in Section III-A 

for representative SNR and SCR values. Frame numbers ranging from fifty frames to two 

frames and channel numbers ranging from all sixty-four down to eight channels were tested.
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E. In Vivo Demonstration

To investigate the influence of frame rate and in vivo motion on temporal decorrelation, 

M-Mode acquisitions were acquired in two representative in vivo imaging scenarios: 

transabdominal liver imaging, which is expected to have a moderate amount of motion due 

to proximity to the diaphragm, and transcranial neuroimaging, which is expected to have less 

motion. Two datasets in the liver and two datasets in the brain were acquired on a healthy 

adult human volunteer under protocols approved by the local IRB.

For data acquisition, a P4-2v phased array transducer operating at 2.72 MHz (pitch = 

0.3 mm) and a Verasonics Vantage 128 system (Verasonics, Kirkland, WA) were used. 

For guidance, focused B-Mode images were acquired using 129 evenly spaced focused 

transmissions and receptions spanning an angle of 45 degrees. The transmit focal depth 

was 8 cm. Dynamic receive beamforming with uniform apodization was applied. M-Mode 

acquisitions with a two second ensemble and 1000 Hz pulse repetition frequency (2000 total 

RF lines) were acquired for measuring coherence. M-Mode acquisitions had a transmit focal 

depth of 8 cm and a steering angle of 0 degrees, i.e. the central beam from the B-Mode 

sequence was repeatedly interrogated.

To investigate how motion influenced temporal decorrelation, normalized temporal 

correlation matrices were computed on the beam-summed data to measure similarity across 

the two second ensemble [43]. Subsets of contiguous frames with maximal normalized 

temporal correlation were also identified and temporal LOC was computed within these 

subsets. The data were also downsampled at factors of two, five, ten, and twenty-five 

to determine how frame rate impacts temporal coherence estimation in the presence of 

differing degrees of in vivo motion.

IV. Results

A. Verification of Assumptions

Fig. 3 shows the ground truth and simulated spatial and temporal coherence curves for the 

signal, clutter, and noise components. For these representative cases, the coherence curve 

values from the simulated data were all within ±0.05 of the theoretical values, demonstrating 

good agreement with theory as others have confirmed before [20], [33].

We next validated our assumption that the signal, noise, and clutter components are 

uncorrelated by computing the spatial normalized cross-correlation (NCC) between each of 

these pairs as shown in Fig. 4. Since these NCC curves are all near zero (within ±0.02), we 

can assume that our simulated signal, clutter, and noise are uncorrelated across the aperture 

on average. Furthermore, this demonstrates that our simulations satisfied the assumptions 

used to derive Eq. (3) from Eq. (1). We expect this assumption to hold true in vivo as 

well: The large axial kernel of 10λ that is used for the coherence calculations provides 

more independent samples to average over, leading to near-zero cross-correlations despite 

the finite aperture size and kernel size [29], [38].

However, it should be noted that this assumption may break down for more extreme 

(and likely not clinically relevant) SCR values: When either PS or PC is very large, it is 
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possible that the non-normalized cross-correlation between signal and clutter becomes more 

significant in relation to PS or PC, leading to errors. This is explored in detail in Appendix 

A.

B. Method Accuracy and Dynamic Range

To determine the best way to implement our method, we started by comparing ground truth 

LOC and SNR values to those estimated with our method using the approaches described in 

Section III-C. In Fig. 5, the distributions of LOC and SNR are shown for a simulated signal 

+ clutter + noise phantom with 20 dB SNR and 10 dB SCR. The different centrality metrics 

are provided in Table I and are also shown in the relevant histograms of Fig. 5.

First considering the various approaches to calculating temporal LOC as shown in Table 

I and Fig. 5a, we see that the median is the most accurate. This makes sense considering 

the high kurtosis and skewness of this distribution. However, the median of temporal LOC 

does not yield the most accurate estimation of SNRtime. Instead, the mean of SNRtime is 

most accurate. Interestingly, even though the Fisher z-transform of temporal and spatial 

LOC improved the Gaussianity of the distributions (Figs. 5b and 5e), taking the mean of 

the z-transformed LOC distributions did not yield the most accurate results for any quantity 

(Table I).

Next considering the different approaches to estimating spatial LOC and SNRchan as shown 

in Table I and Fig. 5d, we see that using the robust spatial LOC estimation technique 

described in Section III-C yielded the most accurate estimations for both. The mean of 

spatial LOC was the next most accurate, followed by the median. However, we observed 

when plotting full coherence curves that the median of spatial or temporal coherence 

provides the most accurate coherence estimation for lags greater than 1, inspiring the 

selection of the median as the centrality metric for the robust line-fitting approach for spatial 

LOC estimation described in Section III-C.

Finally, comparing the use of the ensemble coherence estimators (ens) versus the standard 

ones (non-ens), we see in Table I that the choice makes little difference for temporal LOC 

and SNRtime (at least for the tested SNR and SCR values). However, for Rchan[1] and 

SNRchan, there was a more notable difference between the estimators. The most accurate 

estimation of Rchan[1] was achieved with the ensemble estimator and the robust approach, 

but the next most accurate estimator was the mean of Rchan[1] with the non-ensemble 

estimator. The same trend can be seen for SNRchan.

We further investigated the differences between the ensemble and non-ensemble estimators 

in terms of SNR and SCR accuracy over a wider range of noise and clutter levels. Fig. 

6 shows the average SNR and SCR accuracy in ten simulated signal + clutter + noise 

phantoms over noise and clutter levels ranging from −30 to 40 dB using either the ensemble 

or non-ensemble coherence estimators as well as either the mean of spatial LOC or the 

robust approach for spatial LOC. The mean of temporal SNR was used in each case. Again, 

the largest difference was between using or not using the robust approach as opposed to 

using the ensemble estimators or not. In the SCR accuracy plot (Fig. 6b), there is a very 

clear improvement using the robust spatial LOC approaches over the mean spatial LOC 
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approaches for SCR levels of −15 dB or lower. Differences on the higher end of the SCR 

accuracy curve are more subtle, and all approaches have high accuracy within the mid-range 

SCR values between about −15 dB and 15 dB.

To better understand the influence of these approaches on the effective dynamic range of 

the method, the dynamic range was defined as the range of ground truth SNR and SCR 

values for which no complex estimations of SNRdB or SCRdB resulted. Note that in Fig. 6, 

any complex values were displayed using the real part only. For more details about when 

and why this method may sometimes produce complex SNRdB or SCRdB estimations, see 

Appendix B. From the dynamic ranges shown in Table II, we see that the ensemble estimator 

approach improves the lower and upper end of the SCR dynamic range when using the mean 

of spatial LOC, but has no effect on the robust spatial LOC approach. Furthermore, the 

benefit of using the robust approach instead of the mean is highlighted by improved dynamic 

range on the lower end for SCR and for SNR.

C. Minimum Requirements for Data Acquisition

Figure 7 shows the SNR and SCR mean squared logarithmic error (MSLE) as a function 

of number of frames or number of channels for three representative SNR and SCR levels. 

