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Analyzing historical and future 
acute neurosurgical demand using 
an AI‑enabled predictive dashboard
Anand S. Pandit1,2*, Arif H. B. Jalal3, Ahmed K. Toma2 & Parashkev Nachev1

Characterizing acute service demand is critical for neurosurgery and other emergency-dominant 
specialties in order to dynamically distribute resources and ensure timely access to treatment. This 
is especially important in the post-Covid 19 pandemic period, when healthcare centers are grappling 
with a record backlog of pending surgical procedures and rising acute referral numbers. Healthcare 
dashboards are well-placed to analyze this data, making key information about service and clinical 
outcomes available to staff in an easy-to-understand format. However, they typically provide insights 
based on inference rather than prediction, limiting their operational utility. We retrospectively 
analyzed and prospectively forecasted acute neurosurgical referrals, based on 10,033 referrals 
made to a large volume tertiary neurosciences center in London, U.K., from the start of the Covid-
19 pandemic lockdown period until October 2021 through the use of a novel AI-enabled predictive 
dashboard. As anticipated, weekly referral volumes significantly increased during this period, 
largely owing to an increase in spinal referrals (p < 0.05). Applying validated time-series forecasting 
methods, we found that referrals were projected to increase beyond this time-point, with Prophet 
demonstrating the best test and computational performance. Using a mixed-methods approach, we 
determined that a dashboard approach was usable, feasible, and acceptable among key stakeholders.

Acute or emergency referrals greatly contribute to the throughput of clinical specialties like neurosurgery, in 
which a considerable proportion of patients present with life or limb threatening injuries1,2, and require prompt 
transfer and urgent intervention3. Now ubiquitous among U.K. neurosurgical centres4, electronic referral sys-
tems (ERS) can help with on-call triage by transmitting salient patient information between the referring site 
and the neurosurgical center. Large-scale data can be made available from a hospital’s ERS, offering a reliable 
indicator of a center’s historical and current service demand. This referral record can be evaluated, providing 
insights into the volume, type, timing, and geographical distribution of urgent requests and patient transfers. 
Yet, largely unexplored, is the potential of this repository to make data-driven forecasts regarding future surgical 
referral volume, enabling departments to more accurately predict and anticipate upcoming service demands.

Of recent and relevant interest to both clinicians and hospital stakeholders is the impact of the Covid-19 
pandemic (and associated governmental restrictions) on present and future surgical services5. Given the present 
growing backlog of surgical procedures due to the pandemic6, as well as rising acute referral volumes before and 
after the pandemic7–9, the need for tools that can anticipate service demand has become more pressing. They 
would enable surgical departments to prioritize and allocate resources more dynamically and ensure timely access 
to treatment10. Requisite for this type of work are machine-learning models that can fit and predict time-series 
data. Time-series models, which are widely used in non-clinical domains11,12, have been applied in healthcare 
to forecast diverse outcomes such as length of hospital stay13,14 admissions15, bed occupancy16 and outbreaks of 
infection17. Several examples also exist within the surgical literature in applying algorithms of this kind in order 
to predict service demand18,19, but few have been trained on acute surgical data20. Fewer still justify and compare 
their choice of forecasting models and parameters, as is recommended for other clinical domains21.

Of no less importance in clinical forecasting studies is the demonstration of these results to key stakeholders 
in order to effect change. Indeed, a lack of data science expertise among clinicians22 limits this type of articula-
tion, providing an incentive for the utility of easy-to-use, adaptable visualizations. Healthcare dashboards rep-
resent one such method of dynamic visualization, providing an interactive presentation of clinical and service 
data, gathered in a way that facilitates interpretation and decision-making23. They offer staff an efficient means 
to audit data without requiring much technical ability and can function as a catalyst for quality improvement 
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initiatives. Dashboards have been used in various surgical departments to measure and improve key in-hospital 
patient outcomes, theater utilization, and intraoperative performance24–27. Common to all of these examples is 
the ability to visually describe data, permitting inference but not prediction. Yet, alongside data curation, dash-
boards have an opportunity to incorporate more predictive capabilities. Advanced predictive visualizations are 
currently being employed to aid with the Covid-19 pandemic response effort (https://​covid​19.​healt​hdata.​org28) 
and have the significant advantage of presenting results in ‘real-time’, which means that the models iteratively 
update as more data is accrued. However, to the best of our knowledge, no such comparable examples exist 
within surgery or more widely across the sphere of healthcare quality improvement. If such technologies were 
available, they would be well placed to offer surgical decision-makers not only a snapshot of historical data, but 
also a contemporaneous, accessible forecast of resource availability and demand. We anticipate that the combi-
nation of an interactive dashboard with time-series forecasting capabilities would permit robust, interpretable 
machine learning predictions about future surgical demand to be made, contextualized with important insights 
into historical audit data generated by the software’s varied functionality.

