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Abstract

The continued improvement of combinatorial CRISPR screening platforms necessitates the 

development of new computational pipelines for scoring combinatorial screening data. Unlike 

for single-guide RNA (sgRNA) pooled screening platforms, combinatorial scoring for multiplexed 

systems is confounded by guide design parameters such as the number of gRNAs per construct, 

the position of gRNAs along constructs, and additional features that may impact gRNA 

expression, processing or capture. In this protocol we describe Orthrus, an R package for 

processing, scoring and analyzing combinatorial CRISPR screening data that addresses these 
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challenges. This protocol walks through the application of Orthrus to previously-published 

combinatorial screening data from the CHyMErA experimental system, a platform we recently 

developed that pairs Cas9 with Cas12a gRNAs and affords the programmed targeting of multiple 

genomic sites. We demonstrate Orthrus’ features for screen quality assessment and two distinct 

scoring modes for dual-guides (dgRNAs) that target the same gene twice or dgRNAs that 

target two different genes. Running Orthrus requires basic R programming experience and 

approximately 5–10 minutes of computational time.

EDITORIAL SUMMARY:

This protocol describes the use of Orthrus, an R package for processing, scoring and analyzing 

combinatorial CRISPR screening data, including data produced by the CHyMErA experimental 

system.

Introduction

Genetic tools that systematically map genetic interactions are powerful hypothesis-

generating technologies for both basic research as well as drug discovery. Genetic 

interactions (GIs) are defined as the phenomenon by which combinatorial mutations in 

multiple genes result in phenotypic effects that are greater or less than expected, given 

the phenotypes of the individual mutants1. Pioneering work in yeast resulted in a nearly-

complete map of yeast pairwise GIs, which illuminated the functions of uncharacterized 

genes, revealed functional connections between pathways2, and enabled the systematic 

characterization of compound mode-of-action3,4.

The study of human genetic interactions at scale has recently been made possible in human 

cell culture systems with the development of CRISPR/Cas-enabled genetic screens5–9. These 

experiments induce mutations across any number of human genes in pooled cell culture 

and typically work by targeting each gene with a small number of Cas9 guides that are 

individually expressed in cells. Pooled CRISPR screens can be performed in various genetic 

backgrounds to identify different effects, such as in cancer cell lines to uncover cancer-

specific genetic dependencies10 or in isogenic cell lines to map genetic interactions11. 

Combinatorial CRISPR screening platforms were also developed to directly identify GIs by 

knocking multiple genes out through the expression of multiple guides within the same cell. 

These platforms function by pairing individual Cas9 guide RNAs (gRNAs) with each other, 

combining orthologous Cas9 gRNAs, or by multiplexing multiple Cas12a gRNAs11–19. 

We recently developed a novel combinatorial screening platform named Cas Hybrid for 

Multiplexed Editing and Screening Applications (CHyMErA) that instead targets genes with 

hybrid guide RNAs (hgRNAs) composed of Cas9 guides fused with one or more additional 

Cas12a guides, which can subsequently be processed into individual guides by Cas12a’s 

RNA-processing activity12.

Although accurate scoring of genetic interaction data requires precise quantitative 

measurements2,11, there is a lack of computational tools that enable quantitative genetic 

interaction scoring for combinatorial experimental designs. To date, most combinatorial 

CRISPR screening studies have scored data by taking simple or weighted averages of 
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log fold-change values (LFCs) between start and end read counts for dual guide RNAs 

(dgRNAs) targeting specific gene pairs with additional corrections based on control guides 

or the phenotypes of similar dgRNAs13–16. While this approach may be suitable for non-

combinatorial screens, different Cas enzymes12, as well as the position of gRNAs on 

combinatorial guide constructs16, may strongly affect guide efficiency. This necessitates 

the development of combinatorial scoring methods which take these effects into account.

To address issues arising from the combinatorial nature of data output from CHyMErA and 

other platforms, we developed a novel scoring method named Orthrus for combinatorial 

CRISPR screening data. The key feature of Orthrus is that it takes orientation - whether 

gene A is targeted by a gRNA in position 1 and gene B is targeted by a gRNA in position 

2, or vice versa - into account during scoring, which is necessary to consider for Cas9 and 

Cas12a guides that can cause different fitness effects even when targeting the same gene. 

This scoring method is bundled in a well-documented R package with a variety of features 

to simplify combinatorial data processing, quality control and analysis, and is downloadable 

at https://github.com/csbio/Orthrus. Here, we present the recommended Orthrus workflow, 

demonstrate its key features on previously-published data from two separate combinatorial 

screening experiments, discuss important considerations for performing quality-control 

analyses of screening data, and detail expected results from the application of Orthrus to 

combinatorial screening data.

Development of the Protocol

The Orthrus package implements the GI scoring schema presented in Gonatopoulos-

Pournatzis et al.12, although with several key improvements that include more sensitive 

scoring, a variety of quality control plots and metrics, and a new user interface. Most 

broadly, Orthrus presents a consistent user interface for scoring any kind of combinatorial 

screening data stored in a delimited text file. The code that was used to score data in 

Gonatopoulos-Pournatzis et al.12 does not generalize to other experiments or combinatorial 

screening platforms. This new user interface also provides push-button functions that 

automatically generate a variety of quality control plots and metrics useful for assessing 

the quality of most types of screening data. In addition, the Orthrus package implements 

several features absent from the previously published scoring code. These features improve 

the sensitivity of scoring and user confidence in resulting hits and include guide filtering 

based on plasmid pool or early timepoint read counts, loess-normalization of residual 

effects, and moderated t-testing in addition to the original Wilcoxon rank-sum testing. 

Lastly, given properly-formatted input files, the Orthrus package provides several different 

scoring interfaces which enable partial or complete automation of the scoring process.

Comparisons with other Methods

We are aware of five existing scoring methods for combinatorial CRISPR screens: ΔLFC, 

GIMap, π-score, Norm-GI and GEMINI13–15,17,20. All scoring methods compare the 

null model of multiplicative single-gene effects, typically derived from intragenic guides 

paired with intergenic controls (exonic-intergenic guides), to the observed effects of 

exonic-exonic guides. The simplest proposed method is ΔLFC13, which directly performs 

this comparison while deriving empirical FDRs from permuted data. GIMap, Norm-GI 
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and π-score all perform the same comparison with some additional corrections. GIMap 

normalizes exonic-intergenic guides to a quadratic fit and residual effects to negative 

control guide effects17. Norm-GI normalizes residual effects to control guide phenotypes, 

as well as to the phenotypes of similar guides using a moving average across bins15. The 

π-score weights exonic-exonic guides, giving higher preference to guides with stronger 

phenotypes14. GEMINI is a Bayesian approach that explicitly models sample-independent 

and sample-dependent effects and uses coordinate ascent variational inference to update the 

posteriors of exonic-intergenic effects20. Of these five scoring methods, only GEMINI exists 

in a generalized, runnable form as an R package.

Orthrus primarily differs from GEMINI in how it accounts for orientation, whether it 

computes effects relative to control genes, the types of guides it is designed to score, and 

the number of auxiliary functions it offers. GEMINI does not account for guide orientation, 

which is an important consideration for CHyMErA screening data. Furthermore, GEMINI 

computes p-values and FDRs relative to a specified set of negative control genes, which 

may be appropriate for whole-genome screens but is not necessarily appropriate for screens 

performed with specialized libraries. GEMINI similarly computes effect size based on a 

set of positive control genes, which may or may not be available depending on the library 

design and interrogated phenotype. Orthrus, on the other hand, does not rely on negative 

or positive control genes during scoring, and can identify significant hits even for moderate 

phenotypes due to the use of moderated t-testing. The combination of these choices allows 

Orthrus to score multiple different types of guides, as it can directly score combinatorial 

guides against single-targeting controls, as well as chemogenetic screens against non-treated 

controls or single-targeting guides. Lastly, unlike GEMINI, Orthrus presents the user with a 

host of data processing, quality control and plotting functions to assess screen quality.

Applications of the Method

The Orthrus package is generally applicable to a variety of combinatorial CRISPR screening 

settings. While Orthrus’ orientation-based filtering is designed to minimize false positives 

or discrepancies due to guide orientation, this scoring approach requires double the amount 

of hypothesis testing per gene pair and may be overly conservative in some settings. For 

applications such as CHyMErA screens, this conservative approach should be adopted (see 

Step 15 of Procedure 2). For multiplexing screens with single nucleases (either Cas9 or 

Cas12a), the user should instead reduce the amount of hypothesis tests performed per gene 

pair by ignoring orientation-specific effects (see Step 4 of Procedure 3). In addition to 

flexible scoring functions, Orthrus provides an extensive selection of data processing and 

quality control functions that are applicable to any combinatorial screening dataset and can 

be applied irrespective of downstream scoring methods.

Limitations

The Orthrus package currently supports the analysis of data from negative selection CRISPR 

screens with combinatorial guide libraries targeting A) a single gene of interest twice, 

B) two different genes, and C) a gene paired with a control region. It has been tested 

on CHyMErA data for all of these guide types as well as for combinatorial-targeting 

guides from a different multiplexed Cas12a platform, as described in the Procedures below. 
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Genes of interest could be targeted in either exonic or intronic regions depending on the 

screens’ experimental design, although Orthrus has only been tested to score the effects of 

gRNAs targeting exonic regions. While Orthrus is currently the only scoring package that 

accounts for orientation-specific effects, this feature can be disabled to increase statistical 

power for screens where guide orientation is less relevant. Thus, Orthrus is flexible 

enough to score any combinatorial data for all guide types listed above. While Orthrus 

is not designed to score combinatorial positive selection or drug rescue experiments, a 

combination of stringent guide filtering and scoring with Wilcoxon rank-sum hypothesis 

testing may be appropriate for these types of screens. However, further testing on genome-

scale combinatorial positive selection screens is necessary to assess Orthrus’ ability to score 

this type of data.

Expertise Needed to Implement the Protocol

Basic experience with R programming is required. Experience analyzing CRISPR screen 

data is recommended, but not required.

Input Format

Orthrus requires one mandatory and two optional (but encouraged) tab-separated input 

files: a mandatory reads file, and the two optional sample and batch files. The reads file 

contains read count information for all screens, and is required for Orthrus to function. 

Its construction from raw sequencing data is detailed in Procedure 1. The sample file 

maps replicate columns to their matching screens, but unlike similar files required by other 

packages, it also maps screens to other screens they must be normalized against (e.g. 

reference time point screens, plasmid pools). The batch file maps screens to other screens 

they must be scored against, such as for drug treatment screens against control screens. 

While Orthrus provides manual options detailed in Procedure 2 that offer precise input 

methods for specifying the information contained in sample and batch files, the sample 

and batch files can drastically reduce the complexity of data processing and scoring - as 

demonstrated in Procedures 2 and 3 - and are thus highly encouraged. In addition to the 

detailed descriptions below, please refer to this video tutorial for a conceptual overview 

of these three input files, which is available to view as Supplementary Video 1 or at https://

youtu.be/w8mGWnQ-9Wo.

Reads file.—Like other packages that score CRISPR screening data, Orthrus requires 

input data formatted as a delimited text file where rows correspond to guides and columns 

correspond to metadata and raw read counts for all screens. However, unlike alternative 

scoring methods, Orthrus requires two gene label columns whose position reflects the 

orientation of each guide. In detail, Orthrus requires the following assumptions about the 

input file’s format to be met.

1. All guides in the dataset (every row) must have non-empty labels for the genomic 

regions they target contained in two separate columns.

