Table 6.
Model | Explanation | Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | F1 score | FPR (%) | FNR (%) |
---|---|---|---|---|---|---|---|---|
Model 25 | VGG16 + HOG + logistic regression | 78.66 | 80.83 | 77.34 | 68.39 | 0.74 | 22.66 | 19.16 |
Model 26 | VGG16 + HOG + linear SVM | 78.43 | 82 | 76.25 | 67.69 | 0.74 | 23.74 | 17.98 |
Model 27 | VGG16 + HOG + RBF-SVM | 82.46 | 54.35 | 99.5 | 98.56 | 0.7 | 0.005 | 45.6 |
Model 28 | VGG16 + HOG + random forest | 73.88 | 31.22 | 99.76 | 98.75 | 0.47 | 0.002 | 68.77 |
Model 29 | VGG19 + HOG + logistic regression | 76.56 | 87.15 | 70.14 | 63.9 | 0.74 | 29.85 | 12.84 |
Model 30 | VGG19 + HOG + linear SVM | 76.49 | 85.38 | 71 | 79.37 | 0.82 | 28.89 | 14.89 |
Model 31 | VGG19 + HOG + RBF-SVM | 93.28 | 89.5 | 95.6 | 92.43 | 0.91 | 4.44 | 10.5 |
Model 32 | VGG19 + HOG + random forest | 73.65 | 30.63 | 99.76 | 98.72 | 0.47 | 0.002 | 69.37 |
Model 33 | ResNet50 + HOG + logistic regression | 82.9 | 89.72 | 78.77 | 71.94 | 0.79 | 21.2 | 10.27 |
Model 34 | ResNet50 + HOG + linear SVM | 79.6 | 95.8 | 69.78 | 65.8 | 0.78 | 30.2 | 4 |
Model 35 | ResNet50 + HOG + random forest | 88.13 | 84.78 | 90.16 | 83.95 | 0.84 | 9.8 | 15.2 |
Model 36 | ResNet50 + HOG + RBF-SVM | 97.53 | 98.62 | 96.88 | 95.04 | 0.97 | 3.12 | 1.38 |
FPR: False-positive rate, FNR: False-negative rate, RBF: Radial basis function, SVM: Support vector machine, HOG: Histogram of oriented gradients