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Abstract

We propose a practical principal component analysis (PCA) framework that provides a

nonparametric means of simultaneously reducing the dimensions of and modeling functional

and vector (multivariate) data. We first introduce a Hilbert space that combines functional and

vector objects as a single hybrid object. The framework, termed a PCA of hybrid functional and

vector data (HFV-PCA), is then based on the eigen-decomposition of a covariance operator that

captures simultaneous variations of functional and vector data in the new space. This approach

leads to interpretable principal components that have the same structure as each observation

and a single set of scores that serves well as a low-dimensional proxy for hybrid functional

and vector data. To support practical application of HFV-PCA, the explicit relationship between

the hybrid PC decomposition and the functional and vector PC decompositions is established,

leading to a simple and robust estimation scheme where components of HFV-PCA are calculated

using the components estimated from the existing functional and classical PCA methods. This

estimation strategy allows flexible incorporation of sparse and irregular functional data as well as

multivariate functional data. We derive the consistency results and asymptotic convergence rates

for the proposed estimators. We demonstrate the efficacy of the method through simulations and

analysis of renal imaging data.
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1 | INTRODUCTION

Functional data analysis aims to study various time-dynamic processes that are becoming

increasingly prevalent with recent advances in data collection techniques. The crux of

functional data analysis is to treat each observed process as a realization of a continuous
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random function defined over a time or space domain. The inherent smoothness and

infinite-dimensionality of functional data enable leveraging their rich and dynamic structure

(e.g., derivatives, complex covariance structures, etc.), but at the same time pose unique

challenges in their analysis and modeling.

Functional principal component analysis (FPCA) is a key technique that facilitates

analysis of functional data, by providing a simple and systematic means of reducing the

dimensionality of random functions, while preserving most of the original variability in the

data. There is an extensive literature on FPCA, encompassing various types and structures

of functional data. Early work on the basic principal of FPCA includes those of Besse and

Ramsay1 and Castro et al.2 Subsequently, Rice and Silverman3 and Silverman4 proposed

a smoothed FPCA based on roughness penalty for dense and regular functional data. For

functional data observed on irregular and/or sparse grids, Shi et al,5 James et al,6 and

Rice and Wu7 developed a mixed-effects model framework for FPCA, and Staniswalis and

Lee8 and Yao et al9 proposed a local polynomial kernel smoothing approach to estimate

the covariance function and subsequently derive the functional principal components (PCs).

Theoretical and asymptotic properties of the classical FPCA have been extensively studied

in Hall and Hosseini-Nasab,10 Hall et al,11 and Li and Hsing.12

FPCA methods have been extended to functional data with more sophisticated structures.

Related work includes, but not limited to: Zhou et al13 on paired sparse functional data; Di

et al,14 Greven et al,15 and Chen and Müller16 on dependent/repeated functional data; Zhou

et al,17 Staicu et al,18 Liu et al,19 and Kuenzer et al20 for spatially correlated functional

data; and Zipunnikov et al,21 Zhou and Pan,22 and Chen and Jiang23 on multidimensional

functional data. Recently, a series of FPCA methods has been developed for multivariate

functional data, where multiple functions are collected for each experimental unit.

Jacques and Preda24 and Chiou et al25 developed a multivariate FPCA (MFPCA) method

that characterizes simultaneous variations of multiple functions based on a normalized

covariance operator. Happ and Greven26 proposed a MFPCA approach that can be flexibly

applied to multiple functions observed on different dimensional domains.

All the aforementioned works focus on the principal component analysis (PCA) applied to a

single data modality: random functions. With rapid advances in data collection technology,

more and more clinical studies and medical devices are becoming capable of collecting

multiple data modalities for a sample of subjects or experimental units. In this article, we

propose a practical PCA framework for modeling the two data modalities that are frequently

collected on each experimental unit in modern clinical studies: functional and vector

(multivariate) data. This research is motivated by the renal study at Emory University that

aims to identify and understand the co-varying patterns of renogram curves and variables

that provide further insights into underlying physiological mechanisms of renal obstruction

(obstruction to urine drainage from a kidney). Herein, renogram curves are time activity

curves of the uptake and excretion of a gamma emitting tracer by the kidneys, and renogram

variables consist of pharmacokinetic parameters of diuresis renography as well as other

clinical and demographic factors of the kidneys. Each kidney has two renogram curves

(baseline and post-furosemide) and 18 renogram variables, which, respectively, represent

multivariate functional data and 18-dimensional vector data. To address the goal of the study,
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a PCA framework that can characterize simultaneous variations of functional and vector data

would be desirable, but has been lacking in the literature.

One possible approach is to perform separate FPCA/MFPCA and classical PCA27 on

functional and vector data, respectively. However, the pairwise correlations between the

resulting two sets of PC scores (one from FPCA/MFPCA and one from classical PCA)

are often nonnegligible, which can lead to multicollinearity issues in subsequent analyses,

including PC regression. For instance, nonnegligible cross-correlations between the first

three PC scores obtained from MFPCA on two renogram curves and those obtained

from PCA on renogram variables exist in the Emory renal study data—see Figure S1.

Furthermore, while the two set of PCs capture the dominant variations within respective

modes of data, they fail to incorporate the directions that represent maximal joint variability

between functional and vector data, resulting in information loss. Alternatively, one can

apply the simple approach proposed by Ramsay and Silverman28 that involves presmoothing

the functional data using orthogonal basis functions, concatenating the resulting basis

coefficients with the vector data to form an augmented vector, and carrying out a classical

PCA of the augmented vector data by finding the eigenvalues and eigenvectors of their

covariance matrix. This approach, however, encounters difficulties when applied to sparse

functional data, on which basis coefficients from the pre-smoothing step are not reliably

estimated. Moreover, the method can be unstable as it is sensitive to the choice of the

orthogonal basis system used for pre-smoothing.

In contrast, our PCA framework is able to capture and represent the dominant modes

of covariation between and within functional and vector objects, providing an efficient

nonparametric means of simultaneously modeling the two disparate modes of data. The core

strategy is to introduce a Hilbert space that combines functional and vector objects as a

single hybrid object, and admits a covariance operator which, by design, characterizes the

co-varying structure of functional and vector data. The proposed PCA for hybrid functional

and vector data (HFV-PCA) is then based on the eigen-analysis of this new covariance

operator and has the following key advantages. First, it produces interpretable PCs that

retain maximal variability in the data and have the same structure as each observation.

Second, it produces a single set of uncorrelated PC scores which serve well as a low-

dimensional proxy for hybrid functional and vector data.

A challenging aspect of the proposed HFV-PCA is performing reliable estimation and

eigen-analysis of the covariance operator of hybrid data. Given that this covariance

operator consists of cross-covariance functions between functional and vector parts, it is

not straightforward to apply or extend the widely used techniques for estimating covariance

functions of a single data mode, such as empirical estimation,28 local polynomial kernel

smoothing,9,25 and penalized splines.29 Moreover, a dataset consisting of multiple functions

that are measured in different units or have quite different domains poses additional

problems to local polynomial smoothing for covariance estimation. To this end, we

formulate the hybrid object as a multi-dimensional stochastic process and derive the explicit

forms of its covariance operator and PC decomposition that are amenable to practical

estimation strategy and rigorous asymptotic analysis. Specifically, using these explicit

representations, we establish a theoretical relationship between the hybrid PC decomposition
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and the functional and vector PC decompositions, and exploit this relationship to derive

a practical estimation scheme where components of HFV-PCA are computed using those

estimated from the existing FPCA/MFPCA and classical PCA methods. This scheme

allows a flexible incorporation of sparse, irregular, and error-prone functional data as

well as multivariate functional data, which cannot be readily handled under Ramsay and

Silverman’s28 framework. Such an estimation strategy based on the relationship among

PC decompositions of different/heterogeneous data modes emerges as a natural extension

of the estimation strategy of Happ and Greven26 which combines components of single/

homogeneous modes (univariate functions) to estimate those of an integrated data object

(multivariate function). The consistency and convergence rates of the proposed estimators

are investigated and presented under some mild regularity conditions.

The remainder of the article is organized as follows. In Section 2, we first briefly review

the existing PCA and FPCA methods for vector and functional data, respectively. We then

introduce a Hilbert space that combines functional and vector objects as a single hybrid

object, derive its covariance operator, and establish the theoretical basis for HFV-PCA. This

section also presents the estimation scheme where components of HFV-PCA are computed

using the components estimated from the existing functional and classical PCA method,

and studies the asymptotic properties of the proposed estimators. In Section 3, we conduct

simulation studies to evaluate the performance of the proposed approaches. The application

of our methods to the Emory renal study is described in Section 4. Concluding remarks are

in Section 5. Detailed proofs of the theorems are presented in Appendix S1.

2 | METHODS

2.1 | Review of PCA and FPCA

In this section, we briefly review the classical PCA for vector (multivariate) data and

FPCA for functional data. Firstly, let X = [X1, …, Xp]T denote a p-dimensional vector

(multivariate) data in ℝp. We assume that X is a random vector with finite first two

moments and equipped with the Euclidean inner product and norm; that is, for v1

= [v11, …, v1p]T and v2 = [v21, …, v2p]T in ℝp, v1, v2 = v1
Tv2 = r = 1

p v1rv2r, and

‖v1‖ = v1, v1
1/2 = r = 1

p v1r
2 1/2

. The classical PCA27 is commonly used to reduce the

dimension of X by projecting it onto the space spanned by the first J (< p) vector

PCs — w1, …, wJ ∈ ℝp—that preserve most of the variability in the original vector data.

Herein, the first vector PC, w1, is defined as a direction that maximizes the variance of the

projected data. The second vector PC, w2, identifies the second largest source of variation

in the data, while being orthogonal to w1. The subsequent jth vector PC, wj, is defined in a

similar manner as a direction that maximizes the variance among all directions orthogonal to

previous j − 1 vector PCs.

