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Modeling of energy consumption 
factors for an industrial 
cement vertical roller mill 
by SHAP‑XGBoost: a "conscious 
lab" approach
Rasoul Fatahi1, Hamid Nasiri2*, Ehsan Dadfar3 & Saeed Chehreh Chelgani4*

Cement production is one of the most energy-intensive manufacturing industries, and the milling 
circuit of cement plants consumes around 4% of a year’s global electrical energy production. It is well 
understood that modeling and digitalizing industrial-scale processes would help control production 
circuits better, improve efficiency, enhance personal training systems, and decrease plants’ energy 
consumption. This tactical approach could be integrated using conscious lab (CL) as an innovative 
concept in the internet age. Surprisingly, no CL has been reported for the milling circuit of a cement 
plant. A robust CL interconnect datasets originated from monitoring operational variables in the 
plants and translating them to human basis information using explainable artificial intelligence (EAI) 
models. By initiating a CL for an industrial cement vertical roller mill (VRM), this study conducted 
a novel strategy to explore relationships between VRM monitored operational variables and their 
representative energy consumption factors (output temperature and motor power). Using SHapley 
Additive exPlanations (SHAP) as one of the most recent EAI models accurately helped fill the lack 
of information about correlations within VRM variables. SHAP analyses highlighted that working 
pressure and input gas rate with positive relationships are the key factors influencing energy 
consumption. eXtreme Gradient Boosting (XGBoost) as a powerful predictive tool could accurately 
model energy representative factors by R-square ever 0.80 in the testing phase. Comparison 
assessments indicated that SHAP-XGBoost could provide higher accuracy for VRM-CL structure than 
conventional modeling tools (Pearson correlation, Random Forest, and Support vector regression.

As one of the most energy-intensive industries, cement plants consume around 100 kWh of electrical energy for 
each ton of their production. This can be counted yearly as over 6% of global energy consumption. More than 
60% of this tremendous energy has been used in the comminution units (crushers and mills) to reduce the size 
of raw materials and clinker1–3. In the mid-1990s, the vertical roller mill (VRM) was introduced to the cement 
industry to reduce this energy usage. Besides lowering power consumption, VRMs may improve process capacity 
and simplify it since VRMs can simultaneously implement milling and drying processes. However, controlling 
VRM performances and understanding relationships within their operational variables need serious attention4–7.

In the cement plant, the conventional VRM controlling systems mainly rely on the field staff to manually 
adjust the few process parameters based on their experience. These adjustments generally lead to having an 
unstable system, increasing power consumption, and reducing plant productivity8. For filling these gaps and 
having a long-term stable operation, it would be essential to provide a complete picture of relationships within 
VRM elements. Understanding these correlations and their magnitude would help develop models for generat-
ing robust controlling systems. Generating such systems and assessing the VRM process operational parameters 
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would help to optimize power consumption, improve maintenance, reduce environmental issues, and make the 
process sustainable.

A few investigations have been conducted to model VRM performance. Fernandes et al.9 used the back-
propagation neural network (BPNN) to model size products of a raw VRM mill. They indicated RMSprop as 
an optimizer for modeling raw meal residual values would generate a lower error than the Adagrad and Adam 
optimizers. Their results showed that BPNN algorithms could accurately predict raw meal residue product qual-
ity in the cement industry. The population balance model for simulation of a VRM in a cement clinker grinding 
circuit was investigated by Fatahi and Barani11. They reported that the clinker particle spent a short time inside 
the VRM, and the mean residence time is about 67 s. The tanks-in series model compared to the Weller model 
was more proper to describe the residence time distributions in the VRM11. Extreme learning as an artificial 
intelligence (AI) method was used for modeling online measurement quality parameters of a raw material VRM. 
Results showed that the proposed model effectively achieved the online estimation of the key indicator parameters 
for the VRM process, laying the foundation for online parameter optimization11. However, no published study 
has been modeled and examined inter-correlations between VRM energy consumption indicative factors and 
plant operational parameters. Using “conscious lab (CL)” and constructing models based on operational data 
originated from industrial VRM could be an innovative way to tackle these gaps.