2. These columns must be labeled gene1 and gene2. Although these will typically 

contain gene symbol annotations, they may contain any identifier desired by the 

user.
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3. The gene1 column must contain gene labels for the first guide in the dataset and 

the gene2 column must contain gene labels for the second guide in the dataset. 

The definition of “first” and “second” is left to the user. For example, the dataset 

analyzed in Procedure 2 contains genes targeted by Cas9 guide sequences in 

the gene1 column and Cas12a guide sequences in the gene2 column, whereas 

the dataset analyzed in Procedure 3 contains genes targeted by Cas12a in both 

columns.

4. To enable Orthrus’ default scoring mode, each gene label column must map 

to a respective guide ID column. For example, the gene1 and gene2 columns 

for the dataset analyzed in Procedure 2 map to the columns Cas9.Guide and 

Cpf1.Guide (Cas12a was previously named Cpf1), respectively. Orthrus does 

not assume a standardized name for guide ID columns, and instead, the user 

passes in the name of guide ID columns during the processing step. The first 

guide ID column name passed in maps to gene1 and the second maps to 

gene2. For libraries where single-targeting guides do not share guide IDs with 

combinatorial-targeting guides, the less-sensitive Wilcoxon rank-sum scoring 

approach implemented in Orthrus does not require this information.

5. For “dual-targeting” guides which target the same gene twice, the gene1 column 

must contain the name of the targeted gene and the gene2 column must contain 

the string None.

6. For single-targeting guides paired with a standardized negative control, such as 

an intergenic region for the dataset analyzed in Procedure 2 or a non-essential 

gene for the dataset analyzed in Procedure 3, the control must be named 

NegControl in the corresponding gene label column.

While these assumptions may require users to manually pre-process their reads file, this 

format is a concise way to represent both orientation-specific information as well as guide 

type information for any combinatorial screen. Although alternative scoring methods also 

require tab-delimited files with identifying gene labels and guide ID columns, they do not 

take either orientation or guide type into account (to which assumptions 3–6 above relate). 

An example format for a reads file containing mock data is shown in Table 2. This table 

contains the gene name columns gene1 and gene2, the guide ID columns Cas9 guide and 

Cas12a guide, and reads for two technical replicates in the columns T0 reads and T18 

reads.

Additionally, because the CHyMErA reads file downloadable at https://

crispr.ccbr.utoronto.ca/chymera/index.html contains several formatting errors, the script used 

to reformat the CHyMErA data into the version bundled in the Orthrus package download is 

uploaded to the Zenodo repository available here and is demonstrated in Procedure 1 Step 6.

Sample file.—The sample file must be a tab-separated file containing exactly three 

columns named Screen, Replicates, and NormalizeTo. The Screen column contains 

unique users-pecified labels for each screen. The Replicates column contains a list of 

read column names for all technical replicates corresponding to that screen in the reads 
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file, separated by semicolons. The NormalizeTo column contains the name of a different 

screen in the Screen column to normalize the current screen against (e.g. a T0 screen or 

plasmid pool). The sample file for Procedure 2 is shown in Table 3.

Batch file.—The batch file must be a tab-separated file containing exactly two columns 

named Screen and Control. The Screen column contains labels for screens listed in the 

Screen column of the sample file which the user wants to score against screens listed in 

the Control column. To score combinatorial-targeting guides against null models derived 

from single-targeting guides, instead specify combn in the Control column. The batch file 

for Procedure 2 is shown in Table 4.

Experimental Design

Workflow—The recommended workflow for combinatorial CRISPR screen analysis with 

Orthrus involves the following key steps, as shown in Fig. 1. First, the computational 

workspace is set up with appropriate variables that describe screen information in a read 

count matrix. Second, read counts are processed and normalized to sequencing depth as 

well as to screens from earlier timepoints, if provided. During this step, a variety of quality 

control (QC) plots are output, which include QC plots for raw read counts as well as for 

normalized log fold-changes (LFCs). Based on the results of QC plots and metrics, this 

step may be repeated several times with updated filtering and normalization options. Third, 

LFCs are scored and analyzed in separate ways for guides that target one gene multiple 

times (dual-targeted scoring) or guides that target different genes with the same construct 

(combinatorial scoring).

Scoring modes—Orthrus offers two primary scoring modes and one additional scoring 

mode for different types of guides.

1. The dual-targeting mode scores guides that target one gene multiple times across 

different conditions. This mode is suitable for drug screening applications. For 

example, in previous CHyMErA screens12, dual-targeting guides cut each gene 

in two separate exonic regions, and these guides are scored for differences 

between drug treated (Torin1) and untreated cells.

2. As an extension to the dual-targeting scoring mode, the single-targeting mode 

scores single-targeting guides that cut both a single gene and a control region 

across different conditions. The gene of interest could be cut in an exonic or 

intronic region, while the control gRNA typically targets an intergenic region 

or nonessential gene. This mode uses the same interface as the dual-targeting 

scoring mode with different parameters.

3. The combinatorial-targeting mode scores guides that target multiple genes. This 

mode scores genetic interactions. In previous CHyMErA screens, combinatorial-

targeting guides cut two different genes in a single exonic region per gene. 

The effect of double-knockouts induced by these guides is scored against the 

estimated effect of double-knockouts derived from single-targeting guides that 

target each gene separately (while paired with guides targeting control regions 

- see below). For experiments which investigate intronic function, this mode 
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could instead score the effect of dgRNAs which target intronic regions of 

multiple genes. This mode can also be configured to ignore orientation-specific 

effects, which increases statistical power for experiments with few observable 

orientation-specific signatures.

For a given gene pair’s set of guides, all of Orthrus’ scoring modes compare LFC values for 

an effect of interest against LFC values for control effects with either moderated t-testing 

or Wilcoxon rank-sum testing. Users may also loess-normalize their residual effects to 

account for non-normality in their data. For most purposes, we recommend that users run 

moderated t-testing with loess-normalization enabled. However, for screens where guide-

level residuals cannot be computed because single-targeting controls do not share guide IDs 

with combinatorial-targeting dgRNAs (see the Input Format subsection below), Wilcoxon 

rank-sum testing without loess normalization must be applied instead. A description of 

important parameters and the algorithms applied by Orthrus during the scoring process, as 

well as their typical use cases, is provided in Table 1.

Scoring interfaces—Orthrus provides three different interfaces to the steps listed in the 

Workflow subsection: a manual interface that allows fine-grained control over each step, a 

batch scoring interface for users to process data manually and score it automatically, and 

a wrapper interface that runs the entire Orthrus pipeline in a single function call. After 

construction of the reads file from raw sequencing data in Procedure 1, the first interface is 

demonstrated in Procedure 2, and the latter two interfaces are demonstrated in Procedure 3. 

All three interfaces to Orthrus are described below, and their corresponding function calls 

are summarized in Fig. 2.

1. The manual interface is the most verbose and allows users to score specific 

screens in different ways. For instance, with this interface users may choose 

to score screens with different FDR thresholds, or may alter the parameters of 

plots generated for different screens (e.g. to relabel hits in figure legends). This 

interface requires a minimum of 13 Orthrus function calls for an experiment 

with both dual-targeting and combinatorial-targeting guides and may require 

significantly more for complex experimental designs.

2. The batch scoring interface is more succinct than the manual interface and 

affords users a similar level of control as the manual interface. Scoring many 

screens with this interface requires only one line of code, for a minimum (and 

typically, a maximum) of seven Orthrus function calls across the entire workflow. 

However, this interface requires that users score all guides of a specific type with 

the same parameters across all screens. For large-scale experiments where scores 

should be computed in a standardized way, this behavior is desired.

3. The wrapper interface allows users to score their data with a single Orthrus 

function call. While convenient, this interface is only recommended for users 

with a deep understanding of both their own data as well as how specific 

parameters applied to different steps of the scoring process affect their results.

For typical experimental designs, the batch scoring interface is recommended. Orthrus 

separates the processing and scoring steps in order to encourage users to manually examine 

Ward et al. Page 8

Nat Protoc. Author manuscript; available in PMC 2022 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



their data at key breakpoints during an analysis session. Ideally, after running Orthrus’ 

processing steps, users will refer to the variety of automatically-generated QC plots and 

metrics that Orthrus outputs to inform their parameter choices. Users will then choose 

to either proceed to the scoring steps with their current parameter choices or choose to 

re-process their data with changed parameters (or other additions, such as manual filters for 

problematic guides). While the manual interface also encourages this behavior, the batch 

scoring interface is far more succinct and additionally forces the user to choose common 

parameters for scoring different screens, which facilitates the generation of results that are 

more comparable across screens.

Preparation stage—During the preparation stage, users first format their reads file, their 

sample table, and their batch table as described in the Input Format subsection. They load 

these files into their workspace and proceed to the processing stage.

Processing stage—Users run Orthrus’ processing and QC functions as shown in Steps 

5–10 of Procedure 2 or Step 3 of Procedure 3. After running these functions and manually 

examining QC plots and metrics for their data, users then decide whether or not to change 

certain parameters (e.g. to filter low-readcount guides) and either re-run this step or proceed 

to the scoring stage.

Scoring stage—Finally, users call Orthrus’ scoring functions either manually or with the 

batch scoring interface. The manual interface requires users to dual-targeting, combinatorial-

targeting and single-targeting guides separately, but the recommended batch scoring 

interface allows users to score all three types of guides at the same time.

After scoring their data, users are encouraged to examine their final results and decide 

to either keep their current parameters or re-run the processing and scoring stages with 

different parameters. Some of the most consequential parameters include the choice of 

hypothesis testing (we recommend moderated t-testing as opposed to Wilcoxon rank-sum 

testing for most screens), whether or not to loess-normalize residual effects, and the choice 

of FDR and effect size thresholds for hit-calling. Table 1 provides more information on these 

and other parameters, as well as their recommended use cases.

Chosen data for procedures—The procedures below demonstrate the application of the 

Orthrus package for analyzing two combinatorial CRISPR screening example datasets. The 

first dataset analyzed in Procedures 1 and 2 consists of both raw sequencing data as well as 

a pre-processed reads file from CHyMErA screens described in Gonatopoulos-Pournatzis 

et al12. The second dataset analyzed in Procedure 3 contains screens from a separate 

multiplexed Cas12a system described in Dede et al18. All data for Procedures 1 and 3 

is downloadable from the Zenodo repository here, whereas the processed reads file and 

required tables for Procedure 2 are bundled with Orthrus’ download.
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Materials

Equipment

Software

• Procedure 1

– Tested with Bowtie 0.12.9, although any Bowtie version 1 is 

applicablePerl 5Bash

– R version 3.6 or greater

• Procedures 2 and 3

– R version 3.6 or greater with the packages listed below and in Step 1 of 

Procedure 2

♦ devtools

♦ Orthrus

♦ ggplot2

♦ ggthemes

♦ pheatmap

♦ PRROC

♦ RColorBrewer

♦ BiocManager

♦ limma

Hardware

• Procedure 1

– CPUs: tested on a machine with a single 2.6GHz Intel Core i7 

processor

– Memory: tested on a machine with 16 GB of RAM, but should run on 

most machines with 4+ GB of RAM

– Operating system: tested on macOS 10.13.6 High Sierra, but should run 

on most Unix operating systems

– An internet connection is required to download the required software, 

scripts and data

• Procedures 2 and 3

– Memory: at least 4 GB of RAM

– Operating system: any operating system capable of running R and 

installing the packages listed in Step 1 of Procedure 2
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– An internet connection is required to download the Orthrus package

Data—The CHyMErA dataset analyzed in Procedures 1 and 2 comprises combinatorial 

CRISPR screens performed with the CHyMErA experimental platform in two different 

human cell lines, HAP1 and RPE1, across a control and a Torin1-treated condition, with 

read counts taken at two different timepoints for each cell line (T12 and T18 for HAP1, T18 

and T24 for RPE1). While the CHyMErA dataset contains single-targeting, dual-targeting 

and combinatorial-targeting guides, the multiplexed Cas12a dataset analyzed in Procedure 

3 only contains combinatorial-targeting guides that target 400 paralog pairs and control 

guides that target paralogous genes paired with non-essential genes18. These control guides 

are treated as single-targeting guides for scoring purposes, as they are analogous to single-

targeting guides in Procedure 1 and 2’s CHyMerA dataset that target paralogous genes 

paired with intergenic regions.