MSLE is defined according to Eq. (18),

MSLE = 1
N ∑

i = 1

N
10log10 yi + 1 − 10log10 yi + 1 2

(18)

where y and y are the true and estimated SNR or SCR values on a linear scale and the 

resulting metric is in units of dB. Looking first at the error versus number of frames in Figs. 

7a and 7b, we see that the values stabilize at approximately ten frames, but even with as few 

as two or five frames the error is very comparable.

Considering next the error as a function of the number of channels in Figs. 7c and 7d, we 

see that, in general, SNR and SCR can be estimated accurately with as few as 16 channels. 

However, in the lower signal environments, more channels are needed to maintain SNR 

estimation accuracy. Interestingly, there is a slight increase in SCR error for the 10 dB SNR 

and SCR case when all 64 channels were used. This may be due to the choice of using the 

channels in the middle of the aperture for the reduced channel number measurements. When 

almost all of the channels were being used, the edge elements which may have lower quality 

data were being included as well, which could have contributed to the slight increase in 

error.

D. In Vivo Demonstration

Finally, we investigated in vivo application of our method in two representative imaging 

environments to determine the effects of motion on temporal coherence estimation and to 

show how we can overcome its confounding effects. An overview of this study is shown in 

Fig. 8. Normalized temporal correlation matrices were calculated on the beam-summed 

M-Mode data to visualize temporal decorrelation across the ensemble and to select a 
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contiguous group of RF lines with maximal temporal correlation under the assumption that 

high correlation between RF lines is indicative of minimal motion between them [43].

From Fig. 8b, the temporal correlation matrix for the brain imaging case shown in Fig. 

8a, we see a relatively high amount of correlation throughout the two second ensemble as 

compared to the temporal correlation matrix for one of the liver imaging cases (Fig. 8e). 

This observation confirms our expectations that there was more motion present in the liver 

imaging case than the brain imaging case. Using these temporal correlation matrices, we 

selected a contiguous group of 50 RF lines for each imaging case and computed temporal 

coherence curves as shown in Figs. 8c and 8f. For the two brain cases, the temporal 

coherence was approximately stable for the entire 50 lags (50 ms), but the liver cases 

showed motion-induced decorrelation with increasing lags. This highlights the need for 

either short ensembles or fast frame rates (or both).

We first investigated the effect of reducing the ensemble size on temporal LOC calculation 

as shown in Table III. Here we see that, in general, reducing the ensemble size leads to 

an increase in temporal LOC since there is less time for motion to cause decorrelation. 

With only two RF lines in the M-Mode sequence, temporal LOC was the highest. Since 

we showed in Section IV-C that very few frames are required for accurate SNR and SCR 

estimation accuracy, we can conclude that as few as two frames is likely sufficient.

We next investigated temporal LOC as a function of pulse repetition frequency (PRF) as 

shown in Table IV. In this experiment, the number of RF lines was kept constant and the 

M-Mode data were down-sampled to emulate lower PRFs. For the two brain cases, temporal 

LOC fluctuated for each PRF but did not markedly decrease as PRF decreased, indicating 

that 40 Hz is likely sufficient for this imaging scenario. For the two liver cases, temporal 

LOC steadily decreased with decreasing PRF and experienced a large decrease between 100 

Hz and 40 Hz, indicating that 40 Hz is not sufficient to overcome the amount of motion 

present in this scenario.

Using two frames of the fully-sampled (1000 Hz) data, we calculated the SNR and SCR for 

each imaging case as shown in Table V. Due to poor spatial coherence curve behavior at later 

lags, we were unable to use our robust spatial LOC estimation technique and instead used 

the mean of spatial LOC. The liver cases had higher SNR than the brain cases, most likely 

due to the higher attenuation of the skull. The SCR of the first liver case was higher than 

the brain cases, but not the second liver case in which the transmit focus was near a blood 

vessel.

Overall, the results of this in vivo study have shown that motion is a significant factor to take 

into account and that the frame rate requirements are dependent upon the amount of motion 

present. To better understand how much motion may be in a given imaging environment 

and therefore select an adequate PRF, the temporal correlation matrix and the temporal 

coherence curve are useful tools.
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V. DISCUSSION

A. Method Accuracy and Dynamic Range

In Section IV-B, we showed that our method accurately estimates SNR across the entire 

range tested (−30 to 40 dB SNR) but that it only accurately estimates SCR within mid-range 

SCR values (−20 to 15 dB SCR). The reduction in SCR estimation accuracy (and the 

occurrence of complex SCRdB estimations) at more extreme values of SCR is related to two 

reasons explored in Appendices A and B.

The first issue described in Appendix A involves partial correlations between signal and 

clutter. One of the assumptions of our method described in Section II was that the signal, 

clutter, and noise components are uncorrelated. We showed in Section IV-A with Fig. 4 

that the normalized cross-correlation between these components was very small. However, 

for the short- and mid-lag region, the NCC between signal and clutter was non-zero, albeit 

small. We show in Appendix A that the non-normalized magnitude of this small partial 

correlation can become more significant with respect to either clutter power or signal power 

at the more extreme levels of SCR (when either clutter power or signal power are very 

low). These partial correlations lead to extra errors terms in the derivations of SNRchan and 

SNRtime as a function of spatial or temporal LOC which in turn lead to small errors in the 

calculation of clutter power and signal power from LOC measurements. However, we also 

showed in Appendix A that, for our simulated data, this power estimation mean squared 

error is very small (below 0 dB) for any clinically relevant SCR values, indicating that this 

is not a major source of error in our results and likely not a major source of error in many 

applications.

Although partial correlations between signal and clutter may lead to very small errors in 

power estimation, they do not explain why this method produces negative estimates of power 

that lead to complex-valued SNRdB and SCRdB estimations at the more extreme levels of 

SCR. This issue, described in Appendix B, stems from inaccuracies in measuring coherence 

due to inherent variance in the coherence estimator. For example, it is well-known in the 

coherence literature that negative estimates of spatial LOC occasionally occur in low signal 

environments [13], [44]. As shown in Appendix B, negative estimates of spatial LOC lead to 

a negative estimate of PS with our method, which leads to a negative estimate of SNR and 

SCR (or complex-valued SNRdB and SCRdB after taking the logarithm). This explains the 

dynamic range limitation of −20 dB SCR for our method.