To that end, we used a dashboard approach to evaluate acute neurosurgical referrals in a large-volume tertiary 
neurosciences center in central London, U.K from the start of the Covid-19 pandemic lockdown period until 
October, 2021. In addition to auditing historical surgical data trends, we compare state-of-the-art time-series 
forecasting methods against traditional models in order to predict future demand. We hypothesized that neuro-
surgical referrals would significantly increase during this time period as services returned to pre-Covid levels of 
capacity. As a secondary objective, and given the novelty of our approach, we employ a mixed-methods analysis 
to determine whether the dashboard is usable, feasible and acceptable for typical users.

Methods
Reporting guidelines.  In the absence of a dedicated checklist for time-series forecasting, the study was 
conducted in accordance with TRIPOD and EPIFORGE guidelines for predictive model development where 
relevant21,29.

Ethics and regulations.  Our retrospective study and use of anonymized referral data was approved by the 
institutional review board (National Hospital for Neurology and Neurosurgery, London, UK) as a service evalu-
ation (121-202021-CA) with the requirement for informed consent being waived. All methods were conducted 
in accordance with local and national guidelines and regulations.

Data collection.  A series of data acquisition and processing steps were followed and have been outlined 
graphically in Fig. 1. Data processing and analysis were performed in Python 3.8.6, using a MacBook Pro (2017, 
2.9 GHz, 16 GB RAM). Raw referral data from the center’s cloud-based referral platform (www.​refer​apati​ent.​
org) was securely obtained and extracted in comma separated values format and downloaded to a hospital work-

Figure 1.   Data acquisition, processing, analysis and visualization pipeline (CNN-LSTM convolutional neural 
network—long short-term memory, STL seasonal and trend decomposition using Loess, ARIMA automated 
regression integrated moving average).

https://covid19.healthdata.org
http://www.referapatient.org
http://www.referapatient.org
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station before fully de-identifying the data and transferring it to the system aforementioned. referapatient is used 
in the overwhelming majority of neurosurgical centers in the U.K.

Data analysis and visualization.  Data was cleaned and preprocessed to remove erroneous and dupli-
cated entries using numpy (v = 1.19.5) and pandas (v = 1.2.3) libraries. All Python scripts were run using Visual 
Studio Code (Microsoft, v = 1.62.0) with results passed into a locally hosted Plotly Dash architecture (v = 1.20.0) 
built for visualization and data interpretation. Interactive dashboard figures were created using plotly (v = 5.3.1). 
The dashboard allows users to interact with figures through drill-down menus and sliders, which can modify the 
plots according to categories such as time-interval and diagnosis (Supplementary Video). Dashboard features 
that would offer high-yield audit and prediction capability were decided in agreement with local faculty, with 
avenues for further improvement at the feasibility-usability testing stage.

Users could visualize referral data in seven formats: (i) ‘Summary’: a set of figures including violin plots and 
pie-charts that give a descriptive analysis of the data; (ii) ‘Flow’: a Sankey plot that shows how patients are triaged 
and on-call decisions are made; (iii) ‘Heatmap’: depicting timing and distribution of referrals in the week; (iv) 
‘Geography’: a map of the volume and type of referrals by the referring hospital; (v) ‘Timeline’: a graph of weekly 
referral volumes; (vi) ‘Time difference’: a statistical comparison of weekly referral volumes between two time 
periods and (vii) ‘Forecasting’: an artificial-intelligence based time-series analysis to describe future volumes of 
referral (Fig. 1, Supplementary Video). Whereas the first six formats permit conclusions to be made based on 
inference, the forecasting section displays predictions of acute surgical demand.