• Procedure 1

– The subset sequencing data processed in Procedure 1 only contains 

reads from the WT HAP1 T18 screen

– Downloadable in the “Procedure1” folder of the Zenodo repository here

• Procedure 2

– The reads file analyzed in this Procedure contains processed reads for 

all screens and cell lines described above

– Each guide in the reads file, represented by a single row, has associated 

read counts for the knockout of regions specified by a Cas9 and a 

Cas12a guide sequence

– The first set of columns in the dataset contain metadata for guide pairs, 

and the remaining numeric columns contain raw read counts for the 

guide pairs across every screen

– This guide library contains several different types of guides

♦ Dual-targeting guides that target the same gene twice

♦ Combinatorial-targeting guides that target each gene of a 

paralogous gene pair

♦ Single-targeting guides that target a gene’s exonic region in 

addition to a relatively distant intergenic region. These are 

required to score combinatorial-targeting guides for GIs

– Bundled with Orthrus’ download

• Procedure 3

– The reads file analyzed in this Procedure contains processed reads for 

screens performed in A549, HT29 and OVCAR8 cell lines, and is 

formatted similarly to the reads file in Procedure 2

– The guide library contains two different types of guides
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♦ Combinatorial-targeting guides that target pairs of paralogous 

genes

♦ Single-targeting guides that target paralogous genes paired 

with non-essential control genes

– Downloadable in the Zenodo repository here

Equipment Setup

Software setup—If R is not already installed, download R version 3.6 or greater from 

https://cran.rstudio.com/. To use R, we recommend downloading the Rstudio IDE from 

https://rstudio.com/products/rstudio/download/.

Procedure 1: processing CHyMErA data

Set-up.

Timing: X-Y min.

1. Download required data.—Download the subset sequencing data, library guide 

sequences, processing scripts and Bowtie. CHyMErA data was processed with Bowtie 

version 0.12.9, whose download link is below. While other versions of Bowtie 1 are 

similarly appropriate for processing short sequencing data such as for CHyMErA screens, 

Bowtie 2 is not recommended.

Download everything in the Zenodo repository located here and unzip the 

files: https://zenodo.org/record/4527616

Download bowtie version 0.12.9 here: https://sourceforge.net/projects/bowtie-

bio/files/bowtie/0.12.9/

Unzip the downloaded bowtie files into a subdirectory of the “Procedure1” 

folder of the Zenodo repository. Ensure that the “Procedure1” folder is the 

current working directory and that it contains all files in the “Procedure1” 

folder of the Zenodo repository. Similarly, ensure that the “Library” folder 

is a subdirectory of the current working directory, and that it contains all 

the files in the “Library” folder of the original Zenodo repository linked 

above. 

2. Preprocess sequencing data.—To identify hgRNA barcodes present in a given 

sample, CHyMErA screening libraries are subjected to paired-end Illumina sequencing to 

capture both Cas12a and Cas9 guide sequences (Aregger et al. Nature Protocols, under 

review). To identify guide sequences within sequencing reads for two technical replicates of 

a single screen (HAP1 T0) using U6 promoter and Cas9 tracrRNA sequences as “anchor” 

sequences, run the preprocessReadsPE.pl script as follows. This takes two FASTQ 

sequencing files, representing a single technical replicate of a single screen, as input. It 
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outputs four files, two per FASTQ file. The first, [FILENAME]_preprocessed.fastq, contains 

reads trimmed down to the guide sequences, and the second, [FILENAME]_failed.fastq, 

contains full reads where anchor sequences weren’t found. These anchor sequences are 

hard-coded U6 and tracr sequences in the R1_stem and R2_stem variables, which should 

be appropriate for all CHyMErA screens, but may be replaced if analyzing data from a 

different experimental platform. This step takes around 1Mb of memory and five minutes to 

pre-process 34.4M paired-end reads.

./preprocessReadsPE.pl Moffat_HH-79_S1_R1_001.fastq.gz 

Moffat_HH-79_S1_R2_001.fastq.gz 

3. Align reads with Bowtie.—Next, the reads must be aligned to the screening library, 

which may be custom or provided by a vendor. The library used for previous CHyMErA 

screens is contained in the file Human_HybridGuide_Library_v3.txt, and for details 

on how this library was constructed, please consult Gonatopoulos et al. (2020)12. Perform 

this alignment with bowtie 0.12.9, using either option A to run on a single core, or option 

B to run on a cluster if available. The output of this step consists of six files: two contain 

unmapped reads, two contain mapped reads, one is a .sam file and the last is a log file. 

The .sam file named “HH-79_aligned.sam” is the only file required by the next step.

(A) Aligning reads on a single core

i. Change -p [N_CORES] as follows to take advantage of bowtie’s parallel 

processing to use any number of available CPU cores. On a single core, it takes 

about 7–8 hours to align 31.5M pre-processed sequence reads.

export BOWTIE_INDEXES=./Library/ 

bowtie-0.12.9/bowtie -p 1 -v 3 -l 18 --chunkmbs 256 -t

      paralog_library_V3 --un HH-79_unmapped.fastq --al 

      HH-79_mapped.fastq -1 

      Moffat_HH-79_S1_R1_001_preprocessed.fastq -2 

      Moffat_HH-79_S1_R2_001_preprocessed.fastq HH-79_aligned.sam

      2> HH-79.log 

(B) To run this on a cluster, run bowtie with the submitjob command in a Bash for loop. 

This is useful for processing more than one screen concurrently.

export BOWTIE_INDEXES=./Library/ 

for f1 in *_R1_001_preprocessed.fastq 

do 

   d=$(echo $f1 | sed -E 

        ‘s/_S[0–9]+_R1_001_preprocessed.fastq//g’)

   submitjob -c 6 bowtie-0.12.9/bowtie -p 6 -v 3 -l 18 --chunkmbs
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   256 -t paralog_library_V3 --un $d”_unmapped.fastq” --al

   $d”_mapped.fastq” −1 $f1 −2 ${f1/_R1_/_R2_} 

$d”_aligned.sam”

   2\> $d”.log” 

done 

4. Parse alignments to guide counts.—Run parseBowtieOutput.pl as follows to get 

guide-level read counts for the HAP1 T0 screen. This takes roughly 2 minutes running on a 

single core and outputs the file “HH-79_counts.txt” required by step 5.

cat HH-79_aligned.sam | perl parseBowtieOutput.pl > 

      HH-79_counts.txt 

5. Merge count files.—Merge all count files in the current working directory into a 

reads file with mergeAndAnalyzeParalogResults.R as follows. This generates a raw 

reads file named “rawCounts.txt.”

Rscript mergeChymeraResults.R 

6. Re-format counts for Orthrus (optional).—As described in the Input Format 

section, Orthrus requires reads files to describe orientation in gene symbol columns. Both 

the initial library file and the file “rawCounts.txt” with appended read counts do not 

represent orientation in this way. Run the following script to fix this issue for the CHyMErA 

paralog data. Because the reads output in Step 5 are only for the HAP1 T0 screen, the script 

“prepChymeraData.R” instead runs on the included file “paralogLibrary_rawCounts.txt.”

Rscript prepChymeraData.R 

Procedure 2: scoring CHyMErA data manually

Set-up.

Timing: 1–5 min.

1. Install required R packages.—Before installing Orthrus, install all packages it 

requires from both the CRAN repository and Bioconductor as follows:

install.packages(“ggplot2”)

install.packages(“ggthemes”)

install.packages(“pheatmap”)

install.packages(“PRROC”) 

install.packages(“RColorBrewer”) 

if (!requireNamespace(“BiocManager”, quietly = TRUE)) 
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    install.packages(“BiocManager”) 

BiocManager::install(“limma”) 

To install the Orthrus package, install it directly from its Github repository using the 

install_github command from the devtools package as follows:

install.packages(“devtools”) 

library(devtools) 

install_github(“csbio/Orthrus”) 

2. Load packages.—After installing the dependencies above, load Orthrus and ggplot 

into the R environment as follows and rename the example data described above. For a 

detailed description of the dataset, please consult Gonatopoulos-Pournatzis et al12.

library(orthrus) 

df <- chymera_paralog 

3. Set parameters.—While Orthrus does not require any global parameters, it is helpful 

to create output folders for various plots, text files and spreadsheets ahead of time, as 

follows. Many downstream functions will take these as parameters.

output_folder <- file.path(“orthrus_protocol”) 

qc_folder <- file.path(output_folder, “qc”) 

plot_folder <- file.path(output_folder, “scored”) lfc_folder <- 

file.path(qc_folder, “lfc_plots”) 

if (!dir.exists(output_folder)) { dir.create(output_folder,

      recursive = TRUE)} 

if (!dir.exists(plot_folder)) { dir.create(plot_folder) } 

if (!dir.exists(qc_folder)) { dir.create(qc_folder) } 

if (!dir.exists(lfc_folder)) { dir.create(lfc_folder) } 

4. Name screens.—Lastly, Orthrus requires the user to associate technical replicate 

read counts with screen names, so that downstream functions operate on the screen level 

rather than the replicate level. To do this, build up a list of screen objects either manually 

with the add_screen function, described in option (A), or automatically from a sample file 

mapping screen names to replicate columns with the add_screens_from_table function, 

described in option (B).

(A) Build up a list of screen objects manually

i. The add_screen function requires the user to give each screen a name, such 

as HAP1_T12, and a list of column names corresponding to technical replicates 

for that screen. To apply this function, list names for T0 screens, which have no 
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technical replicates, and call parameters by their name. For subsequent calls to 

add_screen, pass previous results in as the first argument to build up the list of 

screens, as follows:

screens <- add_screen(name = “HAP1_T0”, replicates = “HAP1.T0”) screens <- 

add_screen(screens, “RPE1_T0”, “RPE1.T0”) 

ii. To normalize the rest of the screens to their respective T0 screens to get log 

fold-changes (LFCs), add the name of the screen to normalize against in the final 

parameter of the add_screen function (the normalize_name parameter) as 

follows. All screens from later timepoints have three technical replicates, A, B, 

and C, which are separately normalized to T0s and are automatically averaged 

farther downstream in the pipeline.

screens <- add_screen(screens, “HAP1_T12”, c(“HAP1.T12A”,

      “HAP1.T12B”, “HAP1.T12C”), “HAP1_T0”)

screens <- add_screen(screens, “HAP1_T18”, c(“HAP1.T18A”, 

      “HAP1.T18B”, “HAP1.T18C”), “HAP1_T0”) 

screens <- add_screen(screens, “Torin_T12”, c(“HAP1.Torin.T12A”, 

      “HAP1.Torin.T12B”, “HAP1.Torin.T12C”), “HAP1_T0”) 

screens <- add_screen(screens, “Torin_T18”, c(“HAP1.Torin.T18A”, 

      “HAP1.Torin.T18B”, “HAP1.Torin.T18C”), “HAP1_T0”) 

screens <- add_screen(screens, “RPE1_T18”, c(“RPE1.T18A”, 

      “RPE1.T18B”, “RPE1.T18C”), “RPE1_T0”) 

screens <- add_screen(screens, “RPE1_T24”, c(“RPE1.T24A”,

      “RPE1.T24B”, “RPE1.T24C”), “RPE1_T0”) 

(B) Build up a list of screen objects manually

i. Use the add_screens_from_table function as follows. This function requires 

the user to specify either a dataframe or the path to a tab-separated file mapping 

screen names to technical replicate names, in addition to another screen to which 

the given screen should be normalized during LFC computation in Step 7. This 

sample table is bundled with Orthrus’ download and is described in Table 3, 

which must include the column names Screen, Replicates and NormalizeTo. To 

disable LFC computation for specific screens, such as T0 screens, specify NA for 

those screens in the NormalizeTo column.

sample_table <- chymera_sample_table 

screens <- add_screens_from_table(sample_table) 

Processing.