On the flip side, our method also has an upper bound for lag-one coherence defined by 

the inequality Rchan[1] > Rtime[1](1 − 1/M) (derived in Appendix B). If the spatial LOC 

and/or temporal LOC estimations violate this inequality, then our method estimation of PC
becomes negative which leads to a complex SCRdB estimation. Again, this can happen 

due to inherent variance in the coherence estimator. Appendix B also shows that this LOC 

boundary creates a vertical asymptote for SCR defined as a function of temporal or spatial 

LOC; as SCR increases, it tends towards infinity as it approaches this asymptote. This 

explains the upper dynamic range limitation of 15 dB for our method.
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B. Robust Estimation

In this work, we presented a new robust technique described in Section III-C for estimating 

spatial LOC based on computing an entire spatial coherence curve (lags 1 through M) using 

Eq. (6) and using the median as a centrality metric and then performing a weighted fit 

of the line to estimate the lag-one coherence value. In addition to improving the spatial 

LOC, SNR, and SCR estimation accuracy, this approach also extended the dynamic range 

of this framework to lower SCR and SNR values as shown in Fig. 6 and Table II. In effect, 

this robust spatial LOC estimation approach was able to reduce occurrences of negative 

spatial LOC estimations, thereby eliminating negative PS estimations. This is how the robust 

approach was able to improve the lower dynamic range of both SNR and SCR. Interestingly, 

it has been previously identified that at −15 dB and lower, the variance of estimating spatial 

LOC is too high [13]. This is corroborated by the plateau in SCR accuracy at low SCR 

values using the mean of spatial LOC instead (Fig. 6b and Table II). However, we were 

unable to use the robust spatial LOC estimation approach on our in vivo datasets due to poor 

spatial coherence behavior at higher lags which is a limitation of this approach.

The robust line-fitting approach for estimating spatial LOC may be useful for improving the 

performance of other clutter estimation or suppression techniques that rely on computing 

spatial LOC such as LoSCAN (Lag-one Spatial Coherence Adaptive Normalization) [13], 

[45]. It may additionally provide a simple mechanism for accounting for low-frequency 

phase aberration with the proposed noise separation framework. Since low-frequency phase 

aberration affects the lower lags in addition to lag one, if the starting lag for the line 

fitting procedure were chosen appropriately (e.g., 10% or 20% of the aperture), the resulting 

“lag-one” value that would be extrapolated would incorporate the loss in coherence from 

the phase aberration at those short lags. By estimating coherence with a starting lag of 

1 and then again with a starting lag of 10–20% of the aperture, the contributions of 

phase aberration could be assessed separately from those of incoherent clutter such as 

reverberation. Future work should explore the ability of this robust spatial LOC estimation 

technique to account for low-frequency phase aberration.

Although it was not explored in this work, another strategy that may provide increased 

robustness to phase aberration would be to perform the coherence calculations on complex-

valued data and then take the magnitude of the result instead of the real part. In the real-

valued data, phase aberration manifests as time shifts, but in the complex-valued data, phase 

aberration manifests as phase rotations, which do not affect the magnitude. Future work 

should explore the significance of the increased robustness provided by complex-valued 

coherence calculations in the face of high in vivo phase aberration.

C. Clinical Relevance of Noise and Clutter Levels

While there is limited data on the expected range of clutter levels in vivo, partially due to the 

lack of a method to fully assess clutter in vivo, we believe these SNR and SCR ranges to be 

clinically relevant. Bladder wall to clutter magnitudes have been measured in vivo and were 

found to be between 0 and 35 dB [17]. Other studies of clutter also fall within this range 

[18], [23]. In simulation studies, SCNR and SCR ranges were varied from −20 to 20 dB and 

showed perceptually realistic levels of clutter, further confirming that the ranges simulated 
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herein are more than adequate [20], [46]. In terms of SNR, previous reports indicate that −20 

to 40 dB is a reasonable range to model effects seen in vivo [47]. Furthermore, our in vivo 
results in the liver and the brain also fall within the dynamic range of our method.

D. Limitations

One of the primary challenges in applying a temporal coherence-based approach in vivo 
is the assumption that the signal is stationary. Patient respiration, pulsatile blood flow, and 

sonographer hand motion (if applicable) can all lead to motion and therefore decorrelation 

across repeated acquisitions. This would lead to an overestimation in the amount of thermal 

noise present which in turn would lead to an underestimation in the amount of clutter 

present. High frame rate imaging with focused transmits or plane wave synthetic focusing 

is one possible solution to this [48], [49]. We employed high frame-rate M-Mode imaging 

to ensure we performed our calculations on data with minimal frame-to-frame motion. We 

found our 1 kHz frame rate to be more than sufficient for accurate temporal coherence 

estimation and additionally showed that the frame rate requirements are dependent upon the 

amount of motion present. For the brain imaging scenario, two frames with a 40 Hz PRF 

was sufficient, but for the liver imaging scenario, 40 Hz was too slow and a higher PRF 

would be required.

Another limitation of this approach is the need for adequate transmit focusing to ensure valid 

application of the VCZ theorem. For typical focused B-Mode imaging sequences, only one 

or a few transmit focal depths are used, meaning that this analysis can only be performed 

within ROIs centered about those transmit foci. However, synthetic focusing can be used to 

create transmit focusing throughout the full field of view, thereby providing an opportunity 

for full-field assessment [41]. Moreover, since as few as two frames are needed for accurate 

coherence estimation, it would be trivial to design a sequence that acquires a few frames at 

many different transmit focal depths. This would facilitate evaluation of the image quality 

across the entire field-of-view, allowing SNR and SCR “images” to be displayed or overlaid 

on the B-Mode images similar to how Offerdahl et al. displayed pixel-wise maps of spatial 

LOC alongside B-Mode images [50]. Future work will incorporate such sequences and 

analysis.

An additional underlying assumption for this derivation of the VCZ theorem is that the 

coherence calculations are performed in a region of speckle. Alternative non-speckle targets 

would include specular reflections or highly coherent targets such as kidney stones and 

anisotropic muscle fibers, which could lead to increased spatial coherence, and anechoic 

or very hypoechoic regions such as inside a large fluid filled cavity which would lead to 

decreased spatial coherence. In the case of highly increased spatial coherence, this may 

cause the method to fail as the boundary of Rchan[1] > Rtime[1](1 − 1/M) may become 

violated, leading to a complex SCRdB value as discussed in Appendix B. In the case of 

reduced spatial coherence, the method may again fail if the spatial LOC estimate drops 

below zero, causing both a complex SCRdB value and a complex SNRdB value as discussed 

in Appendix B. Although, if off-axis scattering is prevalent within the anechoic region, then 

this may not occur. In practice, these limitations could be circumvented using real-time 

B-Mode guidance to avoid placing the transmit focus within a non-speckle target.
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Additionally, it should be pointed out that off-axis clutter sources such as side lobes are not 

explicitly removed from the Field II simulations and as such are grouped in with the signal 

term, S. This is consistent with the VCZ theorem derivation of the triangle function for the 

signal spatial coherence curve which includes the presence of side lobes. In order to separate 

their small contributions from that of the main lobe in a uniform scattering medium, the 

spatial coherence curve corresponding to the main lobe could be used instead of the triangle 

function [12]. However, in mediums with inhomogeneous scattering functions (e.g., strong 

off-axis scattering from a neighboring hyperechoic region), the spatial coherence may be 

further altered from theoretical predictions [36]. As it stands, our method is most sensitive 

to reverberant clutter which is largely incoherent [29] whereas phase aberration and off-axis 

scattering can be weakly coherent [13], [20], [36].

