Skip to main content
. 2022 Mar 31;47(1):1–9. doi: 10.4103/jmp.jmp_61_21

Table 4.

Performance measures of handcrafted features

Model Explanation Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 score FPR (%) FNR (%)
Model 1 GLCM + logistic regression 57.31 85.18 40 46.44 0.6 60 14.8
Model 2 GLCM + linear SVM 56.86 83.79 40.53 46 0.59 59 16
Model 3 GLCM + RBF SVM 62.24 0 100 0 0 0 100
Model 4 GLCM + random forest 62.24 0 100 0 0 0 100
Model 5 LBP + logistic regression 62.24 0 100 0 0 0 100
Model 6 LBP + linear SVM 62.24 0 100 0 0 0 100
Model 7 LBP + RBF SVM 62.24 0 100 0 0 0 100
Model 8 LBP + random forest 62.24 0 100 0 0 0 100
Model 9 HOG + logistic regression 74 93.47 62 60 0.73 38 6.52
Model 10 HOG + linear SVM 62.24 0 100 0 0 0 100
Model 11 HOG + RBF SVM 78 95.45 67 64 0.77 32.6 4.5
Model 12 HOG + random forest 62.24 0 100 0 0 0 100

FPR: False-positive rate, FNR: False-negative rate, GLCM: Gray level co-occurrence matrix, RBF: Radial basis function, SVM: Support vector machine, LBF: Local binary pattern, HOG: Histogram of oriented gradients