Timing: 5–30 min.
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5. Make read count QC plots.—After associating technical replicate read counts to 

screen names, make QC plots for pre-normalization read count data. This allows users to 

investigate potential issues with their screening data, such as low sequencing depth for 

certain screens or unexpected skew in read count distributions. One function makes all of 

these QC plots for all screens, which are automatically saved to the qc subfolder created 

earlier as either png or pdf files, as follows:

plot_reads_qc(df, screens, qc_folder, display_numbers = FALSE, plot_type = 

“pdf”) 

A summary of all plots made by the plot_reads_qc function is contained in Table 5.

? Troubleshooting

6. Examine read count QC plots.—Closely examine of all output QC plots to reveal 

screening issues that need to be manually addressed by the user. For example, certain 

screens may be heavily skewed towards guides with unexpectedly high or low read counts. 

Additionally, for typical experiments the user should expect T0 read counts to cluster 

separately from later timepoint replicates in the log-normalized read count heatmap of 

Pearson correlations between screens. T0 replicates that do not cluster separately could 

implicate overarching screen quality issues.

PAUSEPOINT:  A manual examination of all read count-based QC plots and metrics should 

be performed before proceeding.

7. Normalize read counts and compute LFCs.—Normalize read counts based on 

sequencing depth and compute guide LFCs with the normalize_screens function, as 

follows. All screens passed into the function will be log2-scaled and depth-normalized, 

including T0 screens. LFC values will additionally be computed for all screens with 

associated normalized_name parameters. In this procedure, LFCs for the RPE1_T18 and 

RPE_T24 screens will be computed relative to the RPE_T0 screen, and similarly for 

HAP1_T12, HAP1_T18, Torin_T12 and Torin_T18 to the HAP1_T0 screen.

While the normalize_screens function normalizes against early-timepoint screens with 

multiple replicates by computing the mean log2-scaled reads across early-timepoint 

replicates before LFC computation, because neither dataset analyzed in this protocol 

includes replicates for early-timepoint screens, this behavior is not demonstrated. 

Additionally, while it is recommended to normalize chemogenetic screens against early-

timepoint screens to compute LFCs before comparing drug treatment screens to control 

screens, Orthrus’ downstream scoring functions are applicable to log2-normalized reads as 

well as LFCs.

In addition to guide normalization and LFC computation, the normalize_screens 

function also automatically removes guides that are over or under-expressed at earlier 

timepoints. For this procedure, to remove guides with less than 30 read counts in any 
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T0 screen, pass a list of both T0 screens into the filter_names parameter and set the 

min_reads parameter to 30. Note that this value or more conservative values such as 40–

60 are recommended for most screens, regardless of library size. Both coverage and the 

standard deviation of gRNA abundance for early-timepoint or plasmid pool data, however, 

can be taken into account when setting this parameter. Because this relationship can be 

complex, please refer to Imkeller et al. (2020)21. No guides in this library are over-expressed 

(defined by the default value of 10,000 reads for the max_reads parameter), so although 

over-expressed guides are also automatically filtered out this will not affect the data.

df <- normalize_screens(df, screens, filter_names = c(“HAP1_T0”, “RPE1_T0”), 

min_reads = 30, max_reads = 10000) 

? Troubleshooting

8. Make LFC QC plots.—While read count QC plots allow for birds-eye views of 

screening data, LFC-based QC reveals specific quality information on individual guides 

and also outputs important quantitative QC metrics. To generate LFC-based QC plots and 

metrics for all screens, call the plot_lfc_qc function, as follows:

plot_lfc_qc(df, screens, qc_folder, display_numbers = FALSE, plot_type = 

“png”, negative_controls = c(“NT”)) 

A summary of all plots made by the plot_lfc_qc function is contained in Table 5.

9. Examine LFC QC plots.—Like for read count QC plots, closely examine all output 

QC plots to reveal important screen quality issues. Replicate comparison plots can reveal 

specific guides that are unexpectedly over or under-represented, or which appear to be 

outliers for a specific technical replicate but not others. Points are colored by whether or 

not both gRNAs for each dgRNA target either a non-essential gene as defined by Hart et 

al. (2014) or a gene in the list specified by the user in the negative_controls parameter22. 

More generally, they also show technical replicates that do not appear to correlate with each 

other or are skewed in problematic ways. Quantitative information on replicate Pearson and 

Spearman correlations is also contained in the output file “replicate_cor.tsv.”

Because most libraries are designed with sets of positive and negative control essential 

genes, Orthrus reports the area under ROC curves for essential-gene dropout for all technical 

replicates. Specifically, essential genes are defined by the CEG2 core essential gene set and 

nonessential genes are defined by Hart et al. 201422. Gene effects for essential genes are 

computed based on the dropout of guides that target essential genes twice, two different 

essential genes, or an essential gene and an intergenic region, and similarly for non-essential 

genes. The area under ROC curves for essential genes compared to both nonessential genes 

as well as all other genes is reported in the output file “essential_PR_QC.tsv.” While 

for most negative selection whole-genome screens one would expect AUC values > 0.9, 

for specialized guide libraries in which one expects many other strong negative fitness 
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effects outside of essential gene pairs this AUC value may be substantially lower. Moreover, 

because AUC values for comparisons against reference nonessential genes are typically 

higher than AUC values for comparisons against all genes not in the essential set, the latter 

AUC value tends to be more predictive of screen quality issues.

PAUSEPOINT:  A manual examination of all read LFC-based QC plots and metrics should 

be performed before proceeding.

? Troubleshooting

10. Parse gene pairs by type.—To support Orthrus’ two different scoring modes, split 

the guide dataframe into different types of guides based on orientations defined by gene 

symbol columns named gene1 and gene2 with the split_guides function, as follows. The 

relationship between gene symbols and orientation, as well as their required formatting, is 

explained in the “Input Format” section of the Introduction. If guides are mapped to unique 

identifiers such as guide sequences, additionally pass in column names for those identifiers 

such that the column name passed in first corresponds to the gene1 column and the column 

name passed in second corresponds to the gene2 column. This enables loess-correction with 

moderated t-testing, the default scoring modes supported by Orthrus, in Steps 11 and 15. If 

unspecified, the user must default to Wilcoxon rank-sum testing, which is not recommended 

for most experimental designs.

guides <- split_guides(df, screens, “Cas9.Guide”, “Cpf1.Guide”) 

dual <- guides[[“dual”]] 

single <- guides[[“single”]] 

paralogs <- guides[[“combn”]] 

The output of this process is three separate lists, where each element contains all guides 

targeting a single gene pair. Dual-targeting guides are contained in the dual list, single-

targeting guides are contained in the single list, and combinatorial-targeting guides are 

contained in the paralogs list.

Dual-targeted scoring.

Timing: 5–10 min.

11. Score guides targeting the same gene twice.—Currently, the Orthrus package 

supports scoring dual-targeting guides by comparing one or more condition screens 

against a single control screen. This is performed via moderated t-testing for each gene 

pair, condition, and orientation against corresponding guides in the control screen. As 

in Aregger et al.11, guide-level residuals are corrected with loess-normalization before 

performing hypothesis testing to account for skewed and non-normal distributions. Scoring 

guides in this way results in both an effect size measure, based on the mean of loess-

normalized residuals between condition and control LFCs, as well as a measure of statistical 

significance (a p-value from moderated t-testing on these residuals).
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One function, score_conditions_vs_control, performs comparisons for all gene pairs 

using the dual list of guides defined above. Score the provided dataset for Torin1-specific 

effects in HAP1 cells by comparing Torin1 effects at each timepoint against untreated HAP1 

effects using the following code, specifying moderated t-testing (instead of Wilcoxon rank-

sum testing, which is supported but not recommended due to its reduced statistical power) 

and loess normalization. Additionally, pass in “NT” to the filter_genes parameter to 

ignore non-targeting control genes during scoring. This parameter may contain any number 

of genes stored in a character vector, but for the CHyMErA library only “NT” needs to be 

specified.

temp <- score_conditions_vs_control(dual, screens, “HAP1_T12”,

       “Torin_T12”, test = “moderated-t”, loess = TRUE, 

       min_guides = 3, filter_genes = c(“NT”)) 

dual_scores1 <- temp[[“scored_data”]] 

residuals1 <- temp[[“residuals”]] 

temp <- score_conditions_vs_control(dual, screens, “HAP1_T18”,

        “Torin_T18”, test = “moderated-t”, loess = TRUE, 

        min_guides = 3, filter_genes = c(“NT”)) 

dual_scores2 <- temp[[“scored_data”]] 

residuals2 <- temp[[“residuals”]] 

The above code returns a list of two dataframes. The first dataframe in the list, named 

scored_data, contains effect size and FDR values for all gene pairs comparing Torin 

effects to WT Hap1 effects at either T12 or T18, as well as many additional columns 

described in Table 6. It is important to note that NA values in this dataframe represent genes 

that have too few guides remaining post-filtering based on T0 read counts and specified filter 

genes, for a default threshold of 3 guides per gene pair. The second dataframe in the list, 

residuals, contains guide-level residual values for detailed examination of a given gene 

pair’s results, and is used for residual plotting functions in Step 13.

? Troubleshooting

12. Call significant effects for dual-targeting guides.—After scoring data, for a 

typical experiment the user would like to reduce a large list of significant hits down to a 

ranked list of high-priority hits. Prioritize hits using the function call_condition_hits. 

Call this function with a given FDR threshold and differential effect threshold to call 

significant positive or negative hits as follows.

Hits are called based on two criteria. Gene pairs with a) an FDR less than the given FDR 

threshold and b) an absolute value of their loess-normalized residuals that is greater than the 

given differential effect threshold will be called as significant positive or negative hits. When 

calling this function, the user may also choose to rename positive and negative hits.

dual_scores1 <- call_condition_hits(dual_scores1, “HAP1_T12”,
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       “Torin_T12”, neg_type = “Sensitizer”, pos_type =

       “Suppressor”, fdr_threshold = 0.1, differential_threshold =

       0.5) 

dual_scores2 <- call_condition_hits(dual_scores2, “HAP1_T18”, 

       “Torin_T18”, neg_type = “Sensitizer”, pos_type =

       “Suppressor”, fdr_threshold = 0.1, differential_threshold =

       0.5) 

write.table(dual_scores1, file.path(output_folder,

       “dual_targeting_gene_calls_t12.tsv”), sep = “\t”, 

       row.names = FALSE, col.names = TRUE, quote = FALSE) 

write.table(dual_scores2, file.path(output_folder, 

       “dual_targeting_gene_calls_t18.tsv”), sep = “\t”, 

       row.names = FALSE, col.names = TRUE, quote = FALSE) 

With scoring complete, write the data to file as shown above.