Finally, other limitations of this approach include the reliance on channel data as opposed 

to beamformed RF data or log-compressed pixel data which may be more readily available 

from commercial scanners. However, we showed in Section IV-C that accurate SNR and 

SCR estimations can be made with only a small number of channels available which may 

allow our approach to be more readily utilized in commercial scanners. Despite these minor 

limitations, this work still provides an important and unique contribution to the study of 

image degradation in ultrasonic imaging.

E. Future Applications

Our technique is most relevant to those interested in distinguishing between the 

contributions of thermal noise and acoustic clutter. This is of particular importance 

in especially challenging imaging scenarios such as transcranial imaging, transthoracic 

echocardiography, and abdominal imaging of high habitus patients where there remains 

significant work to be done improving image quality as well as in blood flow imaging 

where blood echogenicity and sensitivity are low. If thermal noise is found to be the 

dominating factor, then contrast agents or coded excitation would be possible ways to 

overcome that limitation [8], [9]. If acoustic clutter is found to be the dominating factor, 

then harmonic imaging and/or advanced beamforming approaches such as ADMIRE, SLSC, 

MIST, LoSCAN, minimum variance, or deep neural network approaches may be more 

applicable [10]–[16]. In addition, with real-time spatial and temporal lag-one coherence 

implementations, SNR and SCR estimations could be used for adaptive transmit parameter 

selection [51]–[54].

VI. Conclusion

In summary, we have presented a method and implementation strategy for separating the 

contributions of thermal noise and acoustic clutter to image degradation by leveraging 

coherence properties of signals. We validated this framework in realistic simulations across 

an extensive range of clutter and noise levels and found that it can estimate SNR and 

SCR with high accuracy over a wide range of clinically relevant noise and clutter levels. 

We further showed that this method maintains accurate estimations of SNR and SCR 

with a small number of frames and channels, suggesting feasibility of implementation on 

commercial scanners. Finally, we proposed a strategy to circumvent the effects of motion 
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in vivo, further demonstrating the suitability of our method for quantifying the effects of in 
vivo image degradation. This work has the potential to greatly impact the study of improving 

image quality in challenging clinical imaging scenarios.
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APPENDIX A: Derivation of SNR with Partial Correlations

In previous derivations of SNR based on the correlation coefficient, the signal is assumed 

to be uncorrelated with the noise sources [25], [41]. We used the same assumptions and 

showed in Fig. 4 that the normalized cross-correlation between the signal, clutter, and noise 

was small, indicating that they are approximately orthogonal. However, as shown in Fig. 4, 

the signal and clutter cross-correlation is non-zero for the lower lags. In this Appendix, we 

investigate what happens when small cross-terms remain and hypothesize that, when either 

the signal power or the clutter power is very small (as is the case for very high or very low 

SCR values), the magnitude of the non-normalized partial correlations may become more 

significant.

First, to understand how these partial correlations would manifest in the definitions of 

SNRtime and SNRchan, the derivation of SNR from the cross-correlation coefficient, ρ, must 

be revisited. Consider the correlation between two real-valued signals, S1 and S2, that are 

each corrupted with thermal noise (N1 and N2) and clutter (C1 C2):

ρ = ∑ S1 + N1 + C1 S2 + N2 + C2

∑ S1 + N1 + C1
2∑ S2 + N2 + C2

2 . (19)

Note that previous derivations have only considered signal and noise, but here we are 

explicitly considering noise and clutter separately [25], [41]. For clarity, we start by 

considering the expansions of the numerator and denominator separately. First considering 

the numerator, we have

∑S1S2 + ∑S1C2 + ∑C1S2 + ∑C1C2,

where we have assumed that all of the noise terms are zero since Gaussian white noise is 

uncorrelated with a sufficient window size. The following analysis could be extended to 
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include small correlations of noise as well, but this is a much smaller effect. Replacing 

∑S1S2 with PS, we have the following expression for the numerator:

PS + ∑S1C2 + ∑C1S2 + ∑C1C2 .

Note that we would typically assume the clutter is uncorrelated with the signal and with 

itself, but here we are considering the case that those terms may not be completely zero. 

Considering next the expansion of the denominator and zeroing out the noise terms, we 

have:

∑S1
2 + ∑N1

2 + ∑C1
2 + ∑2S1C1 × ∑S2

2 + ∑N2
2 + ∑C2

2 + ∑2S2C2

We can re-write the denominator as follows, subbing in power terms where appropriate:

PS + PC + PN 1 +
∑2S1C1

PS + PC + PN
× PS + PC + PN 1 +

∑2S2C2
PS + PC + PN

.

Using the binomial series expansion defined below,

1 + x = 1 + 1
2x − 1

4 ⋅ 2x2 + 3 ⋅ 1
6 ⋅ 4 ⋅ 2x3 − … + ( − 1)n + 1(2n − 3)!!

(2n)!! xn, x < 1

we eliminate the square roots with a first-order approximation:

PS + PC + PN 1 +
∑S1C1

PS + PC + PN
1 +

∑S2C2
PS + PC + PN

.

Multiplying through and eliminating a higher-order term yields:

PS + PC + PN 1 +
∑S1C1 + ∑S2C2

PS + PC + PN
,

which further reduces to

PS + PC + PN + ∑S1C1 + ∑S2C2 .

Bringing together the numerator and denominator, we have:

ρ = PS + ∑S1C2 + ∑S2C1 + ∑C1C2
PS + PC + PN + ∑S1C1 + ∑S2C2

. (20)

Before continuing to derive an expression for SNR, we first define our error terms for 

convenience, where ϵ1 is the cross-correlation (lag > 0) between the signal and the clutter, 

ϵ0 is the lag-zero cross-correlation between signal and clutter, and ϵc is the cross-correlation 
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(lag > 0) between clutter and itself. We can consider the lag to be across either the channel 

dimension or the frame dimension.

ϵ1 ≡ ∑S1C2 + ∑S2C1 (21)

ϵ0 ≡ ∑S1C1 + ∑S2C2 (22)

ϵc ≡ ∑C1C2 (23)

We can now write:

ρ = PS + ϵ1 + ϵc
PS + PC + PN + ϵ0

. (24)

Finally, dividing through by PS yields:

ρ =
1 + ϵ1 + ϵc

PS

1 + PC + PN
PS

+ ϵ0
PS

. (25)

We can write Eq. (25) in terms of temporal LOC by considering that the relationship 

between the correlation of the noise-free signal at lag n, ρS[n], is related to the correlation of 

signal + noise + clutter, i.e. ρ[n], by the signal-to-clutter-plus-noise ratio. That is,

ρ[n] =
1 + ϵ1 + ϵc

PS

1 + 1
SCNRtime

+ ϵ0
PS

ρS[n] . (26)

Since the noise-free signal S is temporally stable, ρS[n] = 1 and we can write Eq. (26) in 

terms of temporal LOC:

Rtime[1] =
1 + ϵ1 + ϵc

PS

1 + 1
SCNRtime

+ ϵ0
PS

. (27)