Assume μx = E(X) = 0 without loss of generality (WLOG). One mathematical result

important for both the theory and implementation of PCA is that vector PCs are equivalent

to the orthonormal eigenvectors of the covariance matrix of X. Specifically, let Cx = E(XXT)

denote the covariance matrix, whose eigen-decomposition is given as Cxwj = κjwj, j = 1,
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…, p. Here, κj is the jth eigenvalue of Cx, and wj = [wj1, …, wjp]T is the corresponding

eigenvector, or equivalently, the jth vector PC. This result leads to the following truncated

vector PC decomposition

X ≈ X[J] = W Tγ =
j = 1

J
γjwj, or equivalently, Xr

[J] =
j = 1

J
γjwjr, r = 1, …,

p .
(1)

where J (< p) is chosen to explain most variability in X, and W = [w1, …, wJ]T is the

J × p matrix whose columns are the first J vector PCs, and γj = XTwj are uncorrelated

vector PC scores with E(γj) = 0 and Var(γj) = κj. The J-dimensional score vector γ
= [γ1, …, γJ]T is often used as a lower-dimensional representation of the original data

X. Note that κ1 ≥ κ2 ≥ … ≥ κJ > 0, which reiterates the fact that the first vector PC

w1 captures the largest amount of variance in the data, and the subsequent PCs capture

successively smaller fractions of this variance. In practice, vector PCs and eigenvalues

can be estimated based on the eigen-decomposition of the sample covariance matrix of

the observed vector data Xi (i = 1, …, n); that is, Cxwj = κjwj (j = 1, …, J), where

Cx = (n − 1)−1
i = 1
n Xi − μx Xi − μx

T  with μx = n−1
i = 1
n Xi. The jth vector PC score of

ith subject can be estimated as γ ij = Xi − μx
Twj.

We now move on to the FPCA which extends the idea of the classic PCA to functional

data. Let {Y(k)}k=1, …, K be a collection of random functions defined on respective

compact domains Tk ∈ ℝ; that is, Y (k):Tk ℝ. Assume that each Y(k) is in L2 Tk ,

a Hilbert space of square integrable functions with respect to Lebesgue measure dtk
on Tk. Write Y = (Y(1), …, Y(K)) as a multivariate functional object that belongs to

F = L2 T1 × … × L2 TK —a cartesian product of individual L2 Tk  spaces. Note that if K

= 1, Y reduces to a univariate functional object. The inner product of f1 = f1
(1), …, f1

(K)  and

f2 = f2
(1), …, f2

(K)  in F is defined as f1, f2 F = k = 1
K ∫Tkf1

(k) tk f2
(k) tk dtk with norm

‖f1‖ℱ = f1, f1 F
1/2 = k = 1

K ∫τkf1
(k) tk 2dtk

1/2
.

As with the classical PCA, one of the main objectives FPCA is to effectively reduce

the dimension of Y, which is inherently infinite-dimensional, by projecting it to a space

spanned by the first L functional PCs—ϕ1, …, ϕL ∈ F—which capture and characterize the

dominant modes of variation of functional data. The first functional PC, ϕ1 = ϕ1
(1), …, ϕ1

(K) ,

identifies the strongest and most important mode of variation in the random function. The

second functional PCs, ϕ2 = ϕ2
(1), …, ϕ2

(K) , captures the second largest source of variation

with the condition that it is orthogonal to φ1. Similarly, the subsequent functional PCs,

ϕℎ = ϕℎ
(1), …, ϕℎ

(K) , sequentially capture maximum variability in the functional data while

being orthogonal to all previous h – 1 PCs. Note that these functional PCs are orthonormal

in the sense that 〈ϕℎ, ϕl〉F = δℎl, with δhl = 1 if h = l and δhl = 0 if h ≠ l.
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Analogous to the classic PCA, functional PCs can be obtained as the eigenfunctions

of the covariance operator, which extends the concept of the covariance matrix Cx

to a space of square integrable functions F. Specifically, denote the covariance

operator of univariate/multivariate functional data Y as Cy:F F given by

Cyf (k) tk = u = 1
K ∫τuσy(uk) su, tk f(u) su dsu, where σy(uk) su, tk = Cov Y (u) su , Y (k) tk . By

the Hilbert-Schmidt theorem,30 this operator satisfies CYϕh = τhϕh, ℎ ∈ ℕ, where τ1 ≥ τ2

≥ … ≥ 0 are the eigenvalues of Cy, and ϕ1, ϕ2, … are the corresponding orthonormal

eigenfunctions (i.e., functional PCs). Then assuming μy = E(Y) = 0, WLOG, the FPCA/

MFPCA is based on the following truncated functional PC decomposition, or equivalently,

the truncated Karhunen-Loéve expansion:25,26,31

Y ≈ Y [L] =
ℎ = 1

L
ηℎϕℎ, i.e., Y [L](k) tk =

ℎ = 1

L
ηℎϕℎ

(k) tk , tk ∈ Tk, k = 1,

…, K,
(2)

where L is chosen to explain most variability in Y, and ηℎ = Y , ϕℎ F are uncorrelated

functional PC scores with mean zero and variance τh. The L-dimensional score vector η =

[η1, …, ηL]T represents functional data Y in the most parsimonious way, in the sense that

corresponding functional PCs explain more variation than any other basis expansion given a

fixed number of basis functions.22

Let Yi (i = 1, …, n) denote observed univariate/multivariate functional data.

Different methods can be employed to estimate the FPCA components—τh, ϕh and

ηih—depending on the type of functional data. For univariate functional data (i.e.,

Y i ≡ Y i
(1)) observed on a dense regular grid, the mean and covariance functions can be

first consistently estimated using the method of moments:2 μy(t) = n−1
i = 1
n Y i(t) and

σy(s, t) = (n − 1)−1
i = 1
n Y i(s) − μy(s) Y i(t) − μy(t) . Then, eigenvalues and eigenfunctions

(functional PCs) can be estimated by solving the eigen-equation ∫Tσy(s, t)ϕℎ(t)dt = τℎϕℎ(s),

where the integral can be approximated numerically by a quadrature rule.

Finally, the functional PC scores can be estimated by numerical integration:

ηiℎ = ∫T Y i(t) − μy(t) ϕℎ(t)dt. For univariate functional data observed on a sparse and/or

irregular grid, we can take the following steps:9 (i) estimate the mean function using a

local linear smoother that aggregates data from all observations; (ii) compute the sample

raw covariance by aggregating raw covariances of pairwise time points from each functional

observation; (iii) estimate the covariance function by smoothing the off-diagonal elements

of the sample raw covariance via a local weighted bilinear smoother; (iv) perform eigen-

analysis on the smoothed covariance to obtain the estimated eigenfunctions and eigenvalues;

and (v) apply principal analysis conditional expectation algorithm to estimate the functional

PC scores.

For multivariate functional data observed on a common domain, Chiou et al’s25 MFPCA

method can be employed. In short, this approach applies a local linear regression and

local linear plane to, respectively, estimate the mean and covariance functions of each
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multivariate component Y(k), k = 1, … ,K, and fits a local linear plane to estimate the cross-

covariance function across multivariate components. Then, eigenvalues and eigenfunctions

can be estimated by solving the eigen-equation that combines the covariance and cross-

covariance functions. Finally, the functional PC scores can be obtained as weighted least

squares estimates derived from a normalized Karhunen-Loéve expansion. For multivariate

functional data observed on possibly different (dimensional) domains, one can employ Happ

and Greven’s26 method to estimate the FPCA components separately for each multivariate

component using existing univariate methods (see previous paragraph) and then combine

them in a way that produces consistent estimates for the MFPCA components.

2.2 | Theoretical foundation for HFV-PCA

We first establish the theoretical foundation of the proposed HFV-PCA framework that

captures and characterizes the dominant modes of variation within and between the random

functional object Y and random vector X. The first step is to formulate a hybrid functional

and vector random object, Z = (Y, X), which combines Y and X into an ordered pair

belonging to H = F × ℝp. We define the inner product between any two hybrid objects, h1

= (f1, v1) and h2 = (f2, v2), as

h1, h2 ℋ = f1, f2 ℱ + w v1, v2 =
k = 1

K

∫Tk
f1

(k) tk f2
(k) tk dtk + ω

r = 1

p
v1rv2r, (3)

with norm ‖ · ‖ℋ = . , . ℋ
1/2 · ω is a positive weight that needs to be prespecified or

estimated. It is mainly used to take into account heterogeneity between functional and

vector parts in terms of measurement scale and/or amount of variation.28 Its application

will be discussed in detail in Section 2.5. WLOG and for the clarity of illustration, all the

following theoretical results will be derived for ω = 1. The results remain valid for any

positive weights.

The space ℋ equipped with the inner product · , · ℋ defined as (3) is a separable Hilbert

space,32 in which, given E ∥ Z ∥ℋ
2 < ∞, we can readily define the mean and covariance

operator of Z as μ = E(Z) and K = E (Z − μ) ⊗ (Z − μ) , respectively, where the latter is a

mapping K:ℋ H induced by the tensor product operator ⊗. The theoretical foundation

of HFV-PCA is established based on the covariance operator K, which admits the following

the eigen-decomposition (e.g., theorem 7.2.6 in Hsing and Eubank30):

K =
m = 1

∞
λm ξm ⊗ ξm , (4)

where λm m = 1
∞  is a set of nonnegative and nondecreasing eigenvalues, and ξm m = 1

∞  is a

set of complete orthonormal basis of eigenfunctions in ℋ satisfying ξm, ξn ℋ = δmn. The

eigen-decomposition in (4) leads to the following hybrid PC decomposition (e.g., theorem

7.2.7 in Hsing and Eubank30)
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Z = μ +
m = 1

∞
ρmξm, (5)

with probability 1. This hybrid PC decomposition is the foundation for HFV-PCA.

The eigenvalues λm, m ∈ ℕ, quantifies the amount of variability in Z explained by the

corresponding eigenfunctions ξm, or equivalently, hybrid PCs. The first hybrid PC, ξ1,

identifies the strongest and most important mode of the joint variation of functional and

vector parts. The subsequent PCs capture successively smaller fractions of this variation.