Time‑series analysis.  In preparation for time-series analysis, the referral volumes were first sorted into 
weekly brackets, rather than taking daily volumes, and used as the algorithm variable. This was to compensate 
for an observed ‘weekend’ effect seen in the daily referral data (Fig.  5A, Supplementary Table  1). Statistical 
comparisons of weekly referral volumes were implemented through scipy (v = 1.6.2). Tests of normality were 
performed using the Kolmogorov–Smirnov test. If parametric, an independent-samples t-test was applied, oth-
erwise a Mann–Whitney U-test was performed. The choice of forecasting algorithm was limited to options 
which would: (i) train rapidly while the user is interacting with the dashboard, (ii) automatically parameterize 
and tune the algorithm without user input, and (iii) handle anticipated seasonality within the data seen after 
exploratory time-series analysis (Supplementary Results). Three algorithms were felt to meet these criteria: an 
automated pipeline which combined Seasonal and Trend decomposition using Loess (STL) with an automated 
regression integrated moving average (Auto-ARIMA) model, a convolutional neural network—long short-term 
memory (CNN-LSTM) network30,31 and Prophet32. The implementation of each is now considered in turn (see 
Supplementary Methods for coding).

ARIMA models are often considered a benchmark model in fields such as econometrics33. Here, two adjust-
ments were made to enable automatic hyperparameter tuning and make the model robust to time-series of 
uncertain length, frame and degree of seasonality. First, a Seasonal and Trend decomposition using Loess (STL) 
was applied which separated the raw data into seasonal, trend and residual components. Each component was 
fed into an automated grid search to determine p, d and q parameters which describe the lag order, degree of 
differencing and order of moving average respectively. Combinations of parameter values were compared using 
the Akaike Information Criterion (AIC) in order to determine an optimal set. If the seasonal and trend decom-
position failed to enforce stationarity in the trend data (for example, if there were multiple layers of seasonality), 
the auto-ARIMA step can model the trend, seasonality and residual separately before recomposing the data to 
forecast.

Deep learning methods can discover and model hidden complexity within data and extract features of interest 
automatically. CNNs can learn discriminative features by applying a non-linear transformation on time-series 
data, while LSTM networks mitigate against short-term memory loss via gating methods, to improve learning and 
information processing within the network. Here, we split the time-series into sub-sequences with 52 “steps” (i.e., 
1-year) as the input and one output. This is then split into two sub-samples, each with two targets. This is passed 
into the convolutional layer, which transforms the subsamples before down-sampling, flattening and passing to 
a single LSTM layer with 64 neurons. To reduce overfitting, the dropout proportion was set to 30%. The number 
of filters in the convolutional layer, neurons and dropout proportion were selected following a hyperparameter 
grid search (~ 30 min). The predicted value was used to iteratively increase the training set for out-of-sample 
predictions longer than 1 week; thus, the test set is used to progressively fit the model.

Prophet is an open-source library provided by Facebook (https://​faceb​ook.​github.​io/​proph​et/). Prophet 
decomposes a time series into four components: growth, yearly and weekly seasonality and holidays, then fits an 
additive regression model32. Growth is modeled as a piecewise linear or logistic growth trend, yearly seasonality 
is modeled using Fourier series, weekly seasonality is modeled using dummy variables, and holidays are inputted 
by the user. When modeling, Prophet automatically detects ‘changepoints’ in the trend. In order to identify the 
changepoint and seasonality prior scale (20 min), we used a grid search hyperparameter tuning (~ 20 min) and 
specified the lockdown period as a custom “holiday”.

Evaluation of forecasting algorithm performance.  The forecasting model’s performance was evalu-
ated using two methods, with evaluations subdivided into forecast volumes for 1-week, 4-week and 12-week 
periods. The variety of time frames allows users to assess their ability to predict in the short and long term. First, 
a ‘blocked’ cross-validation using all available training data (June, 2014 to July, 2021), randomly divided into 5 
folds with 15-month time-frames, with a 12-month training window and a 3-month validation window. Second, 
a train-test approach with a 3-month period (August to October, 2021) withheld from the outset as a testing 
sample and training data as the year preceding this, i.e., the post-pandemic period. Mean absolute error (MAE), 

https://facebook.github.io/prophet/
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mean absolute percentage error (MPE) and root mean squared error (RMSE) were used as scoring metrics, in 
addition to the computing time taken to run the algorithm.