Alternatively, we could write Eq. (25) in terms of spatial LOC by again considering that the 

relationship between correlation of the noise-free signal at lag m, ρS[m], is related to the 

correlation of signal + noise + clutter, i.e. ρ[m], by the signal-to-clutter-plus-noise ratio. That 

is,

ρ[m] =
1 + ϵ1 + ϵc

PS

1 + 1
SCNRchan

+ ϵ0
PS

ρS[m] . (28)
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The VCZ theorem for a rectangular aperture and M transmit focusing elements relates ρS[m]
and ρ[m] according to (1 − m/M), allowing us to write

Rchan[1] =
1 + ϵ1 + ϵc

PS

1 + 1
SCNRchan

+ ϵ0
PS

(1 − 1/M) . (29)

Finally, rearranging terms in Eqs. (27) and (29) yields equations for the SCNR as a function 

of lag-one coherence and signal power. Starting with Eq. (27), we have

SCNRtime = Rtime[1]
1 − Rtime[1] + ϵtime

, (30)

where ϵtime ≡ (ϵ1 + ϵc − ϵ0Rtime[1])/PS. Note that the lags in ϵ0, ϵ1, and ϵc are across the 

frame dimension in this case. Considering next Eq. (29), we have

SCNRchan = Rchan[1]
1 − 1/M − Rchan[1] + ϵchan

, (31)

where ϵchan ≡ (1 − 1/M) ϵ1 + ϵc − ϵ0Rchan[1] /PS and we are now considering lags across the 

channel dimension. Note that if ϵ0, ϵ1, and ϵc are zero, then Eq. (30) reduces to Eq. (11) and 

Eq. (31) reduces to Eq. (7).

We next analyzed ϵ0, ϵ1, and ϵc across the channel dimension and frame dimension as a 

function of SCR level. From Fig. 9a, we see that ϵ0 and ϵ1 are nearly indistinguishable 

from each another. We also observe that as clutter power becomes small (SCR is high), 

the magnitude of ϵ0 and ϵ1 relative to clutter power becomes large. Conversely, as signal 

power becomes small (SCR is low), the magnitude of ϵ0 and ϵ1 relative to signal power 

becomes large. On the other hand, ϵc/PC is not dependent upon SCR. It is also nonzero in 

this example, indicating that non-zero partial correlations between clutter and itself (over 

lags > 0) is possible and can also contribute to error.

Considering next the error terms across the temporal dimension shown in Fig. 9b, we 

see similar trends, with ϵ0/PC and ϵ1/PC both increasing with increasing SCR and with 

ϵ1/PS increasing with decreasing SCR. In summary, as either signal power or clutter power 

becomes too small, the magnitude of their cross-correlation begins to matter and errors in 

estimating SNRtime and SNRchan occur. Partial correlations within the clutter itself may also 

contribute to error, though this will vary across scenarios.

Finally, we computed the signal power and clutter power mean-squared error (MSE) as 

a function of SCR in Fig. 10. Here we observe that PS MSE steadily increases as SCR 

(and therefore PS) decreases. For high SCR values, PS MSE remains very low. PC MSE 

increases for either very low or very high SCR values and remains small for the mid-range 

SCR values. This corroborates with previous observations showing that SCR estimation is 

most accurate within mid-range SCR values. Importantly, PC and PS MSE remain very low 
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(below 0 dB) within a clinically relevant range of SCR values, indicating that, in general, 

this is not a major source of error for most practical applications.

Appendix B: Derivation of Lag-One Coherence Bounds

Here we take a closer look at why our method may fail to produce numerically valid 

estimates of SNR or SCR in certain ranges. For instance, within some ranges of SCR levels, 

the estimated SNR or SCR may be negative (and complex after taking the logarithm) even 

though this is not physically possible. Based on Eq. (16), SCRdB can only be complex if 

the estimated PS or PC is negative. If PC < 0, then SNRchan > SNRtime based on Eqs. (13) 

and (14). This would further imply based on Eqs. (7) and (11) that, for PC to be negative, 

Rchan[1] > Rtime[1](1 − 1/M) would have to be true.

Considering instead what would need to happen for PS < 0, we see by considering Eq. (13) 

and assuming PY > 0 that SNRchan would need to be less than zero. This would further 

imply via Eq. (7) that Rchan[1] would need to be less than zero. From this analysis, we 

see that SCRdB will be complex if either Rchan[1] < 0 or Rchan[1] > Rtime[1](1 − 1/M), 

which should not happen but nevertheless does happen due to estimation error. Interestingly, 

we confirmed with our simulation data that each occurrence of a negative PS estimation 

was accompanied by a negative Rchan[1] estimation and each negative PC estimation was 

accompanied by a violation of the inequality Rchan[1] > Rtime[1](1 − 1/M).

Considering now what would need to occur for SNRdB estimation to be complex, we see 

from Eq. (15) that either PS or PN would need to be negative. From analysis of Eqs. (3), 

(7), (8), (13), and (14), it can be shown that, for PN to be negative, either M < 1 or PY < 0
would need to be true, neither of which is possible. Therefore, the only way for this method 

to produce a complex SNRdB value is if Rchan[1] < 0.

We next visualized SNR and SCR as a function of spatial LOC and temporal LOC in Fig. 

11 to understand how they are related to these bounds on LOC. In Figs. 11a and 11c, we see 

that SNR and SCR decrease rapidly as spatial LOC goes to zero. In Fig. 11b, SNR increases 

rapidly as temporal LOC goes to 1 which is expected based on Eq. (11). In Figs. 11c and 

11d, the SCR curves each approach a vertical asymptote defined by Rchan[1] = Rtime[1](1 

− 1/M) and Rtime[1] = Rchan[1]/(1 − 1/M), respectively. If Rchan[1] or Rtime[1] pass this 

threshold due to errors in estimating coherence, SCR is undefined. As discussed above, 

this leads to a negative estimation of PC and therefore a complex estimation of SCRdB. 

In comparison, SNR is defined for any values of spatial or temporal LOC within (0, 1). 

This makes the method estimations of SNRdB less susceptible to becoming complex than 

estimations of SCRdB.