13. Plot residual effects (optional).—After scoring data, users might like 

to see all guide-level LFC values for significant hits to visually confirm that 

certain genes possess consistent effects across most guides. Use the function 

plot_condition_residuals as follows to automatically generate these plots for all hits 

called with call_condition_hits, and output them in a sorted order to the given folder. 

Make LFC plots for Torin-specific significant hits for T12 and T18.

plot_condition_residuals(dual_scores1, residuals1, “HAP1_T12”, “Torin_T12”, 

file.path(lfc_folder, “dual_lfc_t12”), 

neg_type 

= “Sensitizer”, pos_type = “Suppressor”, plot_type = “png”) 

plot_condition_residuals(dual_scores2, residuals2, “HAP1_T18”, “Torin_T18”, 

file.path(lfc_folder, “dual_lfc_t18”), 

neg_type 

      = “Sensitizer”, pos_type = “Suppressor”, plot_type = “png”) 

For this data, the plot “neg_1_HECTD1_None.png” refers to the top negative hit in terms 

of differential effect (marked by “neg_1” in the filename) for Torin T18 against WT Hap1. 

Similarly, the file “pos_2_EED_None.png” refers to the second-highest ranked positive hit 

in terms of differential effect.

14. Plot condition response.—Finally, generate plots for each condition against the 

control screen with plot_condition_response, as follows. This outputs two plots, 

a scatterplot and a volcano plot, to a given folder. The volcano plot displays either -log10(p-

value) or -log2(FDR) on the y-axis based on whether “pval” or “FDR” is passed to the 

parameter volcano_type, respectively. These volcano plots may be helpful to determine 

effect size and fdr thresholds for specific datasets. As for generating residual plots, ensure 

that the chosen names for negative and positive effects are passed into the function.
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plot_condition_response(dual_scores1, “HAP1_T12”, “Torin_T12”,

      plot_folder, neg_type = “Sensitizer”, pos_type =

      “Suppressor”, volcano_type = “FDR”, plot_type = “pdf”)

plot_condition_response(dual_scores2, “HAP1_T18”,

      “Torin_T18”, plot_folder, neg_type =

      “Sensitizer”, pos_type = 

      “Suppressor”, volcano_type = “FDR”, plot_type = “pdf”) 

PAUSEPOINT:  A manual examination of all dual-targeting scoring output should be 

performed before proceeding.

Combinatorial scoring.

Timing: 5–10 min.

15. Score guides targeting multiple genes.—Orthrus also supports scoring guides 

that target multiple genes, such as paralog pairs, by comparing the effect of double-

knockouts against an expected model derived from single-knockout effects. In detail, all 

guides that target gene A with Cas9 and gene B with Cas12a comprise the observed 

model for one orientation. All multiplicative combinations (additive in log-space) of single-

targeting guides that target gene A with Cas9, target gene B with Cas12a, and match 

guide sequences with the observed model comprise the expected model for the same 

orientation (Fig. 3). Like for dual-targeted scoring, the residuals between the observed and 

expected models are computed for each orientation and loess-normalized before performing 

moderated t-testing for each gene pair and condition.

One function, score_combn_vs_single, scores combinatorial-targeting guides for any 

number of conditions by passing in the “dual” list of guides defined above. Call this function 

and score the provided dataset for combinatorial-targeting genetic interactions for the HAP1 

T12 and the RPE1 T24 screens as follows. As for dual-targeted scoring, additionally pass in 

“NT” to the filter_genes parameter to ignore non-targeting control genes during scoring. 

Write scores to file afterwards.

screens_to_score <- c(“HAP1_T12”, “HAP1_T18”, “RPE1_T18”,

      “RPE1_T24”, “Torin_T12”, “Torin_T18”) 

temp <- score_combn_vs_single(paralogs, single, screens,

      screens_to_score, test = “moderated-t”, 

      return_residuals = TRUE, filter_genes = c(“NT”)) 

paralog_scores <- temp[[“scored_data”]] 

paralog_residuals <- temp[[“residuals”]] 

paralog_scores <- call_combn_hits(paralog_scores,

      screens_to_score, neg_type = “Negative GI”, pos_type =

      “Positive GI”, fdr_threshold = 0.2, differential_threshold

=
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      0.5) 

write.table(paralog_scores, file.path(output_folder,

      “paralog_gene_calls.tsv”), sep = “\t”, row.names = FALSE,

      col.names = TRUE, quote = FALSE) 

Like for score_conditions_vs_control, the above code returns a list of two 

dataframes. The first dataframe in the list, named scored_data, contains FDR values for 

all gene pairs comparing observed double-knockout effects to single-knockout effects as 

described in Procedure 2 Steps 11–12 for all six screens. It also contains many additional 

columns for each screen, listed in Table 7, and like for score_conditions_vs_control 

NA values in this dataframe represent genes that have too few guides remaining post-

filtering based on T0 read counts. This guide threshold is also controlled by the 

min_guides parameter. The second dataframe in the list, residuals, contains guide-

level residual values to enable the detailed examination of a given gene pair’s results. 

For analyzing combinatorial-targeting CHyMErA data, we recommend raising the FDR 

threshold from the default of 0.1 to 0.2 with the fdr_threshold parameter as shown 

above. The specific choice of threshold is flexible, however, and is dependent on the 

expected signal-to-noise ratio in the dataset.

? Troubleshooting

16. Plot combinatorial residual effects (optional).—After scoring data, some users 

would like to see guide-level residual LFC values for significant combinatorial hits. Like 

for dual-targeted scoring, the function plot_combn_residuals automatically generates 

these plots for all hits called with call_combn_hits, and outputs them in sorted order to 

the given folder as described in Step 13. Make LFC plots for HAP1_T12 and RPE1_T24 

significant hits as follows:

residual_folder <- file.path(lfc_folder, “HAP1_T12_combn”) 

plot_combn_residuals(paralog_scores, paralog_residuals, 

      “HAP1_T12”, residual_folder, neg_type = “Negative GI”,

      pos_type = “Positive GI”) 

residual_folder <- file.path(lfc_folder, “RPE1_T24_combn”)

plot_combn_residuals(paralog_scores, paralog_residuals, 

      “RPE1_T24”, residual_folder, neg_type = “Negative GI”,

      pos_type = “Positive GI”) 

17. Plot condition response.—FInally, generate plots for each condition against the 

control screen as well as volcano plots for each screen with plot_combn_response, as 

follows. Ensure that the chosen names for negative and positive effects are passed into the 

function. For plotting effects from the Torin screen, additionally set the color of hits also 

significant in the WT HAP1 screens to gray by specifying the name of the respective control 

screen in the filter_name parameter.
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plot_combn_response(paralog_scores, “HAP1_T12”, loess = TRUE,

      plot_folder, neg_type = “Negative GI”, pos_type =

      “Positive GI”)

plot_combn_response(paralog_scores, “HAP1_T18”, loess = TRUE,

      plot_folder, neg_type = “Negative GI”, pos_type =

      “Positive GI”)

plot_combn_response(paralog_scores, “RPE1_T18”, loess = TRUE,

      plot_folder, neg_type = “Negative GI”, pos_type =

      “Positive GI”)

plot_combn_response(paralog_scores, “RPE1_T24”, loess = TRUE,

      plot_folder, neg_type = “Negative GI”, pos_type =

      “Positive GI”)

plot_combn_response(paralog_scores, “Torin_T12”, loess = TRUE,

      plot_folder, neg_type = “Negative GI”, pos_type =

      “Positive GI”, filter_name = “HAP1_T12”) 

plot_combn_response(paralog_scores, “Torin_T18”, loess = TRUE,

      plot_folder, neg_type = “Negative GI”, pos_type =

      “Positive GI”, filter_name = “HAP1_T18”) 

PAUSEPOINT:  A manual examination of all combinatorial-targeting scoring output should 

be performed before proceeding.

Single-targeting scoring.

Timing: 1–5 min.

18. Score guides targeting the same gene twice.—Orthrus allows users to score 

single-targeting guides, the same guides contained in the “single” list used to construct 

the expected guide set for combinatorial scoring, by treating these as a single orientation 

for the dual-targeting scoring mode. To score single-targeting guides in this way, call 

score_conditions_vs_control with the separate_orientation argument set to 

TRUE, as follows.

This returns a list of two dataframes of scored data, one for each orientation. For this library, 

the first dataframe in the list contains scores for guides where Cas9 targets an exonic region, 

and the second dataframe contains scores where Cas12a targets an exonic region. Due to 

the CHyMErA library design that aimed to target each gene with three Cas9 guides and five 

Cas12a guides, as well as due to guides filtered from their low representation in T0 screens, 

the scored Cas9 single-targeting data contains too few significant hits. Accordingly, analyze 

only the single-targeting Cas12a data.

After scoring single-targeting guides, remove scored genes with too few guides remaining 

after T0 read count filters, and call significant hits with desired FDR and read count 

thresholds as follows:
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single_scores <- score_conditions_vs_control(single, screens, “HAP1_T18”, 

“Torin_T18”, separate_orientation = TRUE) single_scores <- 

single_scores[[2]] [[“scored_data”]] 

to_keep <- !is.na(single_scores$n_HAP1_T18) 

cat(paste(“Removing”, nrow(single_scores) - sum(to_keep), “sparse single-

targeting genes\n”)) 

single_scores <- single_scores[to_keep,] 

single_scores <- call_condition_hits(single_scores, “HAP1_T18”, “Torin_T18”, 

neg_type = “Sensitizer”, pos_type = 

“Suppressor”, fdr_threshold = 0.2, differential_threshold 

= 0.5) write.table(single_scores, file.path(output_folder, 

“single_targeting_gene_calls_t18.tsv”), sep = “\t”, 

row.names = FALSE, col.names = TRUE, quote = FALSE) 

PAUSEPOINT:  A manual examination of all single-targeting scoring output should be 

performed before proceeding.

? Troubleshooting

Batch scoring.

19. Score dual and combinatorial-targeting guides in batch (optional).—
Instead of scoring data manually, Orthrus provides the option to score different types of 

guides at the same time using its batch scoring mode. Use the following two function calls. 

This requires the creation of a batch file formatted as described in the Input Format section 

of the Introduction that maps screens to other screens they should be scored against, or 

to “combn” to perform combinatorial scoring. This batch table is bundled with Orthrus’ 

download, and is also shown in Table 4. The expected output of this process is largely 

equivalent to the output of Steps 5–17 above, with key differences including the use of 

standardized FDR and effect size thresholds across both dual-targeted and combinatorial-

targeted scoring and that single-targeting scores are not computed automatically.

batch_table <- chymera_batch_table 

batch_output_folder <- file.path(“orthrus_protocol_batch”)

if (!dir.exists(batch_output_folder)) 

      { dir.create(batch_output_folder) }

score_conditions_batch(dual, screens, batch_table, output_folder, test 

= “moderated-t”, loess = TRUE, filter_genes = c(“NT”), neg_type 

= “Sensitizer”, pos_type = “Suppressor”, fdr_threshold = 0.1, 

differential_threshold = 0.5) 

score_combn_batch(paralogs, single, screens, batch_table, output_folder, 

test = “moderated-t”, loess = TRUE, filter_genes = c(“NT”), 

neg_type = “Sensitizer”, pos_type = “Suppressor”, fdr_threshold = 0.2, 

differential_threshold = 0.5) 

Ward et al. Page 25

Nat Protoc. Author manuscript; available in PMC 2022 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Procedure 3: analyzing dual Cas12a gRNA data with the batch scoring 

interface

Set-up.

