Skip to main content
. 2022 Mar 31;47(1):1–9. doi: 10.4103/jmp.jmp_61_21

Table 5.

Performance measures of deep features

Model Explanation Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 score FPR (%) FNR (%)
Model 13 VGG16 + logistic regression 58.36 63.24 55.4 46.24 0.534 44.6 36.76
Model 14 VGG16 + linear SVM 62.24 0 100 0 0 0 100
Model 15 VGG16 + RBF-SVM 82.985 83.79 82.49 74.39 0.788 17.5 16.2
Model 16 VGG16 + random forest 77.84 82.21 75.18 66.77 0.737 24.8 17.78
Model 17 VGG19 + logistic regression 74.22 80.04 70.69 62.31 0.701 29.3 19.96
Model 18 VGG19 + linear SVM 76.42 76.68 76.26 66.21 0.711 23.74 23.32
Model 19 VGG19 + RBF-SVM 83.06 90.12 78.78 72.04 0.8 21.22 9.88
Model 20 VGG19 + random forest 80.15 84.58 77.46 69.48 0.763 22.54 15.4
Model 21 ResNet50 + logistic regression 78.36 83 75.54 67.31 0.74 24.46 17
Model 22 ResNet50 + linear SVM 79.03 87.15 74 67.12 0.758 25.89 12.85
Model 23 ResNet50 + RBF-SVM 83.06 95.06 75.78 70.42 0.81 24.2 4.94
Model 24 ResNet50 + random forest 80.3 87.15 79.14 68.9 0.77 23.86 12.85

FPR: False-positive rate, FNR: False-negative rate, RBF: Radial basis function, SVM: Support vector machine