The random variables ρm = Z, ξm ℋ are uncorrelated with mean zero and variance λm and

are called the hybrid PC scores.

2.3 | Stochastic process modeling for practical implementation of HFV-PCA

Although the hybrid PC decomposition presented in (5) lays foundation for HFV-PCA,

the formulation is rather abstract for practical implementation. Thus, in this section,

we rebuild our framework under the perspective that the hybrid random variable Z
is a multi-dimensional stochastic process with respect to a multi-dimensional argument

t = t1, …tk T ∈ T = T1 × … × TK, and derive the explicit forms of the covariance operator

and Karhunen-Loéve expansion33 that are amenable to simple estimation and rigorous

asymptotic analysis.

Let Z[t] = [Y (t), X]T = Y (1) t1 , …, Y (K) tK , X1, …, Xp
T ∈ ℝK + p for t ∈ T. To make the

hybrid PC decomposition (5) more amenable to practical implementations, we treat

Z[t]: t ∈ T  as a (K + p)-dimensional stochastic process where only its first K elements

(functional part) depends on the argument t. The mean function of Z[t] is μ[t] = E(Z[t]) =
[EY(t),EX]T, which we assume to equal 0 WLOG; that is, both functional and vector data

are centered in advance.

For su ∈ Tu, tk ∈ Tk, u, k = 1, …, K and q, r = 1, …, p, we define the following three

covariance kernels: (1) σy(uk) su, tk = Cov Y (u) su , Y (k) tk  which denotes the covariance

between two functions (if u = k, this is a covariance function of Y(k)); (2) σx(q, r)
= Cov(Xq, Xr) which denotes the covariance between two vector elements (if q = r,

this is a variance of Xr); and (3) σyx(k) tk, r = Cov Y (k) tk , Xr  which represents the cross-

covariance function between the kth function and rth element of a vector. Further note that:

σy( · , · ) ∈ F × F, σy(k) · , tk ∈ F for fixed tk, σyx(k) tk, · ∈ ℝp for fixed tk, σyx( · , r) ∈ F for

fixed r, σx(r, · ) ∈ ℝp for fixed r, and σx(·, ·) is a p × p covariance matrix of X. We now derive

the explicit form of the covariance operator K:ℋ ℋ that comprises of σy, σx, and σyx,

and characterizes the variation within and between the functional and vector parts. Since

(Kh)[t] = E(Z ⊗ Z)h [t] = E( Z, ℎ ℋ Z[t]  for any h = (f, v) ∈ ℋ, elements of the functional

and vector parts of (Kh)[t] = (Kh)(1) t1 , …(Kh)(K) tK , (Kh)1, …, (Kh)p
T ∈ ℝK + p can be

derived as
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(Kh)(k) tk =
u = 1

K
∫Tu

σy(uk) su, tk f(u) su dsu +
r = 1

p
σyx(k) tk, r vr = Σ(k) tk, · , h ℋ

(Kh)r =
u = 1

K

∫Tu
σyx(u) su, r f(u) su dsu +

q = 1

p
σx(q, r)vq = Σ[ · , r], h ℋ, (6)

respectively, for k = 1, …, K and r = 1, …, p, where Σ(k) tk, · = σy(k) · , tk , σyx(k) tk, ·  and

Σ[·, r] = (σyx(·, r), σx(r, ·)) are elements in ℋ.

The formulation (6) allows us to specify explicit boundedness and continuity conditions

that the covariance kernels (σy, σyx, and σx) should satisfy in order for K to be a positive

self-adjoint compact operator. Specifically, we have the following theorem:

Theorem 1. The covariance operator K defined in (6) is positive and self-adjoint.
Furthermore, suppose σy, σyx, and σx are bounded in the sense that: there exist finite
constants C1, C2, C3 and C4 such that

max
k = 1, …, K

sup
tk ∈ Tk

‖σyx(k)( · , tk)‖F
2 = max

k = 1, …, K
sup

tk ∈ Tku = 1

K
∫Tu

σy(uk) su, tk
2dsu < C1,

max
k = 1, …, K

sup
tk ∈ Tk

‖σyx(k)(tk, . )‖2 = max
k = 1, …, K

sup
tk ∈ Tkr = 1

p
σyx(k) tk, r 2 < C2,

max
r = 1, …, p

‖σyx( · , r)‖F
2 = max

r = 1, …, pu = 1

K
∫Tu

σyx su, r 2dsu < C3,

max
r = 1, …, p

‖σx( · , r)‖2 = max
r = 1, …, pq = 1

p
σx(q, r)2 < C4 .

Also suppose σy and σyx are uniformly continuous in the sense that: for all k, u = 1, …, K, r

= 1, …, p and ϵ > 0, there exist δ(uk), δr
(k) > 0 such that

tk − tk
∗ < δ(uk) σy(uk) su, tk − σy(uk) su, tk

∗ < ϵ for all su ∈ Tu
tk − tk

∗ < δr(k) σyx(k) tk, r − σyx(k) tk
∗, r < ϵ .

Then, K is a compact operator.
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By the Hilbert-Schmidt theorem (e.g., theorem 4.2.4 in Hsing and Eubank30), it follows that

there exists a complete orthonormal system of eigenfunctions ξm = ψm, θm m ∈ ℕ of K
such that Kξm [t] = λmξm[t], where λm m ∈ ℕ is the corresponding sequence of eigenvalues

that goes to zero as m → ∞ and λ1 ≥ λ2 ≥ … ≥ 0. Moreover, for any h ∈ ℋ, we have

(Kh)[t] = m = 1
∞ λm h, ξm ℋξm[t], which is equivalent to the eigen-decomposition presented

in (4). For future applications, we derive the following element-wise representations of the

Hilbert-Schmidt theorem:

Kξm (k) tk =
u = 1

K
∫Tu

σy(uk) su, tk ψm(u) su dsu +
r = 1

p
σyx(k) tk, r θmr = λmψm(k) tk ,

Kξm r =
u = 1

K
∫Tu

σyx(u) su, r ψm(u) su dsu +
q = 1

p
σx q, r θmq = λmθmr,

(Kh)(k) tk =
u = 1

K
∫Tu

σy(uk) su, tk f(u) su dsu +
r = 1

p
σyx(k) tk, r vr =

m = 1

∞
λmh, ξmℋψm(k) tk ,

(Kh)r =
u = 1

K
∫Tu

σyx(u) su, r f(u) su dsu +
q = 1

p
σx q, r vq =

m = 1

∞
λm h, ξm ℋθmr,

where ψm = ψm(1), …, ψm(K) ∈ F, and θm = θm1, …, θmp
T ∈ ℝp.

Mercer’s theorem34 provides an eigen-decomposition of a symmetric nonnegative definite

kernel of an integral operator and serves as a key ingredient in the proof of the Karhunen-

Loéve theorem of stochastic processes (e.g., theorem 7.3.5 in Hsing and Eubank30). As

such, we introduce the following two theorems which sensibly adapt the Mercer’s and

Karhunen-Loéve theorems to our context of hybrid data.

Theorem 2. Under the assumptions of Theorem 1, for k = 1, …, K and sk, tk ∈ Tk,

Cov Y (k) sk , Y (k) tk = σy(kk) sk, tk =
m = 1

∞
λmψm(k) sk ψm(k) tk ,

where the convergence is absolute and uniform. For r = 1, …, p,

V ar Xr = σx(r, r) =
m = 1

∞
λmθmr2 ,

where the convergence is absolute.
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Theorem 3. Given Theorem 2, the hybrid random variable Z admits the following
representation

Z[t] =
m = 1

∞
ρmξm[t], t ∈ T, (7)

ρm = Z, ξm ℋ with E(ρm) = 0 and E(ρmρn) = λmδmn, and ξm[t] = [ψm(t), θm]T. Moreover,

we have

lim
M ∞

sup
t ∈ T

E Z[t] −
m = 1

M
ρmξm[t]

2
= 0.

The Karhunen-Loéve expansion (7) and the hybrid PC decomposition (5) have essentially

the same form and interpretation, though deriving the former has two additional merits.

Firstly, it translates the hybrid PC decomposition (5) constructed in an abstract Hilbert space

to a more familiar space of mean-square continuous stochastic processes, where we could

specify explicit necessary conditions on covariance kernels that are easily comprehensible

and convincing. Secondly, it bridges a conceptual and analytical relationship between the

hybrid PC decomposition and the usual functional and vector PC decompositions, and such

a relationship is crucial for subsequent development of estimation schemes. In practice, the

main focus is on deriving the following truncated hybrid PC decomposition (or equivalently,

truncated Karhunen-Loéve expansion)

Z[M][t] =
m = 1

M
ρmξm[t], t ∈ T, (8)

where M is a finite positive integer. The first M hybrid PC scores {ρ1, ρ2, …, ρM} and

hybrid PCs {ξ1, ξ2, …, ξM) are optimal M-dimensional approximations to Z for each M in

the sense that (cf, theorem 7.2.8 in Hsing and Eubank30)

ξm m = 1
M = argmin

hm m = 1
M

E Z −
m = 1

M
Z, hm ℋhm

ℋ
,

where hm m = 1
∞  is any complete orthogonal system in ℋ.

2.4 | Relationship between hybrid PC decomposition and functional and vector PC
decompositions

Recently, Happ and Greven26 derived an analytical relationship between the PC

decompositions of multivariate and univariate functional data based on the theory of

integral equations and their augmentations.35 In this section, we extend this approach to our

hybrid setting (heterogeneous data modes) to establish the analytical relationship between

the truncated hybrid PC decomposition (8) and the truncated functional (2) and vector
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PC decompositions (1), respectively, derived from the existing FPCA/MFPCA9,26,28 and

classical PCA27 methods.