User experience and implementation.  In line with other studies in the field of health informatics34, 
we tested user experience using a mixed-methods approach with semi-structured interviews and an electronic 
questionnaire that incorporated the System Usability Scale (SUS)35: a validated tool for usability testing of sys-
tems, including healthcare dashboards36,37. In addition, we gauged information relating to user implementation 
through the acceptability of intervention (AIM) and feasibility of intervention measures (FIM)38 (Supplemen-
tary Methods).

Results
All figures presented in this section are available as interactive and adjustable graphs within the dashboard plat-
form and can be trialed with the web application which uses synthetic data (Supplementary Material).

A summary of acute neurosurgical referrals in the post‑lockdown period.  10,033 acute refer-
rals were made to our neurosurgical center between March, 2020 and October, 2021 (female = 4938, mean age 
(SD) = 61.1 years (18.8)). As would be expected, the age and gender distribution varied widely according to diag-
nosis (Fig. 2). For example, patients with a subdural hemorrhage presented with a mean age of 76.8 years (13.6) 
and male bias (male = 68.3%) as compared to patients classified as being suspected of cauda equina syndrome 
(mean age = 53.5 years (17.9), male = 43.4%).

The majority of referrals were classified as brain tumor, degenerative spine or neurovascular diagnoses 
(Fig. 3A) in line with the center’s main subspecialties. 96% of referrals were stated as ‘emergency’ or ‘urgent’ by 
the referring team (Fig. 3B) and 79% of referrals were made by a junior registrar or intern (Fig. 3C). In terms of 
how referrals were triaged, 9.5% of referrals were accepted for immediate hospital transfer, 1% were placed on 
a transfer waitlist and 6.3% were assigned to outpatient review. 36.4% of referrals required additional clinical or 
imaging information from the referrer in order to make a triage decision. 32.1% of referrals were completed by 
triaging to conservative treatment or by offering only advice (Fig. 4).

Weekly referral timing was found to be concentrated between 2 and 6 PM on weekdays (Fig. 5A), particularly 
for brain tumor referrals. Referrals for other high-volume categories such as degenerative spine and neurovascu-
lar diagnoses were more evenly distributed but still significantly less over the weekend (Fig. 5B, Supplementary 
Table 1). During the aforementioned time period, referrals were received from 116 hospital sites and clinical 
institutions from across the U.K. (Fig. 6A). Five hospitals in the Greater London catchment area accounted for 
more than 70% of the overall referral volume (Fig. 6B).

Choice of forecasting algorithm.  Prioritizing model-fitting time and test performance, Prophet was 
selected as the dashboard forecasting algorithm of choice (Fig. 7A). Although the CNN-LSTM algorithm dem-
onstrated better performance across cross-validation scoring metrics (mean absolute percentage error (MPE), 
1 week = 17%, 4 weeks = 16%, 12 weeks = 7%), it was found to require a longer computational training and fitting 
time (10.2 s) making it unsuitable under real-world computational constraints. ARIMA models are often consid-
ered a traditional benchmark model in forecasting33. Here, with the addition of STL and an auto-hyperparameter 
tuning function, the cross-validation performance was comparable with Prophet, however its test performance 
was worse (Test-MPE, 1w = 12%, 4w = 7%, 12w = 5%) and was also marginally slower (5.3 s). Prophet had the 
lowest error rates across all test scoring metrics (Test-MPE, 1w = 6%, 4w = 5%, 12w = 2%), for all time periods 
and had the fastest computational time (4.9 s).

Figure 2.   Age and sex distribution of referrals presented by diagnostic classification (SDH subdural 
hemorrhage, M male, F female).
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Figure 3.   Referral classification. Referral proportion by diagnostic classification (A), urgency (B), referrer 
type and seniority (C) (SDH subdural hemorrhage, F1/F2 intern/foundation year ½, SHO senior house officer, 
SpR specialist registrar/resident, ANP advanced nurse practitioner, CNS clinical nurse specialist, GP general 
practitioner).
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Change in referral volumes.  Weekly referral volumes were compared between the first 6 months after 
the announcement of the U.K. Covid-19 pandemic lockdown39 and the same time frame after 1 year. There 
was a significant increase between these periods (Mann–Whitney U (MWU), p < 0.05), mainly driven by an 
increase in spinal referrals (MWU, p < 0.05) which included spinal trauma, suspected cauda equina syndrome 
and degenerative diagnoses (Table 1). For this diagnostic group, there were on average 10 additional referrals per 
week between the early and late Covid-19 periods. Out-of-sample forecasting by all three time-series algorithms 

Figure 4.   Referral triage decisions. A Sankey plot illustrating decisions made by the on-call registrar/resident 
sorted by diagnostic classification (blue bars). Triage decisions are grouped according to whether the patient 
was accepted (green bars), further information was requested (purple bars), advice or conservative management 
was suggested (orange bars), an additional neurosurgical review was needed to make a decision (yellow bars) or 
whether the referral was rejected (red bars) (MDT multidisciplinary team meeting).