Timing: 5–10 min.

1. Install and load required R packages.—As in Procedure 1, before installing 

Orthrus, install all packages it requires from both the CRAN repository and Bioconductor. 

Then load devtools to install Orthrus from the development Github repository, and finally 

load both Orthrus and ggplot2 into the R environment, as follows:

install.packages(“devtools”)

install.packages(“ggplot2”)

install.packages(“ggthemes”)

install.packages(“pheatmap”)

install.packages(“PRROC”)

install.packages(“RColorBrewer”)

install.packages(“stringr”) 

if (!requireNamespace(“BiocManager”, quietly = TRUE))

     install.packages(“BiocManager”) 

BiocManager::install(“limma”)

library(devtools) 

install_github(“csbio/Orthrus”)

library(orthrus) 

library(stringr) 

2. Download and load datasets.—Download and unzip the required datasets for this 

procedure from the Zenodo repository. Ensure that the working directory in R contains a 

subdirectory named “dede_input” with input files that mirror the contents of the Zenodo 

repository. Load the reads file containing three combinatorial screens with two technical 

replicates each performed with a dual-Cas12a system18, in addition to sets of reference 

essential and nonessential gene standards used to process the data and to calculate QC 

metrics.

Download and unzip the zenodo directory from the following link as follows 

and ensure that the folder “dede_input” is a subdirectory of the current 

working directory: https://zenodo.org/record/4527616

input_folder <- file.path(“dede_input”) 

prepped_file <- file.path(input_folder, 

         “prepped_dede_paralog.tsv”) 

df <- read.csv(file.path(input_folder,

         “original_dede_paralog.txt”), sep = “\t”, 
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         header = TRUE, stringsAsFactors = FALSE) 

essentials <- read.csv(file.path(input_folder,

         “control_essentials.csv”), 

         header = TRUE, stringsAsFactors = FALSE) 

nonessentials <- read.csv(file.path(input_folder,

         “control_nonessentials.csv”), 

         header = TRUE, stringsAsFactors = FALSE) 

3. Prep readcount dataset.—Instead of using intergenic-targeting guides like the 

CHyMErA library, this library targets nonessential genes as negative controls. To allow 

Orthrus to recognize this experimental design during scoring, after splitting the dataset’s 

single gene symbol and guide ID columns into two, rename all nonessential-targeting guides 

as “NegControl” in both gene symbol columns, as follows. Because gene symbols in this 

dataset accurately reflect guide orientations, further alterations to the gene symbol columns 

are unnecessary.

# Preps dataset 

essentials <- unlist(essentials) 

nonessentials <- unlist(nonessentials) 

split <- str_split_fixed(df$GENE, “:”, 2) 

df$gene1 <- gsub(“\\..*”, ““, split[,1]) 

df$gene2 <- gsub(“\\..*”, ““, split[,2])

df$gene1[df$gene1 %in% nonessentials] <- “NegControl”

df$gene2[df$gene2 %in% nonessentials] <- “NegControl” 

# Adds guide columns 

split <- str_split_fixed(df$GENE_CLONE, “_”, 4)

df$Guide1 <- split[,2] 

df$Guide2 <- split[,4] 

# Writes to file 

write.table(df, prepped_file, sep = “\t”, row.names = FALSE, col.names = 

TRUE, quote = FALSE) 

4. Score combinatorial-targeting guides.—Orthrus provides two ways to 

automatically score data: a batch scoring mode that first requires the user to process their 

data with Orthrus manually, and a wrapper function that runs the entire Orthrus pipeline 

in a single function call. Use option A to apply the batch scoring mode to the Dede et 

al. dataset, and option B to apply the wrapper function to the Dede et al. dataset. Both 

outputs are equivalent except for the choice of whether or not to loess-normalize residuals: 

option A demonstrates the output of loess-normalization, and option B demonstrates the 

linear fit computed without loess-normalization. For this dataset, loess normalization is not 

recommended as a visual examination of loess-correction on scored data displays overfitting 
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for points with a wide spread in the bottom two quadrants of each scatterplot, implicating 

the presence of both false positives and false negatives (Fig. 4).

(A) Batch scoring mode

i. i) To run batch scoring, process the Dede et al. dataset as described below, 

which corresponds to Steps 4–10 of Procedure 2 (with a few changes as 

explained further below). Afterwards, call the score_combn_batch function to 

automatically score combinatorial-targeting guides in the dataset. This function 

requires that the user first specify either a dataframe or a batch .tsv file that 

maps screen names to their respective controls (for dual-targeted scoring) 

or to a derived null model from single-targeting effects (for combinatorial 

scoring). This batch table is located in the “dede_input” folder of the Zenodo 

repository here. An additional function, score_conditions_batch, scores 

dual-targeting guides automatically and takes the same batch file as input. 

However, because the Dede et al. dataset contains no dual-targeting guides, call 

score_conditions_batch to demonstrate its use but expect no output from it.

Three changes to parameters compared to values shown in Procedure 2 are suggested 

to accurately score combinatorial-targeting guides in this dataset. First, change the list 

of negative controls to include “NegControl.” Second, because the early-timepoint 

readcounts to normalize against for this dataset consist of plasmid pool readcounts with 

relatively high sequencing depth and low dropout, the min_reads parameter described 

in Step 7 of Procedure 1 can be safely tightened to 40 reads instead of the default 

30 reads (this threshold could be further tightened if the user desires). Third, set the 

ignore_orientation parameter to TRUE to enable combinatorial-scoring that aggregates 

guides across both orientations before running moderated t-testing. This reduces the amount 

of t-testing from two tests per gene pair to one test per gene pair, and is advised for this 

dataset because the dual-Cas12a combinatorial system is less likely to be influenced by 

guide orientation than the CHyMErA experimental system. By default, hits from this scoring 

mode are still filtered based on whether or not the signs of their orientation-specific effects 

agree. The results of this step for the A549 screen are shown in Fig 10A.

# Sets important paths 

sample_file <- file.path(input_folder, “dede_sample_table.tsv”)

batch_file <- file.path(input_folder, “dede_batch_table.tsv”)

output_folder <- file.path(“dede_output_batch”) 

qc_folder <- file.path(output_folder, “qc”) 

if (!dir.exists(output_folder)) { dir.create(output_folder) }

if (!dir.exists(qc_folder)) { dir.create(qc_folder) } 

# Processes data 

screens <- add_screens_from_table(sample_file)

plot_reads_qc(df, screens, qc_folder, display_numbers = TRUE, plot_type = 

“png”) 
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df <- normalize_screens(df, screens, filter_names = “T0”, min_reads = 40) 

plot_lfc_qc(df, screens, qc_folder, display_numbers = TRUE, plot_type = 

“png”, negative_controls = c(“NegControl”)) 

guides <- split_guides(df, screens, “Guide1”, “Guide2”) dual <- 

guides[[“dual”]] 

single <- guides[[“single”]] 

combn <- guides[[“combn”]] 

# Scores data with batch scoring functions 

score_conditions_batch(dual, screens, batch_file, output_folder, test = 

“moderated-t”, loess = FALSE) 

score_combn_batch(combn, single, screens, batch_file, output_folder, test 

= “moderated-t”, loess = FALSE, filter_genes = c(“NegControl”), 

neg_type = “Sensitizer”, pos_type = “Suppressor”, fdr_threshold = 0.2, 

differential_threshold = 0.5) 

(B) Using the wrapper function

i. i) To automatically run the entire Orthrus package with the wrapper function, call 

orthrus_wrapper as follows and pass in paths to the properly-formatted reads 

file, the sample file, and the batch file downloaded in Step 2. This automatically 

outputs all plots, metrics, and scored data discussed for the data processing 

and combinatorial-scoring steps of Procedure 2 to a specified output folder. In 

addition, for this step set the loess flag to FALSE to disable the loess-correction 

of residuals. The results for this step are shown in Fig. 10B.

output_folder <- file.path(“dede_output”) 

sample_file <- file.path(input_folder, “dede_sample_table.tsv”)

batch_file <- file.path(input_folder, “dede_batch_table.tsv”)

orthrus_wrapper(prepped_file, sample_file, batch_file,

         output_folder, id_col1 = “Guide1”, id_col2 = “Guide2”,

     filter_names = “T0”, min_reads = 40, 

         display_numbers = TRUE, negative_controls = nonessentials, 

         test = “moderated-t”, loess = FALSE, fdr_method = “BY”,

     fdr_threshold = 0.2, differential_threshold = 0.5, 

         plot_type = “png”, ignore_orientation = TRUE) 

? Troubleshooting 

Troubleshooting

See Table 8.
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Timing

Procedure 1 demonstrates Orthrus’ ability to process data for 92,746 guides across six 

screens. On a Windows machine running R with a single core and 16 GB of memory, the 

procedure run as a script took slightly under 5 minutes of runtime. Because Orthrus can be 

run on different screens sequentially, memory usage is not anticipated to be a bottleneck.

To test Orthrus’ runtime for different numbers of screens, we ran Orthrus on a single 

screen duplicated 5, 10, 20, 50 and 100 times and timed the processing (Procedure 2, Steps 

1–10), dual-targeting guide scoring (Procedure 2, Steps 11–14), and combinatorial scoring 

(Procedure 2, Steps 15–17) stages separately. For the processing stage, all guides were 

processed in the same function calls. However, because guide scoring doesn’t take into 

account information between screens, both guide scoring stages were run as a loop to score 

each screen separately. Timing results are summarized in Table 9.

Anticipated Results

All anticipated results for the protocol, as well as an R script containing the provided code, 

are available at https://zenodo.org/record/4527616.

Procedure 1

The files output by Procedure 1 are as follows. Step 2 outputs four files, two per FASTQ file, 

which contain reads trimmed down to the guide sequences and full reads where anchor 

sequences weren’t found. These are named based on the input .fastq.gz files with the 

format [FILENAME]_preprocessed.fastq and [FILENAME]_failed.fastq, respectively. Step 

3 outputs six files, where two contain unmapped reads, two contain mapped reads, one is 

a.sam file and the last is a log file. If the bowtie command run in this step fails for any 

reason, the log file will note the error. Otherwise, it will log how long bowtie took to run at 

different stages and the numbers of reads processed, reads with alignments, and reads that 

failed to align. Out of 31.5M reads processed, about 18M reads should align and 13M reads 

should fail to align. The unmapped and mapped reads files are intermediate files not required 

by subsequent steps. Step 4 outputs the file “HH-79_counts.txt” which is processed by Step 

5 into the file “rawCounts.txt.” Lastly, Step 6 is optional because the output file is included 

in the Orthrus R package, but is named “procedure1_reads.tsv.”

Procedure 2

Key results for the processing phase are QC plots, which are listed in Table 5. These 

include, among many other plots, a plot of total reads and a heatmap of LFCs across all 

replicates. The total reads for each screen should correspond to expected reads based on 

sequencing depth for each screen, which are plotted as dashed horizontal lines and can be 

set earlier in the pipeline when adding screens (Fig. 5). To interpret the heatmap, for typical 

experimental designs the most important features to examine are whether or not T0 screens 

cluster separately from other screens and whether or not technical replicates cluster within 

their respective screens (Fig. 6). The output AUC values for recovering essential genes 

should hover close to one for whole-genome screens as aforementioned, although for this 
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highly specialized library with few essential genes and many strong expected effects we see 

values between 0.6 and 0.7 (Table 10).