CL as a new model vision constructs based on datasets that have been generated by monitoring operational 
parameters within industrial plants12–15. CL is exploring relationships between these parameters by using AI sys-
tems and highlighting the effectiveness of each variable on the key process factors16,17. CL can be upgraded using 
explainable artificial intelligence (EAI) models as an innovative concept. EAI systems are emerging approaches 
of modeling that translate big complicated datasets into know-how information and relieve considerable trans-
parency by converting complex relationships into human basis structures18,19. In other words, EAIs can change 
black box AI systems into white-box ones. CL constructed using EAI models and real processing datasets can be 
a powerful tool for ranking operational variables based on their importance, reducing time, cost, and possible 
laboratory and scale-up errors, and can be considered for training operating person based on the plant reality.

As a strategic approach, for the first time, this investigation is going to develop a CL based on over 3000 
records monitored from a cement VRM circuit by using the most recent generated EAI models called "SHAP" 
(SHapley Additive exPlanations). Based on the game-theoretic approach, SHAP explores relationships within 
variables (linearly and nonlinearly), ranks them based on their importance, and marks their magnitude. SHAP 
illustrates these correlations for every record of variables and develops a complete explanation between the 
global average and the model output20–23. Besides SHAP, a sophisticated CL system would be required to predict 
the output variables accurately. Thus, XGBoost (eXtreme Gradient Boosting), a comprehensive predictive tool, 
has been employed to model motor power and outlet temperature as representative energy consumption fac-
tors of the VRM circuit. XGBoost is a flexible AI predictor tool with high performance and accuracy22,24–27. One 
of the main advantages of XGBoost over other typical machine learning methods is its more significant set of 
hyperparameters, which makes it capable of being better tuned. For comparison purposes, random forest28–31 
and support vector regression32–35 as conventional AI methods have also been used to assess the SHAP-XGBoost 
ability to develop CL of VRM.

Materials and methods
Database.  The provided data were collected from a cement plant (Fig. 1) located in Ilam, west of Iran. The 
plant has two cement production lines which in total produces 5300  t/day cement. The raw materials (lime, 
silica, and iron ore) enter the circuit through two apron feeders. The raw materials are crushed in a hammer 
crusher to D95 80 mm. The raw materials were mixed in a certain proportion and fed into a vertical roller mill 
(LOESCHE mill). The raw vertical roller mill has four rollers, 3000 KW main drive, 4.8 m table diameter, 2.16 m 
roller diameter with 330 t/h capacity (made by LOESCHE Company from Germany). The table mill’s rotation 
speeds are mainly constant, and there is approximately a fixed one-year period of changing liners of the mill 
body and hardfacing operations of wear rollers. For constructing a CL dedicated to the VRM circuit and pre-
dicting motor power and outlet temperature (as indicative energy factors), a dataset was collected from one of 
the vertical roller raw mill circuits (line 2) in the Ilam cement plant. The critical operating parameters gathered 
during the standard operation are summarized in Table 1. Variables were monitored hourly and were taken into 
account. In general, over 3000 records were prepared and used for the modeling.

In the LOESCHE mill, the rollers are hydraulically pressed against a disc table, and the feed would be crushed 
and pulverized between the rollers and the disc table. The motor power running all four rollers was calculated 
based on Eq. (1). In other words, the rollers are hydraulically pressed by working pressure against a table, and the 
feed is ground between the rollers and the table36–38. Therefore, working pressure would affect the size distribu-
tion of products. The main motor power is related to the rollers’ applied pressure (working pressure) and the 
feed rate of raw materials on the grinding table. The hot gas was produced by kiln and preheater7. For drying, 
ground materials are transported to the separator by hot gas that is introduced into the mill. Thus, the difference 
between the input and output pressures of the mill (ΔP) would be essential. Dried material will be transferred 
for size classification37. Unground material would stay over the classifier, and they have to be kept inside the mill 
to meet the desired size. One of the critical factors through the process is controlling the mill body vibrating as 
a result of the working pressure of the rollers on the crushing table39. After the grinding, drying, transportation, 
and separation process inside the mill, the product is transferred as cement kiln feed to a storage silo.

where Cos ϕ (Cos ϕ is 0.88 for the Ilam cement production) is the power factor, I is the current, V is the voltage, 
and P is the power.

(1)P =
√
3IVCosϕ
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Modeling.  After removing the missing data, the provided dataset was processed by different AI models. 
SHAP and Pearson correlation were initially considered to assess the relationship between variables. After that, 
the dataset was randomly split into three sections: training (70%), validation (15%), and testing (15%). Similar 
dataset sections were considered for constructing all the proposed models for comparison purposes. The proce-
dure was based on the following diagram (Fig. 2).