References

[1]. Hendler I, Blackwell SC, Bujold E, Treadwell MC, Wolfe HM, Sokol RJ, and Sorokin Y, 
“The impact of maternal obesity on midtrimester sonographic visualization of fetal cardiac and 
craniospinal structures,” International Journal of Obesity and Related Metabolic Disorders, vol. 
28, no. 12, pp. 1607–1611, 2004. [PubMed: 15303105] 

Vienneau et al. Page 23

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[2]. Hendler I, Blackwell SC, Bujold E, Treadwell MC, Mittal P, Sokol RJ, and Sorokin Y, 
“Suboptimal second-trimester ultrasonographic visualization of the fetal heart in obese women: 
Should we repeat the examination?” Journal of Ultrasound in Medicine, vol. 24, no. 9, pp. 1205–
1209, 2005. [PubMed: 16123180] 

[3]. Hendler I, Blackwell SC, Treadwell MC, Bujold E, Sokol RJ, and Sorokin Y, “Does advanced 
ultrasound equipment improve the adequacy of ultrasound visualization of fetal cardiac structures 
in the obese gravid woman?” American Journal of Obstetrics and Gynecology, vol. 190, no. 6, 
pp. 1616–1619, 2004. [PubMed: 15284753] 

[4]. Khoury FR, Ehrenberg HM, and Mercer BM, “The impact of maternal obesity on satisfactory 
detailed anatomic ultrasound image acquisition,” Journal of Maternal-Fetal & Neonatal 
Medicine, vol. 22, no. 4, pp. 337–341, 2009. [PubMed: 19085631] 

[5]. Flynn BC, Spellman J, Bodian C, and Moitra VK, “Inadequate visualization and reporting 
of ventricular function from transthoracic echocardiography after cardiac surgery,” Journal of 
Cardiothoracic and Vascular Anesthesia, vol. 24, no. 2, pp. 280–284, 2010. [PubMed: 19833534] 

[6]. Garrett JV, Passman MA, Guzman RJ, Dattilo JB, and Naslund TC, “Expanding options 
for bedside placement of inferior vena cava filters with intravascular ultrasound when 
transabdominal duplex ultrasound imaging is inadequate,” Annals of Vascular Surgery, vol. 18, 
no. 3, pp. 329–334, 2004. [PubMed: 15354635] 

[7]. Heidenreich PA, Stainback RF, Redberg RF, Schiller NB, Cohen NH, and Foster E, 
“Transesophageal echocardiography predicts mortality in critically ill patients with unexplained 
hypotension,” Journal of the American College of Cardiology, vol. 26, no. 1, pp. 152–158, 1995. 
[PubMed: 7797744] 

[8]. Feinstein SB, Coll B, Staub D, Adam D, Schinkel AF, ten Cate FJ, and Thomenius K, “Contrast 
enhanced ultrasound imaging,” Journal of Nuclear Cardiology, vol. 17, no. 1, pp. 106–115, 2010. 
[PubMed: 19921346] 

[9]. Chiao RY and Hao X, “Coded excitation for diagnostic ultrasound: a system developer’s 
perspective,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 52, 
no. 2, pp. 160–170, 2005.

[10]. Lediju MA, Trahey GE, Byram BC, and Dahl JJ, “Short-lag spatial coherence of backscattered 
echoes: imaging characteristics,” IEEE Transactions on Ultrasonics, Ferroelectrics, and 
Frequency Control, vol. 58, pp. 1377–1388, 2011.

[11]. Byram B, Dei K, Tierney J, and Dumont D, “A model and regularization scheme for ultrasonic 
beamforming clutter reduction,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency 
Control, vol. 62, no. 11, pp. 1913–1927, 2015.

[12]. Morgan MR, Trahey GE, and Walker WF, “Multi-covariate imaging of sub-resolution targets,” 
IEEE Transactions on Medical Imaging, vol. 38, no. 7, pp. 1690–1700, 2019. [PubMed: 
31095479] 

[13]. Long W, Bottenus N, and Trahey GE, “Incoherent clutter suppression using lag-one coherence,” 
IEEE Transactions in Ultrasonics, Ferroelectrics, and Frequency Control, vol. 67, no. 8, pp. 
1544–1557, 2020.

[14]. Holfort IK, Gran F, and Jensen JA, “Broadband minimum variance beamforming for ultrasound 
imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 
2, pp. 314–325, 2009.

[15]. Tierney J, Luchies A, Khan C, Byram B, and Berger M, “Domain adaptation for ultrasound 
beamforming,” in International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2020, pp. 410–420.

[16]. Tranquart F, Grenier N, Eder V, and Pourcelot L, “Clinical use of ultrasound tissue harmonic 
imaging,” Ultrasound in Medicine & Biology, vol. 25, no. 6, pp. 889–894, 1999. [PubMed: 
10461715] 

[17]. Lediju MA, Pihl MJ, Dahl JJ, and Trahey GE, “Quantitative assessment of the magnitude, impact 
and spatial extent of ultrasonic clutter,” Ultrasonic Imaging, vol. 30, no. 3, pp. 151–168, 2008. 
[PubMed: 19149461] 

Vienneau et al. Page 24

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[18]. Pinton GF, Trahey GE, and Dahl JJ, “Erratum: Sources of image degradation in fundamental and 
harmonic ultrasound imaging: a nonlinear, full-wave, simulation study,” IEEE Transactions on 
Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 6, pp. 1272–1283, 2011.

[19]. Dahl JJ and Sheth NM, “Reverberation clutter from subcutaneous tissue layers: simulation and 
in vivo demonstrations,” Ultrasound in Medicine & Biology, vol. 40, no. 4, pp. 714–726, 2014. 
[PubMed: 24530261] 

[20]. Long J, Long W, Bottenus N, and Trahey G, “Coherence-based quantification of acoustic clutter 
sources in medical ultrasound,” The Journal of the Acoustical Society of America, vol. 148, no. 
2, pp. 1051–1062, 2020. [PubMed: 32873040] 

[21]. Dahl J, “Coherence beamforming and its applications to the difficult-to-image patient,” in 2017 
IEEE International Ultrasonics Symposium (IUS), 2017, pp. 1–10.

[22]. Dei K and Byram B, “The impact of model-based clutter suppression on cluttered, aberrated 
wavefronts,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 64, 
no. 10, pp. 1450–1464, 2017.

[23]. Fatemi A, Berg EAR, and Rodriguez-Molares A, “Studying the origin of reverberation clutter in 
echocardiography: in vitro experiments and in vivo demonstrations,” Ultrasound in Medicine & 
Biology, vol. 45, no. 7, pp. 1799–1813, 2019. [PubMed: 31053427] 

[24]. Lindsey BD and Smith SW, “Pitch-catch phase aberration correction of multiple isoplanatic 
patches for 3-D transcranial ultrasound imaging,” IEEE Transactions on Ultrasonics, 
Ferroelectrics, and Frequency Control, vol. 60, no. 3, pp. 463–480, 2013.

[25]. Friemel BH, Bohs LN, Nightingale KR, and Trahey GE, “Speckle decorrelation due to two-
dimensional flow gradients,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency 
Control, vol. 45, no. 2, pp. 317–327, 1998.

[26]. Bottenus NB and Trahey GE, “Equivalence of time and aperture domain additive noise in 
ultrasound coherence,” The Journal of the Acoustical Society of America, vol. 137, no. 1, pp. 
132–138, 2015. [PubMed: 25618045] 

[27]. Huang C, Song P, Gong P, Trzasko JD, Manduca A, and Chen S, “Debiasing-based noise 
suppression for ultrafast ultrasound microvessel imaging,” IEEE Transactions on Ultrasonics, 
Ferroelectrics, and Frequency Control, vol. 66, no. 8, pp. 1281–1291, 2019.

[28]. Pinton GF, Trahey GE, and Dahl JJ, “Sources of image degradation in fundamental and harmonic 
ultrasound imaging using nonlinear, full-wave simulations,” IEEE Transactions on Ultrasonics, 
Ferroelectrics, and Frequency Control, vol. 58, no. 4, pp. 754–765, 2011.