Figure 5.   Referral heatmap. Referral volumes sorted by day and time for all (A) and for the four highest 
referring diagnostic categories (B).
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using all available training data demonstrated a consistent increasing long-term referral trend (Supplementary 
Fig. 1, Fig. 7B).

Usability, feasibility and acceptability.  20 participants were recruited for feasibility testing, including 
5 neurosurgical consultants, 12 registrars/residents and 3 members of management or administrative staff. All 
were blinded to the development of the dashboard. Table 2 lists the average SUS, AIM and FIM scores among 
participants. An SUS score of 70 or above has previously been defined as a threshold for good usability34. In 
this study, all user groups had mean SUS scores above this benchmark and high mean acceptability (AIM) and 
feasibility (FIM) scores were also recorded.

Analysis of user feedback explored possible reasons why the dashboard scored well (Supplementary Results, 
Supplementary Table 2). In brief, users highlighted the figures and interactivity as particularly useful features 
and felt that the dashboard would be useful to explore referral data, identify current areas for service improve-
ment and suggest future directions for research. The use of time-series forecasting was commented as useful in 
anticipating service demand. In contrast, users expressed concerns regarding how the dashboard would be hosted 
and wished for additional functionality to extract and review the data at patient or smaller sub-group levels.

Discussion
In this study, we found that as anticipated, referral volumes significantly increased between the first 6 months after 
the Covid-19 pandemic began and a corresponding time period 1 year later. This was consistent with the findings 
of ElGhamry et al., who discovered increased referral and operative volumes were apparent in the post-wave 
period as services were restored to pre-pandemic levels40. Changes in referral volume at our center were mostly 
related to an increase in spinal referrals encompassing conditions such as degenerative spine and suspected 
cauda equina syndrome. We found that spinal activity, in particular, was reduced during the initial pandemic 
period. This is most likely due to patient avoidance of healthcare services in order to prevent viral transmission, 
postponing their clinical presentation41. Governmental self-isolation advice and lower vehicular traffic (and 
associated road-traffic injuries) may have also contributed to this reduced case-load40. However, outside our own 
referring catchment, lower spinal referrals did not necessarily translate into fewer spinal procedures42. We also 
observed that time-critical neurovascular referrals such as cerebrovascular stroke were less distributed during 
the weekend rather than weekdays (Supplementary Table 1), suggesting delays for presentations such as this may 
be associated with worse outcomes.

Beyond the dates of our testing set (from October 2021), we forecasted that weekly referral volumes would 
continue to rise over the next year. To evaluate our forecasting functionality, we compared ‘standard’ models 
of time-series forecasting (STL + ARIMA) against novel methods, including deep learning algorithms, with the 
stipulation that they could be fitted quickly while the dashboard was in use. Although the combination of CNN 
and LSTM methods produced the best cross-validation results, it was discovered they were computationally 
intensive to fit. Similar to previous work43, we found that Prophet was the most time-efficient and had comparable 

Figure 6.   Geographic referral visualization. (A) Map of referring sites (red dots) to the neurosurgical center 
from across the U.K. between March, 2020 and October 2021. (B) Northern Greater London referral catchment 
area with referring sites (red circles) size proportional to referral volume. The five highest volume main referring 
sites are highlighted with black borders. †Denotes the approximate location of the receiving neurosurgical center.
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Figure 7.   Time-series algorithm performance and prediction of future referral volume. (A) Evaluation of 
time-series forecasting algorithms using fivefold block cross-validation (CV) and train-test split (Test) using 
mean absolute error (MAE), mean absolute predictive error (MPE) and root mean squared error (RMSE) with 
1, 4 and 12 week forecasting periods. Algorithm legend: computational time (t) taken to run onefold of each 
algorithm (STL seasonal and trend decomposition using Loess, CNN-LSTM convolutional neural network—
long short-term memory, ARIMA automated regression integrated moving average). (B) Timeline of weekly 
referral volumes plotted since the start of the Covid-19 pandemic with in-sample forecasting (prediction: yellow 
dashed line) and 12-week out-of-sample forecasting (future: red dashed line) determined by Prophet with 95% 
confidence intervals shown in gray.