SHapley Additive exPlanations (SHAP).  SHAP stands for "SHapley Additive exPlanations", a machine learn-
ing (ML) approach to explain models predictions and provide interpretability of an ML model. First presented 
by Lloyd Shapley, it uses Shapley values to interpret the model’s output16,23,40,41. The Shapley value of a feature 
is equal to the difference between the average prediction value of samples with and without this feature42. It 
measures the feature’s importance in the model43,44. Shapley value φi for the model f  can be computed as follows:

(2)φi

(
f , x

)
=

∑

S⊂M\i

|S|!(|M| − |S| − 1)!

|M|!

[
f (S ∪ {i})− f (S)

]

Figure 1.   Schematic of raw vertical roller mill circuit in the Ilam cement plant.

Table 1.   Monitoring variables in the Ilam cement plant (STD: Standard deviation).

Description of variables Variables Min Max Mean STD

The load of mill feed Feed rate (ton/h) 250 307 297.16 7.11

The applied pressure for grinding by roller Working pressure (bar) 68 80 72.76 1.92

The required hot gas for drying and transportation of raw material Input gas flow (m3/h) 60,000 890,000 600,559 90,434

The speed of classifiers rotor Classifier speed (rpm) 48 59 52.47 1.03

The vibration of mill body due to operational parameters Mill body vibrating (mm/s) 2.30 36.90 4.16 1.13

The temperature of the mill inlet Input temperature (°C) 21 2132 204.50 61.26

The differential pressure between inlet and outlet of mill ΔP (mbar) 9 97 85.37 3.45

The pressure of the mill inlet Input pressure (mbar) − 6 4 − 2.27 0.88

The temperature of the mill outlet Output temperature (°C) 7 98 66.99 9.82

The power drawing of the main motor Motor power (kW) 138 2370 1845.76 397.32
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where M represents the set of all input variables, S denotes a subset of M with the i th feature excluded from M , 
and f (S ∪ {i})− f (S) is the marginal feature contribution of the i th variable45–48.

Extreme Gradient Boosting (XGBoost).  Extreme Gradient Boosting (XGBoost), proposed by Chen and 
Guestrin49, is an efficient and scalable ensemble algorithm based on gradient boosted trees16,50. XGBoost has 
been used in a wide range of engineering fields, resulting in outstanding performance due to the advantages of 
parallel tree boosting and using various regularization techniques13,51,52. XGBoost is a stable algorithm with low 
bias and variance, handling outliers24,53. It adds a regularization term to the objective function as follows:

where L(·) is a convex loss function and �(·) is a regularization function used to avoid overfitting by controlling 
the model’s complexity54. �(θ) is calculated as follows:

where T denotes the number of leaf nodes, and w is the weight of each leaf. γ and � are regularization parameters 
that determine the relative weight of each penalty term24,55–57.

Random forest.  Random forest (RF) is an ensemble learning technique that combines the bagged integrated 
learning theory58 with the random subspace approach59,60. RF is a nonparametric method, robust to outliers, and 
can handle missing values in data16,61,62. RF is a collection of decision trees that are grown independently. The 
predictions of these trees are aggregated by averaging to generate the final output. This ensures that the overall 
variance is reduced24,56,63. Mathematically speaking, RF generates an ensemble of N decision trees. Using these 
trees, the final output of an input feature vector x is computed as follows:

(3)Obj(θ) = L(θ)+�(θ)

(4)�(θ) = γT +
1

2
��w�2

Figure 2.   Constructing a conscious lab for a vertical roller mill.
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where T̂n(x) is the result of the n th tree’s estimation13,64–66.

Support vector regression.  Support vector regression (SVR) is a nonparametric supervised machine learn-
ing approach proposed by Drucker67. Vapnik’s support vector concept was the inspiration for Drucker to 
develop SVR67. An important feature of SVR is its powerful capability for nonlinear predictions68, which 
results from the nonlinear transformation it uses. SVR maps observations into a higher-dimensional feature 
space via nonlinear transformation and then solves the problem24,69,70. Given a training dataset with n samples 
T = {

(
x1, y1

)
,
(
x2, y2

)
, ..., (xn, yn)} , xiǫRd , yiǫR , the following linear function can formulate non-linear relation 

between input and output:

where f (x) denotes the estimated output and φ(x) is a mapping function. w and b (i.e., bias) are two parameters 
that can be determined by optimizing the following objective function:

where C is the penalty parameter or regularization constant, ξ−i  and ξ+i  denote slack variables that represent the 
upper and lower constraints on the output variable13,24,71–73.