We begin by approximating the functional and vector parts of a hybrid object Z = (Y,X)

with the truncated functional (2) and vector (1) PC decompositions, respectively—that is,

Z = Y [L], X[J] = ℎ = 1
L ηℎϕℎ, j = 1

J γjwj . Let K = E(Z ⊗ Z) be the covariance operator

formulated with the approximated hybrid object Z. Then, for h ∈ ℋ, each element of Kh is

(Kh)(k) tk =
u = 1

K
∫Tu

σy(uk) su, tk f su dsu +
r = 1

P
σyx(k) tk, r vr,

(Kh)r =
u = 1

K
∫Tu

σyx(u) su, r f(u) su dsu +
q = 1

P
σx q, r vq,

where σy
(uk) su, tk = Cov Y [L](u) su , Y [L](k) tk , σyx

(u) su, r = Cov Y [L](u) su , Xr
[J]  and

σx(q, r) = Cov Xq
[J], Xr

[J]  for Su ∈ Tu, tk ∈ Tk, and q, r = 1, …, p. Let λm and ξm, m ∈ ℕ,

respectively, denote the eigenvalues and eigenfunctions of K. Such an eigen-analysis yields

the following approximate truncated hybrid PC decomposition

Z[M][t] =
m = 1

M
ρmξm[t], t ∈ T, (9)

where ξm and ρm = Z, ξmℋ represent approximate hybrid PCs and scores, respectively. Note

that the scores ρm are uncorrelated and have variances equal to λm.

In the following theorem, we establish an analytical relationship between the approximate

truncated hybrid PC decomposition (9) and the truncated functional and vector PC

decompositions–(2) and (1)–based on the integral augmentation approach26,35 generalized to

a hybrid setting.

Theorem 4. Suppose that truncated functional and vector PC decompositions are
given as (2) and (1), respectively. Define four matrices that characterize covariances

within and between functional and vector PC scores: V y = Cov ηℎ, ηl ℎ = 1, …, L
l = 1, …, L ∈ ℝL × L,

V yx = Cov ηℎ, γj ℎ = 1, …, L
j = 1, …, J ∈ ℝL × J, V xy = V yx

T  and V x = Cov γj, γq j = 1, …, J
q = 1, …, J ∈ ℝJ × J.

Define a (L + J) × (L + J) symmetric and positive semi-definite matrix that contains the
above four matrices as blocks

V =
V y V yx

V xy V x .
.
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Then, for m = 1, …, M with M ≤ L + J, the mth eigenvalue of V, λm, is exactly the mth

eigenvalue of K. Denote the mth (L + J)-dimensional eigenvector of V as em = cmT , dm
T T

,

where cm = [cm1, …, cmL]T denotes the first L elements of em, and dm = [dm1, …, dmJ]T

denotes the last J elements of em, Then, functional and vector parts of the mth approximate
hybrid PC (eigenfunction of K), ξm = ψm, θm , are

ψm(t) =
ℎ = 1

L
cmℎϕℎ(t) and θm =

j = 1

J
dmjwj,

respectively. The approximate hybrid PC score is

ρm =
ℎ = 1

L
ηℎcmℎ +

j = 1

J
γjdmj .

In Section 2.6, we will prove that the approximate HFV-PCA components—λm, ξm and

ρm—converge to the true HFV-PCA components—λm, ξm, and ρm–respectively, for each

m ∈ ℕ as L → ∞ and J → p, that is, as more functional and vector PCs are used to

approximate Z via Z. In other words, the analytic relationship established in Theorem 4

holds between the true truncated hybrid PC decomposition (8) and the functional and vector

PC decompositions–(2) and (1)–in an asymptotic sense.

2.5 Estimation

The analytical relationship established in Theorem 4, and the fact that this relationship holds

asymptotically for the true truncated hybrid PC decomposition (see Section 2.6), lead to

a simple, robust, and comprehensive estimation strategy where HFV-PCA components are

estimated using the FPCA/MFPCA and PCA components. Consider a random sample {(Y1,

X1), …, (Yn, Xn)} drawn from the joint distribution of (Y, X). The proposed estimation

scheme comprises of the following four steps.

1. Perform FPCA/MFPCA on observed functional data Yi, i = 1, …, n, to estimate

functional PCs and PC scores—that is, obtain ϕℎ and ηiℎ, h = 1, …, L, where L is

a truncation lag determined data-adaptively. Different FPCA/MFPCA techniques

can be flexibly chosen in different contexts. Please see the last two paragraphs

of Section 2.1 for a summary of FPCA/MFPCA methods that are applicable to

four different types of functional data: (i) univariate functional data on a dense

and regular grid;2 (ii) univariate functional data on a sparese and/or irregular

grid;9 (iii) multivariate functional data observed on a common domain;25 and (iv)

multivariate functional data observed on different (dimensional) domains.26

2. Perform classical PCA27 on observed vector data Xi, i = 1, …, n, to estimate

vector PCs and vector PC scores–that is, obtain wj, and γ ij, j = 1, …, J, where J

is a truncation lag determined data-adaptively.
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3. For each i, create a (L + J)-dimensional vector χi = ηi1, …, ηiL, γ i1, …, γ iJ
T

that concatenates the functional and vector PC scores, and compute

V = (n − 1)−1
i = 1
n χiχi

T  which estimates the (L + J) × (L + J) matrix V of

Theorem 4.

4. Perform an eigen-analysis of V  to obtain eigenvalues λm and orthonormal

eigenvectors em = cm, dm , m = 1, …, M, M ≤ L + J, where M is a truncation lag

that is chosen data-adaptively, and cm = Cm1, …, CmL
T  and dm = dm1, …, dmJ

T

denote the first L and last J elements of em, respectively.

5. Estimate the functional and vector parts of the mth hybrid PC ξm = (ψm, θm) and

mth hybrid PC score of ith observation, respectively, by

ψm(t) =
ℎ = 1

L
cmℎϕℎ(t), θm =

j = 1

J
dmjwj and ρim =

ℎ = 1

J
ηiℎcmℎ +

j = 1

J
γijdmj .

Choosing appropriate truncation lags L and J in Steps 1 and 2 is significant as they

control how much of the information from the functional and vector parts is used for

HFV-PCA. A widely used criterion is the “percentage of variance explained,” which

selects L and J as the minimal number of functional and vector PCs that explain

100δ% of the total variability.27,28 In practice, this can be implemented by setting

L = minl ℎ = 1
l τℎ/ ℎ = 1

n − 1 τℎ > δ  and j = minl q = 1
j κq/ q = 1

p * κq > δ , where τℎ, and

Kj, respectively, denote eigenvalues of Cy and Cx (i.e., estimated covariance function of Y

and estimated covariance matrix of X), and p* = min(n − 1, p). Note that with L and J

determined, the remaining terms sup
t ∈ T ℎ = L + 1

∞
ηiℎϕℎ(t) and q = J + 1

p γiqwq are assumed to

be negligible. Prior empirical studies in the context of multivariate functional data suggest

that there exists a threshold value of δ, above which functional and vector parts contribute

sufficient information to warrant accurate estimation of HFV-PCA, but below which they

do not provide enough information to produce reliable estimates.26 As such, our general

recommendation is to choose a sufficiently high value of δ (e.g., δ = 0.99) that minimizes

the chance of resulting in inaccurate estimations. Note that this does not mean we can

simply choose the maximum number of functional and vector PCs, including negligible

terms, because this may result in high approximation error coming from having to estimate

too many terms (see Section 2.6). Once L and J are selected, an optimal truncation lag,

M, of HFV-PCA can be chosen based on the percentage of variance explained—that is,

M = min
m u = 1

m λu/ u = 1
n − 1 λu > δ0 —such that the leading M hybrid PCs explain 100δ0%

of total variability.

A potential difficulty with HFV-PCA is that elements within and between functional and

vector parts often have incompatible units and/or exhibit different amounts of variation.

The first task is to account for discrepancies within respective functional and vector parts,
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if needed. If elements of multivariate functional data Y i = Y i
(1), …, Y i

(K)  are measured in

different units or have quite different domains, one can rescale them to have integrated

variance of one. If elements of the vector Xi = [Xi1, …, Xip]T exhibit different amounts of

variation, one can standardize them to have unit variance. The second task is to eliminate

the influence of different measurement scales between functional and vector parts. To

accomplish this aim, we propose to choose an appropriate weight ω in the inner product

(3) that ensures functional and vector parts contribute equal amounts of variation to HFV-

PCA. A sensible data-driven approach to choosing an appropriate weight, analogous to the

standardization of data prior to PCA, is to set

ω = i = 1
n ‖Y i − Y ‖ℱ

2

i = 1
n ‖Xi − X‖2 , (10)

where Y = n−1
i = 1
n Y i

(1), … i = 1
n Y i

(K) , and X = n−1
i = 1
n Xi1, …, 1 = 1

n Xip
T

 are

sample mean function and vector, respectively. In practice, the weighting scheme (10) can be

implemented by formulating the hybrid object as Z = (Y, ω1/2X), whose vector part has been

scaled by a factor of ω1/2, and proceeding with the estimation steps (a) to (e).

2.6 | Asymptotic results

In this section, we investigate the asymptotic properties of the estimators of HFV-PCA

components λm, ψm, ρim  derived in Section 2.5. The asymptotic study considers two sources

of errors: approximation error and estimation error. The former error stems from the fact that

the estimators are derived based on Theorem 4, which delineates the relationship between

the approximate truncated hybrid PC decomposition (9) and the truncated functional (2) and

vector (1) PC decompositions; that is, the true components of HFV-PCA λm, ξm, ρim  are

approximated by λm, ξm, ρim  derived from K. The latter corresponds to the usual sampling

error caused by observing a sample of hybrid objects instead of its true population. Hence,

we have the following error decompositions of the proposed estimators:

λm − λm = λm − λm + λm − λm

‖ξm − ξ m‖ℋ = ‖ξm − ξm‖ℋ + ξm − ξ m‖ℋ

ρim − ρim = ρim − ρim + ρim − ρim ,

where the first and second terms on the right-hand of the inequalities represent the

approximation errors and estimation errors, respectively.

The following theorem presents the asymptotic behavior of the approximation error. It

is important to note that this error only depends on the sample size n through L and J
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(truncation lags for functional and vector PCs, respectively), which are bounded above by

and may increase with n.