[29]. Pinton G, Trahey G, and Dahl J, “Spatial coherence in human tissue: implications for imaging 
and measurement,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 
vol. 61, no. 12, pp. 1976–1987, 2014.

[30]. Long W, Bottenus N, and Trahey GE, “Lag-one coherence as a metric for ultrasonic image 
quality,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 65, no. 
10, pp. 1768–1780, 2018.

[31]. Hinkelman LM, Mast TD, Metlay LA, and Waag RC, “The effect of abdominal wall morphology 
on ultrasonic pulse distortion. Part I. Measurements,” The Journal of the Acoustical Society of 
America, vol. 104, no. 6, pp. 3635–3649, 1998. [PubMed: 9857521] 

[32]. Mast TD, Hinkelman LM, Orr MJ, and Waag RC, “The effect of abdominal wall morphology 
on ultrasonic pulse distortion. Part II. Simulations,” The Journal of the Acoustical Society of 
America, vol. 104, no. 6, pp. 3651–3664, 1998. [PubMed: 9857522] 

[33]. Byram B and Shu J, “Pseudononlinear ultrasound simulation approach for reverberation clutter,” 
Journal of Medical Imaging, vol. 3, no. 4, p. 046005, 2016. [PubMed: 27990454] 

[34]. Vienneau E, Ozgun K, and Byram B, “A coherence-based technique to separate and quantify 
sources of image degradation in vivo with application to transcranial imaging,” in 2020 IEEE 
International Ultrasonics Symposium (IUS), 2020, pp. 1–4.

[35]. Goodman Joseph W., Statistical Optics. Hoboken, NJ, USA: John Wiley & Sons, 2015.

[36]. Mallart R and Fink M, “The van Cittert-Zernike theorem in pulse echo measurements,” The 
Journal of the Acoustical Society of America, vol. 90, no. 5, pp. 2718–2727, 1991.

Vienneau et al. Page 25

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[37]. Liu DL and Waag RC, “About the application of the van Cittert-Zernike theorem in ultrasonic 
imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 42, no. 
4, pp. 590–601, 1995.

[38]. Hyun D, Crowley ALC, and Dahl JJ, “Efficient strategies for estimating the spatial coherence of 
backscatter,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 64, 
no. 3, pp. 500–513, 2017.

[39]. Jensen JA, “A model for the propagation and scattering of ultrasound in tissue,” The Journal of 
the Acoustical Society of America, vol. 89, no. 1, pp. 182–190, 1991. [PubMed: 2002167] 

[40]. Jensen JA and Svendsen NB, “Calculation of pressure fields from arbitrarily shaped, apodized, 
and excited ultrasound transducers,” IEEE Transactions on Ultrasonics, Ferroelectrics, and 
Frequency Control, vol. 39, no. 2, pp. 262–267, 1992.

[41]. Bottenus N, Byram BC, Dahl JJ, and Trahey GE, “Synthetic aperture focusing for short-lag 
spatial coherence imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency 
Control, vol. 60, no. 9, pp. 1816–1826, 2013.

[42]. Fisher RA, Statistical Methods for Research Workers, Crew FAE and Cutler DW, Eds. 
Edinburgh: Oliver and Boyd, 1925.

[43]. Nayak R, MacNeill J, Flores C, Webb J, Fatemi M, and Alizad A, “Quantitative assessment of 
ensemble coherency in contrast-free ultrasound microvasculature imaging,” Medical Physics, vol. 
48, no. 7, pp. 3540–3558, 2021. [PubMed: 33942320] 

[44]. Ozgun K, Tierney J, and Byram B, “A spatial coherence beamformer design for power 
Doppler imaging,” IEEE Transactions on Medical Imaging, vol. 39, no. 5, pp. 1558–1570, 2020. 
[PubMed: 31725374] 

[45]. Ahmed R, Bottenus N, Long J, and Trahey G, “Reverberation clutter suppression using 2D 
spatial coherence analysis,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency 
Control, vol. 69, no. 1, pp. 84–87, 2022.

[46]. Schlunk S, Dei K, and Byram B, “Iterative model-based beamforming for high dynamic range 
applications,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 68, 
no. 3, pp. 482–493, 2021.

[47]. Bell MAL, Dahl JJ, and Trahey GE, “Resolution and brightness characteristics of short-
lag spatial coherence (SLSC) images,” IEEE Transactions in Ultrasonics, Ferroelectrics, and 
Frequency Control, vol. 62, no. 7, pp. 1265–1276, 2015.

[48]. Montaldo G, Tanter M, Bercoff J, Benech N, and Fink M, “Coherent plane-wave compounding 
for very high frame rate ultrasonography and transient elastography,” IEEE Transactions on 
Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 3, pp. 489–506, 2009.

[49]. Tierney J, Coolbaugh C, Towse T, and Byram B, “Adaptive clutter demodulation for non-contrast 
ultrasound perfusion imaging,” IEEE Transactions on Medical Imaging, vol. 36, no. 9, pp. 1979–
1991, 2017. [PubMed: 28622670] 

[50]. Offerdahl K, Huber M, Long W, Bottenus N, Nelson R, and Trahey G, “Occult regions of 
suppressed coherence in liver B-Mode images,” Ultrasound in Medicine & Biology, vol. 48, no. 
1, pp. 47–58, 2022. [PubMed: 34702640] 

[51]. Bottenus N, Long W, Long J, and Trahey G, “A real-time lag-one coherence tool for adaptive 
imaging,” in 2018 IEEE International Ultrasonics Symposium (IUS), 2018, pp. 1–4.

[52]. Hyun D, Trahey GE, and Dahl JJ, “Real-time high-frame rate in vivo cardiac SLSC imaging with 
a GPU-based beamformer,” in 2015 IEEE International Ultrasonics Symposium (IUS), 2015, pp. 
1–4.

[53]. Long J, Long W, Bottenus N, Pinton GF, and Trahey GE, “Implications of lag-one coherence 
on real-time adaptive frequency selection,” in 2018 IEEE International Ultrasonics Symposium 
(IUS), 2018, pp. 1–4.

[54]. Flint K, Bottenus N, Bradway D, McNally P, Ellestad S, and Trahey G, “An automated ALARA 
method for ultrasound: an obstetric ultrasound feasibility study,” Journal of Ultrasound in 
Medicine, vol. 40, pp. 1863–1877, 2021.

Vienneau et al. Page 26

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Theoretical spatial (a) and temporal (b) coherence curves for each signal component and 

their coherent summation (S + N + C). The noise and clutter components were each 

coherently added to the signal component at a 0 dB magnitude, i.e., an SNR of 0 dB and an 

SCR 0 dB. LOC corresponds to the lag-one coherence points that are estimated by Eqs. (5) 

and (9).
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Fig. 2. 
Channel data (a)-(c) for each signal component. Transmit focus was 40 mm. The SNR and 

SCR were each 10 dB for the combined channel data set (S + C + N) shown in (d). The 

resulting B-Mode image is shown in (e) on a 70 dB dynamic range.