Evaluation.  Coefficient of determination (R2), Root mean square error (RMSE), and the differences between 
actual and predicted values in different stages of modeling (training, validating, and testing) were used to assess 
the model’s accuracy.

where SSres denotes the sum of squares of residuals and SStot is the total sum of squares that can be computed 
as follows:

where yi and y represent the observed data and mean of the observed data, respectively. RMSE can be calculated 
as follows:

where ŷi and yi denote the predicted and observed values, respectively, and n represents the number of samples. 
Moreover, to assess whether the performance of the XGBoost is statistically significant, a two-tailed Welch’s t-test 
with a significance level α = 0.05 was applied for RMSE and R2 between the XGBoost and other methods, and 
the obtained p-value was reported. Welch’s t-test is a nonparametric univariate statistical test used to test the 
hypothesis that two samples have equal means74.

Results and discussions
Relationship assessments.  Exploring correlations and ranking variables based on their effectiveness on 
key parameters would help operate heavy machines such as VRMs accurately, make the process sustainable and 
reduce energy consumption. For drawing insights about relationships with the VRM variables, Pearson cor-
relation (as a typical correlation assessment method) and SHAP assessment were conducted through the entire 
recorded data from the plant. SHAP (Fig. 3) showed the complexity of relationships between VRM operational 
variables. Ranking variables (Figs. 4, 5) based on their importance (SHAP values) illustrated that working pres-
sure and input gas flow had the highest effectiveness on output temperature and motor power, respectively. Their 
correlations were positive. Working pressure (grinding pressure) could be considered the most effective vari-
able through the VRM size reduction process. Increasing working pressure enhances the energy applied to the 
material, and more fines are offered to the classifier, leaving the circuit faster37. Altun et al.6 indicated a strong 
correlation coefficient between Workingpressure

Classifierrotorspeed and product rate. In other words, increasing the work pressure 
would enhance energy consumption6,7,37,75.

There is a good agreement between SHAP and Pearson correlation outcomes (Fig. 6); however, SHAP could 
model relationships much more accurately. It was well documented that Pearson correlation can only examine 
one by one linear relationship and show their magnitude. While, SHAP would develop a multi-linear-nonlinear 
interaction assessment among the recorded variables, rank them based on their importance, and highlight the 
magnitude of the multivariable relationships. For example, while linear relationship examination by Pearson 
correlation showed no significant interactions between input pressure or temperature and VRM indicative energy 

(5)T̂(x) =
1

N

N∑

n=1

T̂n(x)

(6)f (x) = w
T
φ(x)+ b

(7)φ(w, ξ) =
1

2
�w�

2
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(ξ
−
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+
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(10)RMSE =

√∑n
i=1

(
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consumption factors, SHAP placed it within the most influential variables. Obviously, input temperature would 
affect the output temperature of products. Moreover, input pressure could commendably affect the process 
energy consumption since too low negative inlet pressure influences the steady gas flow within the system and 
disturbs the grinding procedure6,37,75. Pearson correlation showed a positive relationship between motor power, 
while multivariable assessment by SHAP illustrated a negative correlation. VRMs are very prone to vibration 
if their operational variables marginally are varied. It was reported that slight vibration could enhance particle 
transportation and improve energy consumption7. Apart from linear assessment (Fig. 5), gas flow also influences 
energy consumption factors, as SHAP illustrated (Fig. 4). Gas flow through the mill helps ensure constant lift 
for the internal circulating material and keeps separator performance constant to ensure a consistent product 
size distribution6,76.

It was reported that only the mill input material feed rate has a decisive influence on the mill differential 
pressure (ΔP) while gas flow rate, grinding pressure, and classifier speed are maintained at the similar condi-
tion according to the pre-adjustments during operation unless the characteristics of the raw material such as 
the grind ability of the material have been changed6,76. However, SHAP results showed by increasing the ΔP, the 
power consumption was increased (Fig. 4). This correlation can be explained by the fact that variations in the 
ΔP when the grinding pressure and the hot air circulation are constant directly reflect the amount of material 
inside the mill. In other words, when the ΔP decreases, the amount of input material is less than the discharge 
material, causing the material bed to be thinner. Thus, as the ΔP increases, the material bed becomes thicker. 
VRM vibrates when the material bed is too thin or thick and trips or stops when the vibration limit is exceeded. 
For these reasons, the total feed amount must be adjusted so that the ΔP is within the correct range6,76. Based 

Figure 3.   SHAP assessed the complexity of inter-correlations between VRM operational variables.
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on these facts, SHAP analyses indicated (Fig. 7) that keeping the most effective parameter constant and chang-
ing other variables for the same size production makes it possible to reduce energy consumption. These results 
demonstrated that CL can model motor power and output temperature.