Table 1.   Median weekly volumes and group-wise differences between the first 6 months of lockdown 
(March to August, 2020) and the same corresponding months after 1 year. All p-values are Bonferroni 
multiple comparison corrected following univariate Mann–Whitney U tests. NS not significant. *Aggregate 
of cranial trauma, subdural hemorrhage, stroke, brain tumor, neurovascular disease, congenital diseases and 
hydrocephalus diagnoses. **Spinal trauma, cauda equina syndrome, degenerative spine and spinal tumor 
diagnoses. † Central nervous system infection, non-neurosurgical diagnosis).

Diagnosis Early Covid-19 period median weekly volume Late Covid-19 period median weekly volume Difference p

All 104 121 17 0.02

Cranial* 59 62 3 NS

Spinal** 34 44 10 0.02

Other† 8 13 5  < 0.0001
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cross-validation scores as compared to STL + ARIMA. In the withheld testing sample, Prophet also outperformed 
both. We acknowledge that other time-series models could have been trialed to achieve better predictive perfor-
mance. For example, Aravazhi found that hybrid models typically out-performed ‘simple’ models when aiming 
to forecast elective surgical volumes, although this was not found to be universal for all surgical time-series data. 
Even so, trials of hybrid or ensemble methods44 would be a valuable future direction for our work.

A shortcoming shared by all our forecasting methods was that tuning was performed over a narrow parameter 
space, implying that there was scope to improve the models with a wider grid search44. Nevertheless, our inten-
tion was to improve generalizability by reducing hyperparameter optimization time and make the software ‘plug 
and play’. The Covid-19 period represents a period of uncertainty and volatility, which may not be representative 
of typical referral patterns. Since model training includes this period, it is possible that the fitted models will be 
less accurate when referral trends normalize. To compensate, the period of model training is adjustable in the 
dashboard and both the STL + ARIMA and Prophet pipelines can adjust to time-series trend changes (see “Meth-
ods” section). We highlight several other features to reduce overfitting45, including the use of dropout layers, 
dataset splitting into adequate train, validation and test sets, automatic hyperparameter tuning and heterogenous 
referral data from a wide array of referring centers (Fig. 6A). The use of external datasets would nonetheless be 
indispensable for confirming model validity and generalizability45.

Although there is no shortage of time-series forecasting examples within the recent surgical literature18,44, 
there are few that precisely describe acute referral numbers. Chandrabalan et al. trained a forecasting model using 
Prophet to estimate the pandemic-related deficit in colorectal cancer referrals and found that their predictions 
overestimated referral volumes as compared to actual data in the early post-pandemic period20. The fact that all 
algorithms examined in our work had 12-week mean percentage error scores of less than 10 and 15% for testing 
and cross-validation respectively and that similar trajectories and volumes were forecasted out-of-sample, lends 
credibility to our predictions (Supplementary Fig. 1). We note these error levels are sufficiently below thresholds 
described in other literature46.

The results in this study were embedded within a dashboard platform to permit accessible visualization 
and interpretation and enable users with little to no data-science experience to audit referral data using highly 
interactive features. Referrals could be filtered according to diagnosis, timeframe, demographics, geographical 
location, decision-making, referrer information and timing. Each of these functions offered important histori-
cal insights regarding acute referrals from this period. For example, it was noted that referrals were received at 
certain hours throughout the week, implying that a re-arrangement of staffing to better match these peak times 
may improve acute service efficiency. The overwhelming majority of referrals to our center were labeled as 
‘urgent’ or ‘emergency’, although few were transferred immediately or placed on a waiting list. The lack of patient 
information associated with the referral (Fig. 4), could be attributed to staff experience, with junior residents 
and interns sending most referrals (Fig. 3C). Educational interventions which aim to improve recognition and 
initial management of neurosurgical presentations would be particularly useful in improving referral quality47 
and could be directed at high-volume referral centers (Fig. 5B), where a greater impact is likely to be made.