Dual-targeted scoring should output scored Torin-specific GIs in HAP1 cells for two 

timepoints, T12 and T18. These results are plotted in the files “torin_vs_hap1_t12.png” 

and “torin_vs_hap1_t18.png,” and the scored data is contained in the files 

“dual_targeted_gene_calls_t12.tsv” and “dual_targeted_gene_calls_t18.tsv.” These output 

plots should resemble a slightly-skewed fit between data that’s mostly correlated with 

many outliers representing genetic interactions. The null model, indirectly shown by gray, 

non-interacting genes that correlate well across both screens, reflects the loess-normalization 

of residual values performed to account for skewed data or nonlinear trends (Fig. 7).

Residual LFC values across all guides for all significant hits are also output from 

dual-targeted scoring (automatically with batch and wrapper scoring), and they should 

reflect consistent positive and negative effects for well-performing guides (Fig. 7). While 

context affects the definition of positive and negative effects, for chemogenetic screens 

negative effects typically represent sensitizers and positive effects represent suppressors, 

and for genetic interaction screens negative effects typically represent synthetic sick or 

lethal interactions while positive effects represent buffering interactions23. The top-ranked 

negative hit in WT HAP1 screening data at T18, HECTD1 (Fig. 8A), shows three such well-

performing guides with consistent differential effects. On the other hand, the fourth-ranked 

negative hit, INPPL1 (Fig. 8B), shows mostly positive differential effects despite being 

called a negative hit. This is a red flag for the quality of this hit, and closer examination 

reveals that it is called as a result of how the loess-normalized null model poorly fits the 

handful of points with the strongest negative and positive expected effects. This hit should 

be ignored, and the user can consider tightening the effect size threshold to account for this 

during scoring. As another example, the eighth-ranked negative hit TAF5L (Fig. 8C) shows 

another case where 3 of its 4 guides display strong negative phenotypes, but the fourth 

showed little phenotype. This is not a red flag for hit quality, but could be a red flag for the 

guide with the smallest differential effect.

Combinatorial scoring should output scored interactions for roughly ~700 paralog gene pairs 

for all six screens. Similarly, six plots summarizing scored paralog gene pairs that resemble 

dual-targeted scoring plots should be output, one for each screen, with the scored data 

available in the file “paralog_gene_calls.tsv.” Two of these plots, for WT HAP1 T12 and 

WT RPE1 T24 data are shown in Fig. 9. Plots of residual effect values across guides for 

all significant hits for the HAP1 with Torin T18 and untreated HAP1 screens should also 

be output in the subfolders “HAP1_T18_combn” and “Torin_T18_combn” of the qc folder, 

respectively. The top negative and positive hits for WT HAP1 T12 data are shown in Fig. 10.

To examine specific hits for data scored with Orthrus, we recommend the following 

process. First, establish clear statistical significance and effect size thresholds when 

calling significant hits, which may be different for different guide libraries and 

experiments. Second, to look at either negative (e.g. synthetic lethal) or positive 

(e.g. buffering) genetic interactions, subset the scored data to those that are labelled 

as negative or positive hits in the “effect_type_[CONDITION]” column. Third, sort 
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the data by the differential effect column, which for dual-targeting scored data is 

“differential_[CONDITION]_vs_[CONTROL]” and for combinatorial-targeting scored data 

is “differential_combn_vs_single_[CONDITION].”

The output for batch scoring performed in Step 19 mirrors the output for the manual scoring 

performed in Steps 11–17, but contains additional residual LFC plot folders, as Steps 13 and 

16 only generated residual LFC plots for four out of eight screens.

Procedure 3

The anticipated results for Procedure 3 mirror the anticipated results for Procedure 2, 

although dual-targeting plots and scores are not output because the analyzed guide library 

only contains combinatorial-targeting and single-targeting guides. Like for Procedure 2, all 

anticipated results are provided at https://zenodo.org/record/4527616.

A handful of differences between the anticipated output of the two Procedures exist. First, 

the scored data for Procedure 3 is only contained in the file “combn_gene_calls.tsv.” 

Accordingly, the “plots” folder only contains three corresponding scatterplots and three 

volcano plots, one for each screen. Second, because the library contains fewer than 10 

guides that dual-target one non-essential gene or combinatorially-target two non-essential 

genes in the Hart et al. 2014 non-essential standard22, the file “essential_PR_QC.tsv” reports 

NA values for the AUC of recovering essential genes compared to non-essential genes under 

ROC curves. Third, we chose not to apply loess-normalization to score the dataset because 

of the wide spread of points at the left tail at the plot with both strong phenotypes. Loess 

typically overfits points such as these, and for this dataset a visual examination of the A549 

screen shows that the linear fit to residuals compared to loess-correction avoids both likely 

false positives and false negatives (Fig. 10). The scored data shown in the plots folder 

thus represents plots scored against a linear fit with Step 4B as opposed to loess-corrected 

residuals calculated in Step 4A.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The Orthrus scoring workflow. First, combinatorial screening data is processed and depth-

normalized before LFCs between late and early timepoints are computed. During this step, 

QC plots for raw read count data as well as LFC data are output. Second, data is scored, 

either for condition screens against control screens (e.g. for drug-treated screens against 

untreated screens), or for the effects of combinatorial knockouts against expected effects 

derived from single knockouts. Numeric labels, in blue, indicate the corresponding step of 

Procedure 2.
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Figure 2. 
Specific Orthrus functions to call in order for data processing as well as dual-targeting and 

combinatorial-targeting scoring.
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Figure 3. 
Schematic demonstrating how Orthrus accounts for guide orientation during combinatorial 

scoring by scoring guides from different orientations separately. Orientation is represented 

as guides that occupy different positions along a guide construct that targets both gene A 

and gene B. For both orientations, combinatorial knockouts are compared to expected effects 

derived from the sum of matching single knockout LFCs. After hypothesis testing, filters 

for absolute value of effect size, FDR and whether or not both orientations’ effects have the 

same effect sign are applied to call significant hits.
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Figure 4. 
Summary plots of mean LFC, colored by significant effects, for all n = 403 gene pairs 

with combinatorial- and single-targeting guides for the Dede et al. A549 screen analyzed 

in Procedure 3. Gene-level GIs are shown as colored points that significantly deviate from 

the computed null model. Blue points are negative GIs with mean residual effects < −0.5 

and Benjamini and Yekutieli FDRs < 0.2, while yellow points are positive GIs with mean 

residual effects > 0.5 and Benjamini and Yekutieli FDRs < 0.2. (a) shows scores with 

loess-normalization enabled for 8 positive GIs and 21 negative GIs, and (b) shows scores 
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with loess-normalization disabled for 4 positive GIs and 78 negative GIs. For this dataset, 

we conclude that loess-normalization is not recommended due to potential false positives 

and negatives introduced in the bottom two quadrants of (a).
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Figure 5. 
Total read counts for all technical replicates in the example CHyMErA dataset(n = 20), 

output in Procedure 2 step 5.
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Figure 6. 
Heatmap of Pearson correlations between LFCs for all technical replicates in the example 

CHyMErA dataset (n = 20), output in Procedure 2 Step 8. Well-correlated screens cluster 

together depending on the main sources of variation in the dataset. Here, RPE1 screens 

cluster separately from the HAP1 screens, which are further clustered into WT HAP1 

screens and HAP1 + Torin1 screens.
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Figure 7. 
Summary plots of mean LFC, colored by significant effects, for WT HAP1 and HAP1 + 

Torin1 screening data for all n = 3,870 gene pairs with dual-targeting guides analyzed in 

Procedure 2, Steps 11–14. Gene-level drug-gene interactions, where sensitizer interactions 

indicate that the gene’s knockout confers increased sensitivity to Torin-1 and suppressor 

interactions indicate that the knockout bypasses potentially deleterious effects of Torin-1 

on cell fitness, are shown as colored points that significantly deviate from the computed 

null model. Blue points are sensitizing interactions with mean residual effects < −0.5 

and Benjamini and Yekutieli FDRs < 0.1, while yellow points are suppressor interactions 

with mean residual effects > 0.5 and Benjamini and Yekutieli FDRs < 0.1. (a) and (b) 
show scores for T12 data in a scatter plot and a volcano plot, respectively, for 182 

suppressor interactions and 93 sensitizer interactions. (c) and (d) show scores for T18 data 

in a scatter plot and a volcano plot, respectively, for 114 suppressor interactions and 47 

sensitizer interactions. These plots allow users to contextualize effect size, effect strength, 

and statistical significance for both WT HAP1 data at T12 and WT RPE1 data at T24.
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Figure 8. 
Differential LFC for WT HAP1 guides from the ChyMErA dataset analyzed in Procedure 

2 comprising three significant hits of the scored dual-targeting guides at T18. Genes were 

scored based on deviations from a loess-corrected null model, so the agreement of individual 

guides of interesting hits should be examined to qualitatively confirm hit quality. (a) is the 

top-ranked negative hit, HECTD1, with strong agreement for all three guides. (b) is the 

fourth-ranked negative hit, INPPL1, whose guides indicate a lower hit quality due to three 
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out of five guides possessing positive residual LFCs. (c) is the eighth-ranked negative hit 

TAF5L, with strong agreement for three guides and no phenotype for the fourth.
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Figure 9. 
Summary plots of mean LFC, colored by significant effects, for all n = 313 CHyMErA gene 

pairs with combinatorial- and single-targeting guides analyzed in Procedure 2, Steps 15–17. 

Gene-level GIs are shown as colored points that significantly deviate from the computed 

null model. Blue points are negative GIs with mean residual effects < −0.5 and Benjamini 

and Yekutieli FDRs < 0.2, while yellow points are positive GIs with mean residual effects 

> 0.5 and Benjamini and Yekutieli FDRs < 0.2. (a) and (b) show scores for WT HAP1 data 

at T12 in a scatter plot and a volcano plot, respectively, for 5 positive GIs and 11 negative 

GIs. (c) and (d) show scores for WT RPE1 data at T24 in a scatter plot and a volcano plot, 

respectively, for 6 positive GIs and 6 negative GIs. These plots allow users to contextualize 

effect size, effect strength, and statistical significance for both WT HAP1 data at T12 and 

WT RPE1 data at T24.
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Figure 10. 
Differential LFC for WT HAP1 guides comprising two significant hits of the scored 

combinatorial-targeting guides at T12 from the ChyMErA dataset analyzed in Procedure 

2, Steps 15–17. Genes were scored based on deviations from a loess-corrected null model, 

so the agreement of individual guides of interesting hits should be examined to qualitatively 

confirm hit quality. (a) is the top-ranked negative hit, COQ10A and COQ10B, whose guides 

in both orientations strongly agree. (b) is the top-ranked positive hit, ITCH and WWP2, 

with agreement for five out of seven guides for orientation 1 and agreement for five out of 
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eight guides for orientation 2 The remaining guides show weak phenotypes, indicating poor 

performance for those guides and good agreement for all other guides.
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Table 1.

Select parameters of Orthrus’ normalization and scoring functions with their associated algorithm (when 

applicable) and a description of their typical use case.