Theorem 5. For m ∈ ℕ, let λm denote the finite-multiplicity eigenvalues of the covariance

operator K associated with Z = Y [L], X[J] = ℎ = 1
L ηℎψℎ, j = 1

J γjwj . Then,

λm − λm 0 and ∥ Z − Z ∥ℋ
p 0 as L ∞ and J p .

for each m ∈ ℕ. Let ξm denote the eigenfunctions corresponding to λm, and let ρm = Z, ξm ℋ.

If both λm and λm have multiplicity 1, and ξm, ξ m ℋ ≥ 0, then, for all m ∈ ℕ.

‖ξm − ξm‖ℋ 0 and ρm − ρm
p 0 as L ∞ and J p .

We now present the theorem that establishes the asymptotic properties of the estimation

error. We need the following conditions.

R1. ΔL
y = supℎ = 1, …, L τℎ − τℎ + 1

−1 < ∞

R2. ΔJ
x = supj = 1, …, J , …, J κj − κj + 1

−1 < ∞

R3. ‖Cy − Cy‖op = Op cny , where cny 0 as n ∞

R4. ‖Cx − Cx‖op = Op cnx , where cnx 0 as n ∞;

R5.
r = 1
p

k = 1
K ∫ TkE Y (k) tk 2Xr

2 dtk < ∞

R6. ϕℎ, ϕℎ 2 ≥ 0 for all h = 1, … L;

R7. wj, wj ≥ 0 for all j = 1, … J;

R8. ηiℎ = Y i, ϕℎ 2 for all h = 1, …, L and i = 1, …, n.

R8. γ ij = Xi, wj  for all j = 1, …, J and i = 1, …, n.

R1 and R2 are standard assumptions for FPCA/MFPCA and PCA, respectively, that

guarantee that the first L eigenvalues of Cy and the first J eigenvalues Cx have multiplicity

1.10,27,36 If these conditions do not hold, the FPCA/MFPCA and PCA are not unique; that

is, any unit function or vector in the span of eigenfunctions or eigenvectors of multiplicity

greater than 1 can be the direction of FPCA/MFPCA or PCA, respectively. Note that ΔL
y

increases as L increases, and we can set ΔJ
x ≤ C uniformly over all J for a finite constant

C, as it can be assumed that all p eigenvalues of Cx are different in most applications of

PCA.27 R3 and R4 state that the estimated covariance operators of functional and vector

data converge to respective true values in operator norm ‖·‖op with rates cny and cnx as n →

∞. For instance, cny = n−1/2 is established for dense functional data,37 while cny = n−1/2ℎ−2,
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with h denoting a certain bandwidth, is obtained for sparse and irregular (SIR) functional

data.9 For multivariate functional data, we show below (Theorem 7) that cny = n−1/2 can

be achieved. Lastly, cnx = n−1/2 is established for vector data with sub-gaussian distribution

(e.g., proposition 2.1 in Vershynin38). R5 is required to establish the convergence rate of

the cross-covariance operator defined in Appendix S1, that is, the rate of ‖Cyx − Cyx‖op.

Extending the approach of Happ and Greven,26 conditions R1 to R5, combined with R8-R9,

are used to establish the convergence rate of the maximum eigenvalue of V − V , which in

turn is used to establish the convergence rates for the estimation errors. R6 and R7 ensure

that true and estimated eigenfunctions and eigenvectors are of the same sign.

Theorem 6. Let λm, ξ m, , and ρim denote the estimates of eigenvalues, PCs and scores

of HFV-PCA obtained as described in Section 2.5. Let Zi = ℎ = 1
L ηiℎϕℎ, j = 1

J γ ijwj .

Assume regularity conditions R1 to R9 hold. Then for all m = 1, …, L + J,

λm − λm = Op Lmax n−1/2, ΔL
y cny, ΔJ

xcnx ,

‖ξm − ξ ‖ℋ = Op L3/2max n−1/2, ΔL
y cny, ΔJ

xcnx ,

ρim − ρim = Op L3/2max n−1/2, ΔL
y cny, ΔJ

xcnx ,

‖Zi − Zi‖ℋ = Op max LΔL
y cny, ΔJ

xcnx .

Combining the results from Theorems 5 and 6 suggests a trade-off between the

approximation and estimation errors; that is, for a fixed n, increasing L reduces the

approximation error while simultaneously increasing the estimation error. On the other

hand, increasing J does not affect the estimation error in an asymptotic sense, as it is

bounded above by p, which is fixed. The consistency of the estimators of HFV-PCA

components λm, ξ m, ρim  can be established by assuming, for example, cny = cnx = n−1/2,

τℎ − τℎ + 1 ≥ C−1ℎα − 1 with α > 1, C > 0 (see Hall and Horowitz37), κj – κj+1 ≥ r with r > 0,

and L = O(nβ), where 0 < β < (2α + 5)−1. That is, consistency of f λm, ξ m, ρim  requires the

truncation lag L to grow slower than the sample size n.

We end this section with a theorem that shows that the sample covariance operator of

multivariate functional data converges to the population counterpart in operation norm with

a desired rate of cny = n−1/2.

Theorem 7. Let Cy:F F and Cy:F F, respectively, denote the population and sample

covariance operators. For f ∈ F, kth element of Cyf and Cyf are, respectively,
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Cyf (k) =
k = 1

K
∫Tk

σy(uk) su, tk f(k) tk dtkand Cyf (k) =
k = 1

K
∫Tk

σy(uk) su, tk f(k) tk dtk,

where σy(uk) su, tk = Cov Y (u) su , Y (k) tk  and σy
(uk) su, tk = n−1

i = 1
n Y i

(u) su Y i
(k) tk . Then,

assuming 
k = 1
K

u = 1
K ∫Tk∫TuE Y i

(u) su
2Y i

(k) tk 2 dsudtk < ∞, we have:

‖Cy − Cy‖op = Op(n−1/2) .

3 | SIMULATIONS

In this section, we conduct simulation studies to examine the finite-sample performance of

the proposed HFV-PCA.

3.1 | Univariate functional data and vector data

We first consider hybrid observations consisting of univariate functional data (K = 1) and

10-dimensional vector data (p = 10), Zi = (Yi, Xi), i = 1, …, n, that are generated according

to the following truncated hybrid PC decomposition with 10 components:

Zi[t] =
m = 1

10
ρimξm[t] + ϵi[t], t ∈ T = [0, 1], (11)

where ϵi[t] = ϵi(t), 0 T  are measurement errors on the functional part with ϵi(t) i.i.d. as

N(0, 0.4). Such measurement errors are natural and commonly assumed in functional data

analysis, where actual observations are discrete and deviate from the underlying smooth

curve.25,28 We consider two settings that differ in the formulation of the functional part

of the hybrid PCs, ξm = (ψm, θm). In setting I, we set ψ2j−1 (t) = sin(2jπt) and ψ2j(t)
= cos(2jπt) for j = 1, …, 5. In setting II, we set {ψm(t), m = 1, …, 10} as the first

10 normalized legendre polynomials divided by 2. In both settings, we set the vector

part of hybrid PCs {θ1, …, θ10} as the first 10 eigenvectors of a 10 × 10 compound

symmetry correlation matrix with off-diagonal elements equal to 0.2; the exact values of

these eigenvectors are presented in Appendix S2. The hybrid PC scores are independently

generated from N 0, λm , where λm = 0.5m−1, m = 1, …, 10. Here, we consider sample sizes

of n = 100 and n = 200.

To assess the sensitivity of the proposed HFV-PCA to varying distribution and density

of observed functions, we consider the following three types of functional data: (1) SIR

functional data, where each function is sampled at a random number of points chosen from

a discrete uniform distribution on {5, …, 10}, and the locations of the measurements were

randomly drawn from a uniformly distributed grid {(t – 1)/59; t = 1, …, 60} ; 2) dense and

irregular (DIR) functional data, where the number of points for each function is randomly

chosen from {10, …, 40}, and the locations are randomly drawn from {(t – 1)/59; t = 1, …,
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60}; and 3) dense and regular (DR) functional data, where all functions are observed on {(t –
1)/59; t = 1, …, 60}.

Under each scenario (12 scenarios: n = 100/200, setting I/II and SIR/DIR/DR), the accuracy

of the three leading eigenvalues and hybrid PCs estimated by the procedure described

in Section 2.5 is quantified by the relative squared error (RSE): RSE λm = λm − λm
2/λm

2

and RSE ξ m = ‖ξm − ξ m‖ℋ
2 , m = 1, 2, 3. Note that since the hybrid PCs are only unique

up to their respective signs, we use sm = sign ξm, ξ m ℋ  to set ξ m = smξ m so that the

signs are consistent. Another outcome measure is the average squared error (ASE) of the

corresponding hybrid PC scores: ASE ρm = n−1
i = 1
n ρim − ρim

2.

The proposed HFV-PCA was applied to each simulated dataset using the estimation scheme

described in Section 2.5. Specifically, we first performed FPCA9 on the functional part

of the generated hybrid data to estimate and retain the first L functional PCs that jointly

explain 99% of the functional data variability. Likewise, we applied the classical PCA27 to

the vector part to obtain the first J vector PCs that cumulatively capture 99% of the variance

in vector data. We then combined the estimated FPCA and PCA components in a way that

produces consistent estimates of the HFV-PCA components—see steps (c) to (e) in Section

2.5. We also compared the performance of the proposed HFV-PCA to the competing method

by Ramsay and Silverman,28 which is briefly described in Section 1. In our simulation

study, 11 Fourier basis functions were used to presmooth the functional parts and produce

Fourier coefficients, which were augmented by the corresponding vector part. Note that

such applications of Ramsay and Silverman’s method under settings I and II, respectively,

correspond to correctly specified and misspecified basis functions for pre-smoothing.