Vienneau et al. Page 28

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Spatial and temporal coherence curves for simulated signal + clutter + noise phantoms at (a) 

10 dB SNR and 10 dB SCR and (b) 0 dB SNR and 0 dB SCR. Shaded regions for simulation 

coherence curves indicate standard deviation across phantom realizations (shading is not 

always apparent due to low standard deviation).
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Fig. 4. 
Spatial normalized cross-correlation between signal, clutter, and noise components. The 

shaded regions indicate standard error of the mean over the 10 simulated signal + clutter + 

noise phantoms.
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Fig. 5. 
Histograms for (a) temporal LOC, (b) the Fisher z-transform of temporal LOC, (c) temporal 

SNR, (d), spatial LOC, (e) the Fisher z-transform of spatial LOC, and (f) channel SNR. 

Distributions were derived from a 2 mm ROI about the transmit focus of one simulated 

signal + clutter + noise phantom with 20 dB SNR and 10 dB SCR. Kurtosis (K) and 

skewness (Sk) are indicated in each panel. Note that the shapes of these distributions and 

subsequently the skewness and kurtosis will change for different SNR and SCR levels. 

Colored lines show the true values as well as distribution centrality as determined by various 

approaches (see Section IV-B). Note that the temporal and spatial coherence estimators used 

here were the ensemble estimators, i.e. Eqs. (6) and (10).
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Fig. 6. 
SNR (a) and SCR (b) estimation accuracy of various approaches for method 

implementation. The Robust Rc[1] approach refers to using the robust line fitting technique 

to estimate spatial LOC as opposed to using the mean of spatial LOC. The lines labeled with 

‘ens’ denote usage of the ensemble estimators for spatial and temporal coherence (Eqs. (6) 

and (10)) whereas the lines labeled with ‘non-ens’ denote usage of the standard estimators 

for spatial and temporal coherence (Eqs. (5) and (9)). All cases use the mean of temporal 

SNR. For SNR accuracy in (a), each point shows the mean ± standard error of the mean 

across clutter levels ranging from −30 to 40 dB SCR. For SCR accuracy in (b), each point 

shows the mean ± standard error of the mean across noise levels ranging from −30 to 40 dB 

SNR.
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Fig. 7. 
SNR and SCR mean squared logarithmic error (MSLE) versus number of frames used in 

(a) and (b) and number of channels used in (c) and (d). For (a) and (b), all 64 channels 

were used. For (c) and (d), 10 frames were used. All data points are averages across 10 

independently simulated signal + clutter + noise phantoms.
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Fig. 8. 
In vivo case studies investigating the effects of motion on temporal coherence in two 

representative imaging environments, the brain (a)-(c) and the liver (d)-(f). (a) B-Mode of 

brain imaging Case 1. (b) Temporal Correlation Matrix (TCM) for the M-Mode acquisition 

for Brain Case 1. Green box indicates the 50 RF line ensemble with maximal correlation 

which was used to calculate temporal coherence. (c) Temporal coherence curves for the two 

Brain Cases calculated over their respective 50 RF line ensembles with maximal coherence. 

(d) B-Mode of the liver imaging Case 1. (e) Temporal correlation matrix for the M-Mode 

acquisition for Liver Case 1 with the green box indicating the 50 RF line ensemble with 

maximal correlation. (f) Temporal coherence curves for the two liver cases calculated over 

their respective 50 RF line ensembles with maximal coherence.
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Fig. 9. 
Epsilon error terms normalized by either signal power or clutter power as a function of 

SCR. (a) Error terms with cross-correlation lags across channels. (b) Error terms with 

cross-correlation lags across frames. Each point is the mean ± standard deviation across 10 

independent simulated signal + clutter phantoms (no noise added).
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Fig. 10. 
Mean squared error (MSE) for PC and PS across 10 independent signal + clutter + noise 

phantoms with varying SCR. SNR was set to 30 dB. PC and PS MSE were calculated on 

a linear scale, normalized by PC or PS, respectively, and then converted to units of dB for 

plotting. The gray shaded region indicates the range of SCR values that are relevant for in 
vivo imaging.
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Fig. 11. 
SNR (a), (b) and SCR (c), (d) as a function of spatial LOC (“Rc[1]”) and temporal LOC 

(“Rt[1]”). Temporal and Spatial LOC were computed by Eqs. (10) and (6), respectively. 

Dotted lines in (c) and (d) correspond to asymptotes defined by Rchan[1] = Rtime[1](1 − 1/M) 

and Rtime[1] = Rchan[1]/(1 − 1/M), respectively.
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TABLE I

Comparison of Centrality Metrics

Rtime [1] Rchan [1] SNRtime SNRchan

True 0.9910 0.8868 110.00 9.09

Mean R (ens) 0.9878 0.8907 81.23 9.51

Mean R (non-ens) 0.9879 0.8891 81.65 9.33

Median R (ens) 0.9898 0.8968 97.53 10.24

Median R (non-ens) 0.9899 0.8998 98.01 10.63

Fisher Mean R (ens) 0.9896 0.8948 94.79 9.99

Fisher Mean R (non-ens) 0.9896 0.8947 95.28 9.98

Robust R (ens) – 0.8866 – 9.07

Robust R (non-ens) – 0.8905 – 9.48

Mean SNR (ens) – – 108.50 10.71

Mean SNR (non-ens) – – 109.18 10.98
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TABLE II

Dynamic Range

SNR Range (dB) SCR Range (dB)

Mean Rchan [1] (ens) [−25, 40] [−15, 15]

Robust Rchan [1] (ens) [−30, 40] [−20, 15]

Mean Rchan [1] (non-ens) [−25, 40] [−10, 10]

Robust Rchan [1] (non-ens) [−30, 40] [−20, 15]
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TABLE III

Temporal LOC vs Ensemble Size

PRF (Hz) RF Lines Brain #1 Brain #2 Liver #1 Liver #2

1000 50 0.9788 0.9605 0.9983 0.9950

1000 25 0.9790 0.9612 0.9983 0.9950

1000 10 0.9802 0.9598 0.9983 0.9952

1000 5 0.9817 0.9578 0.9984 0.9952

1000 2 0.9842 0.9615 0.9985 0.9960
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TABLE IV

Temporal LOC vs Pulse Repetition Frequency

PRF (Hz) RF Lines Brain #1 Brain #2 Liver #1 Liver #2

1000 2 0.9842 0.9615 0.9985 0.9960

500 2 0.9849 0.9647 0.9983 0.9956

200 2 0.9828 0.9634 0.9977 0.9941

100 2 0.9830 0.9654 0.9945 0.9898

40 2 0.9838 0.9637 0.9769 0.9512
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TABLE V

In Vivo SNR and SCR

Brain #1 Brain #2 Liver #1 Liver #2

SNR (dB) 18.89 14.00 28.29 23.58

SCR (dB) 8.83 5.98 11.98 6.28
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