Parameter Algorithm Description Typical use case

scaling_factor scaling factor for LFC 
computation

Scales raw read counts to a default value of 1e6 that forces 
each screen to the chosen read depth, ensuring comparability 
across technical replicates. The specific choice of scaling_factor 
is largely irrelevant

All screens

pseudocount pseudocount for LFC 
computation

Adds a pseudocount to each raw read count, by default 
1, as required to take log2-normalized read counts. Smaller 
pseudocounts, e.g. between 1 and 5, are advised to avoid de-
prioritizing moderate effects

All screens

test “moderated-t” - 
moderated t-testing

Computes p-values via Empirical Bayes estimate across all 
residuals fit with separate linear models for each gene pair. Calls 
limma’s eBayes function on its lmFit function applied to residuals 
with default parameters for both24

Most screens

test “rank-sum” - Wilcoxon 
rank-sum testing

Computes p-values via Wilcoxon rank-sum testing between effect 
and control LFCs

Combinatorial 
screens with unpaired 
controls

loess “TRUE” - Loess 
normalization with MA 
transformation

Normalizes by fitting a loess curve with degree 2 and a span 
of 0.4 to MA-transformed residuals. The MA transformation was 
originally developed for the analysis of microarray data25. Here, 
loess fits a trend for the measured residual value ([double mutant - 
null model] or [condition - control]) vs. the sum of the two values 
used in computing this residual (eg. [double mutant + null model] 
or [condition + control]).

Most screens

fdr_method “BY” - Benjamini-
Yekutieli FDR correction

Adjusts p-values with Benjamini-Yekutieli FDR correction Most screens

fdr_method “BH” - Benjamini-
Hochberg FDR 
correction

Adjusts p-values with Benjamini-Hochberg FDR correction Low-signal screens

fdr_method “bonferroni” - bonferroni 
FDR correction

Adjusts p-values with Bonferroni multiple hypothesis correction High-signal screens

filter_genes N/A Genes to filter out from scoring process Remove technical 
controls or flagged 
genes

ignore_orientation N/A If TRUE, groups guides from both orientations for each gene pair 
together to reduce the amount of hypothesis testing by half

Cas12a-Cas12a or 
low-signal screens
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Table 2.

Example of a properly-formatted reads file for mock data of one gene pair. Lines 1 and 2 represent 

combinatorial-targeting guides knocking out both ARID1A and ARID1B simultaneously, lines 3–6 represent 

single-targeting guides knocking out either ARID1A (lines 3–4) or ARID1B (lines 5–6) paired with a negative 

control guide in both orientations, and lines 7–8 represent dual-targeting guides cutting either ARID1A (line 

7) or ARID1B (line 8) twice. Guide sequences and read counts are mock data for illustrative purposes.

gene1 gene2 Cas9 guide Cas12a guide T0 reads T18 reads

ARID1A ARID1B AATG TTGC 45 0

ARID1B ARID1A CGAC TATT 54 1

ARID1A NegControl AATG CGCT 70 60

NegControl ARID1A GGTA TATT 82 75

ARID1B NegControl CGAC CGCT 61 87

NegControl ARID1B GGTA TTGC 76 92

ARID1A None AATG TATT 91 42

ARID1B None CGAC TTGC 63 53
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Table 3.

Sample table used in Procedure 2, Step 4B. Each row corresponds to a single screen, with the Replicates 

column containing the names of its technical replicates separated by semicolons and the NormalizeTo column 

containing the name of a screen to normalize against (e.g. a T0 screen).

Screen Replicates NormalizeTo

HAP1_T0 HAP1.T0 NA

RPE1_T0 RPE1.T0 NA

HAP1_T12 HAP1.T12A;HAP1.T12B;HAP1.T12C HAP1_T0

HAP1_T18 HAP1.T18A;HAP1.T18B;HAP1.T18C HAP1_T0

Torin_T12 HAP1.Torin.T12A;HAP1.Torin.T12B;HAP1.Torin.T12C HAP1_T0

Torin_T18 HAP1.Torin.T18A;HAP1.Torin.T18B;HAP1.Torin.T18C HAP1_T0

RPE1_T18 RPE1.T18A;RPE1.T18B;RPE1.T18C RPE1_T0

RPE1_T24 RPE1.T24A;RPE1.T24B;RPE1.T24C RPE1_T0
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Table 4.

Batch table used in Procedure 2, Step 19. Each row corresponds to a single screen, with the Screen column 

containing the names of screens defined in the sample table and the Control column containing either the 

names of screens to score against for the dual-targeted scoring mode or “combn” to score them with the 

combinatorial-targeting mode.

Screen Control

Torin_T12 HAP1_T12

Torin_T18 HAP1_T18

HAP1_T12 combn

HAP1_T18 combn

RPE1_T18 combn

RPE1_T24 combn

Torin_T12 combn

Torin_T18 combn
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Table 5.

Files output by QC functions and their descriptions in Procedure 2, Steps 5 and 8 and Procedure 3, Step 4.

QC function Output file names Description

plot_reads_qc [SCREEN]_raw_reads_histogram Histograms of log-scaled read counts

plot_reads_qc total_reads Total read counts for all screens with hypothetical coverage 
appended

plot_reads_qc reads_heatmap Pearson correlation between log-scaled readcounts

plot_lfc_qc [REPLICATE1]_vs_[REPLICATE2]_replicate_comparison Scatterplot of LFCs between all replicates

plot_lfc_qc replicate_pcc Tab-delimited file of correlations for all replicates
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Table 6.

Columns contained in scored data output from the dual-targeting scoring mode in Procedure 2, Steps 11 and 

12 and Procedure 3, Step 4. SCREEN placeholders represent the names of all scored condition and control 

screens, whereas CONDITION and CONTROL placeholders represent the names of condition and control 

screens, respectively.

Scored data column Description

gene1 Gene symbol targeted by the first guide

gene2 Gene symbol targeted by the second guide

n_[SCREEN] Number of guides post-filtering for the screen

mean_[SCREEN] Mean LFC across all guides

variance_[SCREEN] Variance for all guides

differential_[CONDITION]_vs_[CONTROL] Loess-adjusted (if specified) differential between mean condition and control LFCs

pval_[CONDITION]_vs_[CONTROL] P-value between loess-adjusted residuals for condition and control

fdr_[CONDITION]_vs_[CONTROL] FDR-adjusted p-value

significant_[CONDITION]_vs_[CONTROL] Significance calls returned from call_significant_response

effect_type_[CONDITION]_vs_[CONTROL] Effect type calls returned from call_significant_response
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Table 7.

Columns contained in scored data output from the combinatorial-targeting scoring mode obtained in Procedure 

2, Steps 15 and 19, and Procedure 3, Step 4. SCREEN placeholders represent the names of all scored screens.

Scored data column Description

gene1 Gene symbol targeted by the first guide

gene2 Gene symbol targeted by the second guide

n_combn_[SCREEN] Number of combinatorial-targeting guides post-filtering for the screen

n_single_[SCREEN] Number of single-targeting guides post-filtering for the screen

mean_combn_[SCREEN] Mean LFC across all combinatorial-targeting guides and both orientations

mean_single_[SCREEN] Mean LFC across all combinations of single-targeting LFC sums that match combinatorial-
targeting guide IDs, for both orientations

var_combn_[SCREEN] Variance for all combinatorial-targeting guides across both orientations

var_single_[SCREEN] Variance for all combinations of single-targeting LFC sums across both orientations

orientation_agree_[SCREEN] True if both orientations’ differential effects have the same sign, false otherwise.

differential_combn_vs_single_[SCREEN] Loess-adjusted (if specified) differential between mean combn and single LFCs

pval1_combn_vs_single_[SCREEN] P-value between loess-adjusted residuals for the first orientation of combn and single LFCs

pval2_combn_vs_single_[SCREEN] P-value between loess-adjusted residuals for the second orientation of combn and single LFCs

fdr1_combn_vs_single_[SCREEN] FDR-adjusted p-value for the first orientation

fdr2_combn_vs_single_[SCREEN] FDR-adjusted p-value for the second orientation

significant_[SCREEN] Significance calls returned from call_significant_response_combn

effect_type_[SCREEN] Effect type calls returned from call_significant_response_combn
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Table 8.
Troubleshooting Table.

Common screen quality issues reflected by Orthrus’ output as well as common issues encountered by users.

Procedure - Step Problem Possible reasons Solutions

2–7, 3–4 Many guides with too few reads in 
early-timepoint screens are filtered 
out

Various experimental issues 
early on in the screen, such as 
with
T0 samples

Orthrus’ scoring accounts for this, 
but users may consider applying the 
“ignore_orientation” flag during scoring

2–9, 3–4 Technical replicates correlate 
poorly with each other

Mislabelling in the sample file 
or any number of experimental 
issues

Fix technical replicate labels in the sample 
file, consider filtering early-timepoint 
guides more stringently, or redo the 
problematic screen

2–9, 3–4 Guides appear to drop out 
stochastically between replicates in 
QC scatterplots

Dosage for a drug screen was too 
high

Remove guides that completely drop out 
in any late-timepoint replicate, or redo the 
problematic screen

2–5, 3–4 The function plot_reads_qc 
returns the error “Error 
in check_screen_para ms(df, 
screens) : replicate [REPLICATE] 
not in df, remove 
screen [REPLICATE] with 
remove_screens”

Replicate name set in 
add_screen function does not 
exist in input dataframe

Remove screen containing the offending 
replicate from the screen list with the 
function remove_screen and readd with 
correct replicate names

2–11, 2–15, 2–18, 
3–4

Many rows in scored data contain 
NA values

Guide filtering based on early-
timepoint readcounts removed 
too many guides to score gene 
pairs with NA values (gene 
pairs with fewer guides than the 
min_guides parameter are not 
scored)

Consider relaxing guide filtering threshold, 
lowering the min_guides parameter, or 
investigating issues in early-timepoint 
screens

2–11, 2–15, 2–18, 
3–4

Scoring takes much longer than 
expected given the number of 
screens

Control gene pairs with many 
guides are
not filtered out

Add controls such as “NT” guides to the 
filter_genes scoring parameter in a vector
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Table 9.

Time taken during different steps of the pipeline for processing increasing numbers of screens. Values 

obtained using the script test_at_scale.R, which implements Procedure 2 in a loop and is available in the 

Zenodo repository here.

Screens Processing time (min) Dual-targeted scoring time (min) Combinatorial scoring time (min)

1 1.66 1.14 0.40

5 3.86 6.57 2.10

10 5.60 10.28 3.28

20 8.99 19.43 5.71

50 20.11 48.42 14.76
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Table 10.

Evaluation of recovery of essential gene LFC values for all technical replicates compared to all other 
genes (reported as AUC values, area under the receiver operating characteristic curve values) from the 

ChyMErA dataset analyzed in Procedure 2, Step 8.

Technical replicate Essential gene recovery AUC

HAP1 T0 0.51

RPE1 T0 0.51

HAP1 T12A 0.70

HAP1 T12B 0.70

HAP1 T12C 0.71

HAP1 T18A 0.69

HAP1 T18B 0.70

HAP1 T18C 0.70

HAP1 + Torin1 T12A 0.68

HAP1 + Torin1 T12B 0.68

HAP1 + Torin1 T12C 0.68

HAP1 + Torin1 T18A 0.67

HAP1 + Torin1 T18B 0.67

HAP1 + Torin1 T18C 0.67

RPE1 T18A 0.60

RPE1 T18B 0.60

RPE1 T18C 0.61

RPE1 T24A 0.61

RPE1 T24B 0.61

RPE1 T24C 0.61
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