Skip to main content
. 2022 Mar 31;47(1):1–9. doi: 10.4103/jmp.jmp_61_21

Table 6.

Performance analysis of hybridized features in lung nodule classification

Model Explanation Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 score FPR (%) FNR (%)
Model 25 VGG16 + HOG + logistic regression 78.66 80.83 77.34 68.39 0.74 22.66 19.16
Model 26 VGG16 + HOG + linear SVM 78.43 82 76.25 67.69 0.74 23.74 17.98
Model 27 VGG16 + HOG + RBF-SVM 82.46 54.35 99.5 98.56 0.7 0.005 45.6
Model 28 VGG16 + HOG + random forest 73.88 31.22 99.76 98.75 0.47 0.002 68.77
Model 29 VGG19 + HOG + logistic regression 76.56 87.15 70.14 63.9 0.74 29.85 12.84
Model 30 VGG19 + HOG + linear SVM 76.49 85.38 71 79.37 0.82 28.89 14.89
Model 31 VGG19 + HOG + RBF-SVM 93.28 89.5 95.6 92.43 0.91 4.44 10.5
Model 32 VGG19 + HOG + random forest 73.65 30.63 99.76 98.72 0.47 0.002 69.37
Model 33 ResNet50 + HOG + logistic regression 82.9 89.72 78.77 71.94 0.79 21.2 10.27
Model 34 ResNet50 + HOG + linear SVM 79.6 95.8 69.78 65.8 0.78 30.2 4
Model 35 ResNet50 + HOG + random forest 88.13 84.78 90.16 83.95 0.84 9.8 15.2
Model 36 ResNet50 + HOG + RBF-SVM 97.53 98.62 96.88 95.04 0.97 3.12 1.38

FPR: False-positive rate, FNR: False-negative rate, RBF: Radial basis function, SVM: Support vector machine, HOG: Histogram of oriented gradients