Table 1 reports RSEs and ASEs averaged across 500 simulated datasets of size n = 100

under each setting (I/II) and functional data type (SIR/DIR/DR). For DR functional data,

HFV-PCA and Ramsay and Silverman’s method show comparable performance, at least

when the basis functions are correctly specified for the latter method (Setting I). When

the basis functions are misspecified (Setting II), RSE ratios of HFV-PCA to Ramsay and

Silverman’s method are as low as 0.3 to 0.4 for some components, and the ASE ratios are

around 0.72 to 0.94. The discrepancy in the performance between the two methods increases

for DIR functional data, where HFV-PCA outperforms Ramsay and Silverman’s method

with respect to most components. Specifically, the RSE and ASE ratios are between 0.7

and 0.9 (except for the second and third hybrid PCs) under Setting I, and between 0.35

and 0.95 (except for the first eigenvalue and second hybrid PC) under Setting II. For SIR

functional data, we find that the gains in the estimation and prediction accuracy are dramatic

when switching from Ramsay and Silverman’s method to our HFV-PCA. Under Setting I,

the RSE and ASE ratios are between 0.06 and 0.22, indicating that RSEs and ASEs are

reduced by 78% to 94% using HFV-PCA as compared to using Ramsay and Silverman’s

method. The gains are more substantial under Setting 2, where the ratios are smaller than

0.15 for all components. The severe underperformance of Ramsay and Silverman’s method

on SIR functional data is mainly attributed to its presmoothing step that approximates each

function as a linear combination of Fourier basis functions and coefficients. Specifically,
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many of the basis coefficients estimated from a SIR function will have very high or even

infinite variance, making it impossible to accurately represent each function using any

reasonable basis.39 This, in turn, severely negatively affects the ability of Ramsay and

Silverman’s method to precisely estimate hybrid PCs and scores. On the other hand, the

proposed method maintains satisfactory performance in all configurations, as its estimation

scheme allows to flexibly incorporate the most appropriate FPCA method given particular

type/sparsity of functional data.

Table 2 presents the same statistics for n = 200. The RSEs and ASEs decrease in all

configurations, suggesting the consistency of our estimation scheme. The degree of gains

in estimation and predictive accuracy by using HFV-PCA over Ramsay and Silverman’s

method is similar to the case when n = 100. In sum, the simulation results show that the

proposed HFV-PCA performs well under varying sparsity and patterns of functional data and

is much more robust compared to the existing method.

3.2 | Multivariate functional data and vector data

We will now consider hybrid obsevations consisting of multivariate functional data (K = 2)

and 10-dimensional vector data (p = 10), Zi = Y i
(1), Y i

(2), Xi , i = 1, …, n, that are generated

according to the truncated hybrid PC decomposition with 10 components as in (11). Herein,

the functional part of each hybrid PC ξm = ψm(1), ψm(2), θm , m = 1, …, 10, consists of two

functions, ψm(1) and ψm(2), defined on a unit interval [0, 1]. In Setting I, they both take the form

of ψ2j − 1
(k) tk = 2−1/2sin 2jπtk , ψ2j

(k) tk = 2−1/2cos 2jπtk , k = 1, 2, j = 1, …, 5. In setting II,

we keep the same form for ψm(1) but set ψm(2) as the first 10 normalized Legendre polynomials

divided by 2; that is, the basis systems of ψm(1) and ψm(2) differ. Measurement error term is set

as ϵi[t] = ϵi
(1) t1 , ϵi

(2) t2 , 0 T
, where ϵi

(1) t1  and ϵi
(2) t2  are i.i.d. N(0, 0.4). The vector part of

each hybrid PC, θm, is set as in Section 3.1. The hybrid PC scores, pim, are independently

generated from N 0, λm  with λm = 0.5m−1. We consider sample sizes of n = 150 and n =

300.

The following three combinations of the types of functional data are considered: (a) Y(1)

and Y(2) are both SIR (SIR-SIR); (b) Y(1) and Y(2) are SIR and DR, respectively (SIR-DR);

and c) Y(1) and Y(2) are both DR (DR-DR). The proposed HFV-PCA was applied to each

simulated dataset as done in Section 3.1, except that here, MFPCA26 was applied to Y(1) and

Y(2) to extract multivariate functional PCs. For performance evaluation, RSE λm , RSE ξ m ,

and ASE ρm , m = 1, 2, 3, are averaged across 500 datasets, as in Section 3.1.

Table 3 presents the RSEs of the three leading eigenvalues and hybrid PCs and the ASEs

of the three leading hybrid PC scores given multivariate functional and vector data. The

performance of HFV-PCA is similar to the simple case of univariate and vector functional

data considered in Section 3.1. As expected, the RSEs and ASEs decrease as the sample

size and the density of observed functional data increase. Specifically, the proposed method

shows excellent performance when both or one of functions are DR, with small RSEs

and ASEs for most HFV-PCA components. But even when both functions are SIR, the
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proposed method is able to yield acceptable results with small to moderate RSEs and ASEs

(all less than or around 0.2). We see that the results are very similar between the two

settings, suggesting that the proposed non-parametric estimation scheme is robust to varying

distributions of multivariate functional data.

4 | APPLICATION TO RENAL STUDY

In this section, we apply the proposed HFV-PCA to renal study data collected at Emory

University during the period of January 1998 to July 2008 (a.k.a. the Emory renal

study). Renal obstruction is a serious clinical problem that can lead to irreversible loss

of renal function if not properly treated. In recent years, diuresis renography has been

widely adopted as a cost-effective and noninvasive approach to detect renal obstruction.40

The procedure starts with an intravenous injection of a gamma emitting tracer, 99mTc-

Mercaptoacetyltriglycine (MAG3), which is rapidly removed from the blood by the kidneys

and then travels down the ureters from the kidney to the bladder. Then, a set of renogram

curves is generated by quantifying and recording the MAG3 photon counts inside the kidney

over time.41 The first renogram curve (called baseline) consists of the MAG3 photon counts

detected at 59 time points during an initial period of 24 minutes (see the left panel in

Figure 1). The second renogram curve (called post-furosemide) is obtained at 40 time points

during an additional period of 20 minutes after an intravenous injection of furosemide (see

the right panel in Figure 1). There are several interpretable features of renogram curves

that suggest high/low likelihood of renal obstruction.42 Typically, the renogram curves of

an unobstructed kidney is characterized by a quick uptake and immediate excretion of

MAG3, suggesting no blockage (see dashed lines in the top panel of Figure 1). On the

other hand, the obstructed kidney’s baseline curve exhibits a prolonged period of MAG3

accumulation, followed by its poor excretion to the bladder throughout the post-furosemide

renogram (see solid lines in the top panel of Figure 1). However, in practice, there is a

high kidney-to-kidney variability in renogram curves, and many of them show patterns

that are not clear-cut (see bottom panel of Figure 1). To further facilitate interpretation of

diuresis renography, several pharmacokinetic parameters are also generated from the MAG3

scan.41 These parameters quantify various pharmacokinetic properties of baseline and post-

furosemide renogram curves in the whole kidney, pelvis and cortical regions (e.g., time to

peak photon counts, photon counts in the last minute of furosemide acquisition divided by

the maximum baseline acquisition counts) that are important for evaluating possible renal

obstruction. In addition, four clinical variables are also collected for each kidney. The first

clinical variable is kidney’s age. The other three clinical variables are scores provided by

three nuclear medicine experts which range from −1 to 1, with scores closer to 1 indicating

higher likelihood of renal obstruction. In sum, each kidney has 18 renogram variables

(4 clinical variables and 14 pharmacokinetic parameters), which are listed in Table 4. In

general, larger values of the renogram variables are associated with reduced kidney’s ability

to drain (higher likelihood of renal obstruction), though they are highly variable and have no

clear cutoff values to separate obstructed from nonobstructed kidneys.

Given such a lack of definite guidance on using renogram curves and variables to detect

renal obstruction,42 the Emory renal study aims to identify and understand co-varying

patterns of renogram curves and variables that provide further insights into underlying
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physiological mechanisms of renal obstruction. The dataset contains 253 kidneys of 131

subjects (66 men [50.4%], 65 women [49.6%]; mean age, 58 years; SD, 16 years; range,

18-87 years) randomly selected from the Emory University Hospital’s archived database.

Each kidney has baseline and post-furosemide renogram curves, each of which is assumed

to be realizations of an underlying smooth random process that quantifies MAG3 photon

counts as a function of scan time. Following the notation introduced in Section 2, Y i
(1) and

Y i
(2), respectively, denote the baseline and post-furosemide renogram curves of ith kidney (i

= 1, …, 253). Eighteen renogram variables constitute the vector data for each kidney; that is,

Xi ∈ ℝ18.

To address the goal of the study, we applied HFV-PCA to hybrid data Zi = Y i
(1), Y i

(2), Xi

consisting of bivariate (K = 2) functional and 18-dimensional vector data. We first

standardized Xi and rescaled it as Xi
∗ = ω1/2Xi, using ω from (10). We then applied

MFPCA26 on Y i = Y i
(1), Y i

(2)  and classical PCA on Xi* to estimate and retain the first L = 4

functional PCs and the first J = 13 vector PCs that explain 99% of variability in functional

and vector data, respectively. Finally, the estimated MFPCA and PCA components were

combined, following steps (c) to (e) in Section 2.5, to produce consistent estimates of the

HFV-PCA components.