While preliminary, these findings collectively demonstrate our dashboard’s versatility and functionality for 
drawing critical insights into an acute neurosurgical service as well as suggesting various avenues for future 
quality improvement and research. We confirmed, using a mixed-methods approach, that key stakeholders who 
could benefit from this software deemed it as usable, acceptable and feasible. Low-code and no-code development 
platforms have recently been gaining traction, permitting users to build, test and share applications with mini-
mal expertise48. Data dashboards are an example of a low-code platform with modular components that allows 
people to engage with big-data via an easy-to-use graphical user interface. They facilitate audit and exploratory 
data analysis without the need for programming or spreadsheets. For developers, each module can be iteratively 
configured with ease to meet the needs of the user-base, allowing for an almost limitless scope for innovation.

Although dashboards have previously been used to explore healthcare big-data49,50, we believe our work is 
the first to combine surgical large-scale data with time-series machine learning (ML) methods within a dash-
board platform. Furthermore, the estimation of future referral volumes could be performed nearly instantly. A 
key strength of this design is that it considerably reduces the gap in accessibility and technical ability required 
to understand ML methods and their clinical implementation. Indeed, as two study participants commented: 
“the new AI tool was really user friendly (R5)” and “it was impressive that AI could be implemented and used 
(in the dashboard) so easily (R8)”. Within our center, the evidence of greater future service demand has helped 
instigate processes (outpatient and rota planning) to assist in allocating resources more effectively. While it is 
not demonstrated within the synthetic platform of this study (Supplementary Results, Video), we highlight the 

Table 2.   Usability, feasibility and acceptability scores among main user groups. SUS system usability scale, 
scored out of 100, AIM acceptability intervention measure, scored out of 5, FIM feasibility intervention 
measure, scored out of 5, SE standard error.

User group n SUS mean (SE) AIM mean (SE) FIM mean (SE)

All 20 77.1 (3.0) 4.7 (0.2) 4.6 (0.2)

Registrar/resident 12 78.0 (3.1) 4.8 (0.1) 4.7 (0.1)

Consultant/attending 5 74.2 (6.8) 4.4 (0.4) 4.2 (0.4)

Management and administration 3 78.3 (10.4) 4.9 (0.1) 5.0 (0)
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strength in our dashboard being able to update in real-time, at a refresh rate of 1 week, iteratively improving the 
fitted model and results as more data is collected, although this is not yet fully automated.

We acknowledge other limitations in our study. The accuracy of referral data is highly reliant on the refer-
ring doctor and on-call neurosurgical team. Often, there is a change in referral status that is not represented in 
the record (for example, a pending scan may have been received but the status was not altered) or the specialist 
working diagnosis was incorrect. Still, some of these inaccuracies are likely to be compensated for once the data 
has been aggregated. Although several design features were implemented to make the model and software gen-
eralizable, further testing on other referral datasets is required to confirm external validity. Furthermore, because 
our center lacked an existing method for auditing large-volume referral data, there was no control to compare 
the dashboard’s user experience, making it difficult to gauge the relative utility of our software. Separately, our 
models were designed to predict surgical referrals for a minimum period of 1 week and therefore would not be 
clinically useful for hyper-acute changes seen on a daily basis.

Conclusion
Using an AI-enabled predictive dashboard platform, we performed a comprehensive historical and projected 
analysis of acute neurosurgical referrals made to a large volume tertiary neurosciences center. Using data from 
during the Covid-19 and post-pandemic period, we highlight important insights gained from these findings 
and make preliminary suggestions for better allocation of resources and interventions aimed at improving the 
quality of referrals. In addition to the prospective work aforementioned, there are several opportunities for future 
development. Setting up an automated pipeline that can accept referral data, fit models and make predictions 
contemporaneously would contribute toward a widely-held objective of a dynamic, flexible surgical service51. 
Delaying this are several obstacles, including practical concerns regarding streamlining access to multiple infor-
mation pools and data-regulation issues about how and where this type of clinical dashboard would be hosted. 
Nevertheless, having a dashboard ‘front-end’ for big-data sets that can both describe and predict, would increase 
accessibility and stimulate improvements in the quality of patient care.

Code and data availability
The supplementary material contains key portions of the code used. Full code and synthetic data set are available 
on reasonable request. A version of the dashboard using synthetic data is available on https://​refer​ralsd​ash.​herok​
uapp.​com. Clinical data cannot be shared without first obtaining relevant information governance permissions.
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