Figure 2 depicts the first estimated hybrid PC, ξ 1 = ψ1
(1), ψ1

(2), θ1  which explains 73% of

the total variability in the data. Specifically, the top left and right panels respectively show

the functional parts of the first estimated hybrid PC, ψ1
(1) and ψ1

(2) which correspond to

the baseline and post-furosemide scans, respectively. The baseline PC ψ1
(1) consists of an

increasing positive contribution over time; that is, the greatest variability among baseline

renogram curves is observed in the later scan period. On the other hand, the post-furosemide

PC ψ1
(2) is characterized by a positive contribution that decreases over time. To aid in

interpretation of the baseline and post-furosemide PCs, the middle panel of Figure 2 (left:

baseline; right: post-furosemide) shows the mean function μ(k) = n−1
i = 1
n Y i

(k) (solid line)

and the functions obtained by adding (+) and subtracting (−) a suitable multiple of ψ1
(k), k =

1, 2. We see that the baseline PC clearly distinguishes one pattern that exhibits a prolonged

period of accumulation of MAG3 inside a kidney (+) from another that is characterized

by a quick uptake of MAG3 followed by its quick drainage to the bladder (−). The post-

furosemide corresponds to a variation in the overall MAG3 level that is either elevated (+) or

reduced (−) relative to the mean throughout the scan period. Thus, ψ1
(1) and ψ1

(2) differentiate

between kidneys according to their ability to quickly drain MAG3. The last panel of Figure

2 depicts the vector part of the first hybrid PC. All weights are positive, thereby separating

kidneys with normal and reduced ability to drain, and being consistent with the direction of

variability captured by the functional parts. In sum, the first hybrid PC is interpretable as a

renal obstruction-related effect, as co-varying patterns of renogram curves and variables for

positive scores agree with the well-known physiological mechanism of renal obstruction.
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Figure 3 depicts the second estimated hybrid PC, ξ 2 = ψ2
(1), ψ2

(2), θ2 , which explains 17%

of the total variability in the data. The top left and right panels, respectively, present ψ2
(1)

(second baseline PC) and ψ2
(2) (second post-furosemide PC). The middle panel shows a

suitable multiple of these PCs added (+) or subtracted (−) from the mean functions at

baseline (left panel) and post-furosemide (right panel) periods. Kidneys with high negative

scores on this component would display higher MAG3 level throughout the baseline period,

but at the same time exhibit a faster washout during the post-furosemide period. On the

other hand, those with high positive scores would display a relatively low MAG3 level

that persists throughout the entire renal scan period without much drainage. ψ2
(1) and ψ1

(2)

thus differentiate between kidneys according to the degree of discrepancy in the MAG3

level accumulated at baseline and that remaining at the end of the scan. Accordingly, the

vector part of the second hybrid PC, depicted in the bottom panel, has negative loadings

on renogram variables representing pharmacokinetic properties of the post-furosemide

renogram and positive loadings on others, characterizing the variation of MAG3 level along

a contrast between baseline and post-furosemide periods.

Finally, a scatterplot of estimated first and second hybrid PC scores of 253 kidneys

is shown in Figure 4. The kidneys are grouped into three categories according to the

consensus diagnosis provided by three internationally renowned experts in nuclear medicine:

unobstructed (184 kidneys; 72%), equivocal (9 kidneys; 4%), and obstructed (60 kidneys;

24%). First hybrid PC scores are nearly all positive for kidneys diagnosed with renal

obstruction, while those of kidneys that are unobstructed are mainly negative. Such a finding

is consistent with the interpretation of the first hybrid PC provided above. On the other hand,

the second hybrid PC scores do not differ notably by the obstruction status. One interesting

observation on this component is that the kidneys that were diagnosed as “equivocal” by the

expert panel have large positive scores, suggesting that physicians generally have difficulty

interpreting the renal scan that shows neither apparent uptake nor apparent drainage of

MAG3. Thus, more clinical research is warranted to study the implications of such a

pattern on short-/long-term renal function. In conclusion, the results show that HFV-PCA

can capture important source of variation in the renal study data that have meaningful

interpretations tied to the underlying physiological mechanism of renal obstruction.

5 | CONCLUSION

This paper introduces a novel PCA framework that provides an efficient and parsimonious

means to jointly model functional and vector data, while fully leveraging their simultaneous

variations and co-varying patterns. The theoretical foundation of the framework builds

on a Hilbert space that combines functional and vector objects as a single hybrid object

and admits a covariance operator whose eigen-decomposition represents major modes of

joint variation between the two data modalities. For practical implementation, a stochastic

Karhunen-Loéve representation of a hybrid object is derived, and its analytic relationship

with the functional and vector PC decompositions is established, enabling a fast and robust

estimation scheme where components of HFV-PCA are computed based on separate FPCA

and classical PCA counterparts. In application to renal study data, the proposed HFV-PCA
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leads to interesting insights into co-varying patterns of renogram curves and variables that

are related to the mechanisms underlying renal obstruction. The proposed method thus

shows promise for the analysis of modern clinical studies in which different data modalities

are collected for each experimental unit. Further research may focus on extending the

proposed method to incorporate a wider variety of modern data modalities including tensors

and shapes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1.
The top panel presents the baseline (left) and post-furosemide (right) renogram curves of 2

kidneys that are diagnosed as “non-obstructed” (dashed lines) and “obstructed” (solid lines).

The bottom panel shows baseline and post-furosemide renogram curves of 253 kidneys.

[Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2.
Estimated 1st hybrid PC ξ 1 of the Emory renal study data. The top panel represents the

functional part of the estimated 1st hybrid PC: ψ1
(1) (left; baseline) and ψ1

(2) (right; post-

furosemide. The middle panel plots the mean functions (solid line) and the effects of adding

(+) and subtracting (−) a suitable multiple of ψ1
(1) (left) and ψ1

(2) (right). The bottom panel

is the barplot for the vector part of the estimated 1st hybrid PC θ1. [Colour figure can be

viewed at wileyonlinelibrary.com]
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FIGURE 3.
Estimated 2nd hybrid PC ξ2 of the Emory renal study data. The top panel represents

the functional part of the estimated 2nd hybrid PC: Ψ2
(1) (left; baseline) and Ψ2

(2) (right;

post-furosemide. The middle panel plots the mean functions (solid line) and the effects of

adding (+) and subtracting (−) a suitable multiple of Ψ2
(1) (left) and Ψ2

(2) (right). The bottom

panel is the barplot of the vector part of the estimated 2nd hybrid PC θ2. [Colour figure can

be viewed at wileyonlinelibrary.com]
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FIGURE 4.
Scatterplot of first and second hybrid PC scores of 253 kidneys. [Colour figure can be

viewed at wileyonlinelibrary.com]
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TABLE 1

Performance of principal component analysis (PCA) of hybrid functional and vector data (HFV-PCA) and

Ramsay and Silverman’s method (RS-PCA) in terms of RSE λm , RSE ξ m  and ASE ρm , m = 1,2,3, averaged

across 500 simulated datasets of size n = 100 (with SDs in parentheses) for each setting (I/II) and functional

data type (SIR/DIR/DR). “Ratio” denotes the RSE and ASE ratios of HFV-PCA to RS-PCA

Setting I Setting II

Type R(A)SE HFV-PCA RS-PCA Ratio HFV-PCA RS-PCA Ratio

SIR RSE λ1 0.038 (0.040) 0.245 (0.780) 0.154 0.031 (0.035) 2.017 (8.693) 0.016

RSE λ2 0.062 (0.057) 0.576 (0.609) 0.107 0.063 (0.060) 1.270 (1.960) 0.050

RSE λ3 0.197 (0.082) 1.166 (1.084) 0.169 0.152 (0.086) 3.191 (2.297) 0.048

RSE ξ 1 0.047 (0.041) 0.236 (0.316) 0.198 0.046 (0.045) 0.683 (0.432) 0.067

RSE ξ 2 0.081 (0.053) 0.449 (0.392) 0.180 0.101 (0.073) 0.844 (0.519) 0.120

RSE ξ 3 0.308 (0.109) 1.396 (0.515) 0.221 0.248 (0.153) 1.696 (0.258) 0.146

ASE ρ1 0.060 (0.026) 0.531 (0.505) 0.113 0.074 (0.028) 1.368 (1.282) 0.054

ASE ρ2 0.059 (0.032) 0.550 (0.327) 0.107 0.071 (0.036) 0.888 (0.439) 0.080

ASE ρ3 0.034 (0.013) 0.579 (0.209) 0.058 0.041 (0.020) 0.805 (0.197) 0.051

DIR RSE λ1 0.020 (0.030) 0.023 (0.036) 0.889 0.024 (0.027) 0.021 (0.031) 1.138

RSE λ2 0.018 (0.023) 0.020 (0.030) 0.888 0.021 (0.026) 0.023 (0.033) 0.927

RSE λ3 0.018 (0.022) 0.023 (0.030) 0.779 0.022 (0.036) 0.030 (0.046) 0.735

RSE ξ 1 0.028 (0.027) 0.034 (0.036) 0.826 0.055 (0.041) 0.120 (0.069) 0.459

RSE ξ 2 0.072 (0.051) 0.061 (0.054) 1.186 0.084 (0.063) 0.073 (0.074) 1.144

RSE ξ 3 0.094 (0.061) 0.080 (0.072) 1.169 0.121 (0.114) 0.344 (0.252) 0.353

ASE ρ1 0.034 (0.019) 0.043 (0.026) 0.798 0.046 (0.026) 0.070 (0.054) 0.665

ASE ρ2 0.046 (0.028) 0.053 (0.035) 0.874 0.057 (0.037) 0.076 (0.051) 0.750

ASE ρ3 0.037 (0.019) 0.041 (0.021) 0.912 0.049 (0.031) 0.065 (0.067) 0.754

DR RSE λ1 0.021 (0.033) 0.021 (0.033) 0.999 0.022 (0.033) 0.021 (0.026) 1.042

RSE λ2 0.017 (0.024) 0.017 (0.024) 1.006 0.018 (0.024) 0.017 (0.024) 1.007

RSE λ3 0.019 (0.025) 0.019 (0.025) 0.998 0.019 (0.025) 0.036 (0.038) 0.532

RSE ξ 1 0.030 (0.032) 0.032 (0.035) 0.943 0.036 (0.033) 0.100 (0.050) 0.361

RSE ξ 2 0.057 (0.051) 0.055 (0.051) 1.042 0.062 (0.054) 0.055 (0.056) 1.126

RSE ξ 3 0.061 (0.056) 0.062 (0.058) 0.979 0.075 (0.086) 0.234 (0.133) 0.319

ASE ρ1 0.025 (0.022) 0.026 (0.023) 0.963 0.026 (0.022) 0.037 (0.032) 0.720
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Setting I Setting II

Type R(A)SE HFV-PCA RS-PCA Ratio HFV-PCA RS-PCA Ratio

ASE ρ2 0.036 (0.032) 0.055 (0.033) 0.987 0.037 (0.032) 0.040 (0.041) 0.935

ASE ρ3 0.024 (0.019) 0.062 (0.019) 0.997 0.025 (0.021) 0.030 (0.025) 0.818

Abbreviations: ASE, average squared error; DR, dense and regular; DIR, dense and irregular; RSE, relative squared error; SIR, sparse and irregular.
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TABLE 2

Performance of principal component analysis (PCA) of hybrid functional and vector data (HFV-PCA) and

Ramsay and Silverman’s method (RS-PCA) in terms of RSE λm , RSE ξ m  and ASE ρm , m = 1,2,3, averaged

across 500 simulated datasets of size n = 200 (with standard deviations in parentheses) for each setting (I/II)

and functional data type (SIR/DIR/DR). “Ratio” denotes the RSE and ASE ratios of HFV-PCA to RS-PCA

Setting I Setting II

Type R(A)SE HFV-PCA RS-PCA Ratio HFV-PCA RS-PCA Ratio

SIR RSE λ1 0.025 (0.026) 0.134 (0.245) 0.189 0.019 (0.022) 1.207 (6.743) 0.016

RSE λ2 0.050 (0.041) 0.493 (0.527) 0.102 0.048 (0.045) 1.168 (1.183) 0.041

RSE λ3 0.192 (0.057) 1.152 (0.939) 0.167 0.138 (0.066) 3.642 (1.964) 0.038

RSE ξ 1 0.024 (0.020) 0.148 (0.213) 0.161 0.021 (0.018) 0.584 (0.381) 0.036

RSE ξ 2 0.045 (0.027) 0.339 (0.307) 0.132 0.052 (0.036) 0.761 (0.501) 0.068

RSE ξ 3 0.255 (0.068) 1.579 (0.418) 0.162 0.165 (0.094) 1.783 (0.181) 0.092

ASE ρ1 0.047 (0.012) 0.427 (0.333) 0.111 0.059 (0.012) 1.193 (1.008) 0.049

ASE ρ2 0.043 (0.015) 0.484 (0.278) 0.088 0.052 (0.016) 0.856 (0.415) 0.060

ASE ρ3 0.026 (0.007) 0.634 (0.172) 0.041 0.030 (0.010) 0.886 (0.148) 0.034

DIR RSE λ1 0.010 (0.013) 0.011 (0.016) 0.903 0.015 (0.011) 0.011 (0.014) 1.336

RSE λ2 0.012 (0.015) 0.013 (0.018) 0.931 0.016 (0.017) 0.017 (0.023) 0.946

RSE λ3 0.009 (0.014) 0.013 (0.022) 0.700 0.011 (0.021) 0.021 (0.028) 0.499

RSE ξ 1 0.015 (0.013) 0.017 (0.016) 0.889 0.091 (0.027) 0.091 (0.027) 0.396

RSE ξ 2 0.047 (0.028) 0.031 (0.025) 1.514 0.037 (0.041) 0.037 (0.041) 1.292

RSE ξ 3 0.060 (0.030) 0.040 (0.027) 1.500 0.265 (0.151) 0.265 (0.151) 0.265

ASE ρ1 0.024 (0.009) 0.030 (0.012) 0.796 0.033 (0.011) 0.051 (0.033) 0.655

ASE ρ2 0.032 (0.014) 0.035 (0.017) 0.918 0.037 (0.015) 0.053 (0.026) 0.703

ASE ρ3 0.028 (0.011) 0.029 (0.010) 0.938 0.036 (0.014) 0.047 (0.047) 0.772

DR RSE λ1 0.010 (0.014) 0.010 (0.014) 0.999 0.010 (0.015) 0.012 (0.014) 0.867

RSE λ2 0.010 (0.014) 0.010 (0.014) 1.012 0.011 (0.014) 0.010 (0.014) 1.015

RSE λ3 0.010 (0.015) 0.010 (0.015) 1.004 0.010 (0.014) 0.028 (0.024) 0.352

RSE ξ 1 0.014 (0.014) 0.015 (0.015) 0.950 0.020 (0.014) 0.078 (0.018) 0.251

RSE ξ 2 0.029 (0.025) 0.027 (0.024) 1.098 0.034 (0.023) 0.025 (0.021) 1.343

RSE ξ 3 0.030 (0.025) 0.031 (0.026) 0.983 0.041 (0.025) 0.192 (0.033) 0.212

ASE ρ1 0.013 (0.009) 0.014 (0.010) 0.972 0.014 (0.009) 0.021 (0.012) 0.664
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Setting I Setting II

Type R(A)SE HFV-PCA RS-PCA Ratio HFV-PCA RS-PCA Ratio

ASE ρ2 0.019 (0.015) 0.019 (0.015) 0.999 0.019 (0.014) 0.019 (0.016) 0.995

ASE ρ3 0.014 (0.010) 0.014 (0.010) 0.999 0.014 (0.009) 0.019 (0.008) 0.747

Abbreviations: ASE, average squared error; DR, dense and regular; DIR, dense and irregular; RSE, relative squared error; SIR, sparse and irregular.
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TABLE 3

Performance of principal component analysis (PCA) of hybrid functional and vector data (HFV-PCA) in terms

of RSE λm , RSE ξ m  and ASE ρm , m = 1, 2, 3, averaged across 500 simulated datasets of sizes n = 150 and

n = 300 (with SDs in parentheses) for each setting (I/II). Given two functions per observation unit, three

combinations of the types of multivariate functional data are considered: SIR-SIR, SIR-DR, and DR-DR

Setting I Setting II

n R(A)SE SIR-SIR SIR-DR DR-DR SIR-SIR SIR-DR DR-DR

150 RSE λ1 0.054 (0.044) 0.026 (0.027) 0.014 (0.019) 0.054 (0.045) 0.025 (0.027) 0.014 (0.019)

RSE λ2 0.104 (0.060) 0.042 (0.038) 0.014 (0.018) 0.104 (0.061) 0.042 (0.037) 0.014 (0.018)

RSE λ3 0.183 (0.067) 0.075 (0.049) 0.021 (0.026) 0.174 (0.068) 0.072 (0.049) 0.020 (0.024)

RSE ξ 1 0.047 (0.026) 0.035 (0.023) 0.020 (0.022) 0.049 (0.027) 0.035 (0.023) 0.020 (0.022)

RSE ξ 2 0.108 (0.043) 0.076 (0.037) 0.037 (0.032) 0.115 (0.048) 0.076 (0.038) 0.037 (0.033)

RSE ξ 3 0.277 (0.077) 0.161 (0.056) 0.045 (0.036) 0.273 (0.083) 0.161 (0.055) 0.045 (0.036)

ASE ρ1 0.044 (0.013) 0.026 (0.012) 0.017 (0.012) 0.046 (0.013) 0.026 (0.012) 0.017 (0.012)

ASE ρ2 0.043 (0.019) 0.029 (0.019) 0.024 (0.021) 0.045 (0.020) 0.029 (0.019) 0.024 (0.021)

ASE ρ3 0.030 (0.011) 0.020 (0.012) 0.017 (0.012) 0.031 (0.012) 0.020 (0.012) 0.017 (0.012)

300 RSE λ1 0.046 (0.031) 0.018 (0.018) 0.007 (0.009) 0.047 (0.031) 0.018 (0.018) 0.007 (0.009)

RSE λ2 0.093 (0.043) 0.035 (0.026) 0.008 (0.011) 0.095 (0.043) 0.034 (0.026) 0.008 (0.011)

RSE λ3 0.180 (0.047) 0.070 (0.034) 0.015 (0.017) 0.173 (0.048) 0.068 (0.033) 0.014 (0.016)

RSE ξ 1 0.031 (0.013) 0.023 (0.013) 0.011 (0.012) 0.031 (0.014) 0.023 (0.013) 0.011 (0.012)

RSE ξ 2 0.074 (0.025) 0.052 (0.022) 0.019 (0.016) 0.078 (0.026) 0.052 (0.022) 0.019 (0.016)

RSE ξ 3 0.215 (0.054) 0.121 (0.037) 0.022 (0.016) 0.212 (0.057) 0.121 (0.037) 0.022 (0.016)

ASE ρ1 0.037 (0.007) 0.020 (0.007) 0.010 (0.007) 0.039 (0.007) 0.020 (0.007) 0.011 (0.007)

ASE ρ2 0.034 (0.011) 0.020 (0.011) 0.014 (0.011) 0.035 (0.011) 0.020 (0.011) 0.014 (0.011)

ASE ρ3 0.023 (0.005) 0.013 (0.006) 0.010 (0.006) 0.023 (0.006) 0.013 (0.006) 0.009 (0.006)

Abbreviations: ASE, average squared error; DR, dense and regular; DIR, dense and irregular; RSE, relative squared error; SIR, sparse and irregular.
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TABLE 4

Eighteen renogram variables (4 clinical and 14 pharmacokinetic variables)

Index Variable Description

1 Age Range: 18 to 87 years

2-4 Expert’s Score (from 3 experts) Ranges from −1.0 to 1.0 with higher scores indicating higher likelihood of obstruction

5 Cortical AUC-d1 Area under the first derivative of cortical renogram

6 BL AUC-d1 Area under the first derivative of BL renogram

7 Cortical mv Minimum velocity (mv) of the cortical renogram

8 BL mv Minimum velocity (mv) of BL renogram

9 Cortical tminv Time to minimum velocity (tminv) of cortical renogram

10 BL tminv Time to minimum velocity (tminv) BL renogram

11 Cortical tmax Time to maximum (tmax) of cortical renogram

12 BL tmax Time to maximum (tmax) of BL renogram

13 PF AUC Area under the PF renogram

14 Pelvis AUC Area under the renogram of the pelvis region

15 PF max Maximum (max) of the PF renogram

16 Pelvis max Maximum (max) of the pelvis renogram

17 lastPF/maxBL Ratio of PF renogram at last time point to BL max

18 flrstPF/maxBL Ratio of PF renogram at first time point to BL max

Abbreviations: BL, Baseline; PF, post-furosemide.
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