Predictive models.  For constructing predictive AI models (XGBoost, RF, and SVR), from the entire pro-
vided dataset, 70% of records were randomly used for the training step, 15% for the validation and the rest were 
considered for the testing step. Many XGBoost features were explored and adjusted during the training step 
for finding the most accurate models and tuning process (Table 2). The XGBoost validation and testing stage 
outcomes (Table 3) demonstrated that the generated model could quite accurately predict the energy consump-
tion indicative essential factors based on the plant monitored variables. A comparison between various models’ 
outcomes (Table 3) highlighted that the XGBoost model resulted in higher accuracy than these two conventional 
AI models for the prediction (Fig. 8). A two-tailed Welch’s t-test with a significance level α = 0.05 was applied 
for R2 and RMSE between the XGBoost and other methods, and the obtained p-value was reported in Table 3. As 
can be seen, in all comparisons, the null hypothesis is rejected based on the statistical tests with a 95% confidence 
level, and the results are considered statistically significant.

By comparing different machine learning methods used in this research, it is crucial noting that RF and 
XGBoost are both ensemble techniques, whereas SVR is not. XGBoost is a boosting method that builds on weak 
learners to train the next learner to enhance the already trained ensemble. RF is a bagging method that uses a 
random subset of features to train each weak learner independently. XGBoost and SVR have a low computa-
tional cost, but RF does not. SVR takes advantage of the kernel trick, and XGBoost uses parallel processing to 
reduce the computational cost. All three methods are getting little impact from outliers. XGBoost and RF are 

Figure 4.   Ranking SHAP values and magnitude of relationships between VRM monitoring variables and 
output temperature.

Figure 5.   Ranking SHAP values and magnitude of relationships between VRM monitoring variables and motor 
power.
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performed well with missing data in the dataset, but SVR does not. SVR has low bias and high variance in terms 
of bias and variance, while XGBoost and RF have low bias and variance24,53,77–80. These outcomes illustrated that 
SHAP-XGBoost could effectively construct a CL for a VRM circuit as an impressive EAI structure. Moreover, 
these results showed that using EAI can highlight the reality of relationships between operating variables on the 
industrial scale. Therefore, besides controlling the system regarding the process variables, it would be possible 
to predict the performance of existing machines based on the new feed materials, reduce penalties and keep the 
circuit sustainable. The robust capability of such a system depicted the potential of industrial digitalization for 
understanding, predicting, and maintaining various powder technology processes and controlling their energy 
consumption.

Conclusion
Understanding relationships among operational variables can effectively help to improve control systems and 
reduce energy consumption in the cement plant as one of the most intensive energy consumer industries. Digi-
talization and constructing a conscious lab for exploring correlations between operational variables of a vertical 
roller mill and its indicative energy factors would potentially enhance its maintenance and efficiency. SHAP-
XGBoost, as one of the most recently developed explainable artificial intelligence systems, would be a novel 
approach for developing a conscious lab and converting industrial datasets to understandable human basis 
pictures. SHAP-XGBoost could accurately depict correlations among operational parameters of an industrial 
vertical roller mill. SHAP assessment indicated that working pressure and input gas flow had the highest effec-
tiveness (positive correlations) on output temperature and motor power, respectively. Pearson correlation and 
SHAP could highlight a negative inter-correlation between classifier speed and working pressure. Moreover, 
results showed that increasing the input gas flow would decrease the input temperature. XGBoost has accurately 
estimated the vertical roller mill’s output temperature and motor power based on the plant monitoring variables 
(R-square over 0.99, and 0.80 for the output temperature and motor power, respectively). In the validation and 
testing stages, a comparison between results of SHAP-XGBoost and the other examined conventional models 

Figure 6.   Pearson correlation assessments between VRM monitoring variables.
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(Pearson correlation, random forest, and support vector regression) indicated that SHAP-XGBoost as a power-
ful method could be applied for generating conscious labs which dedicated to the energy sector factors within 
powder production technologies.

Figure 7.   Possible optimization for the motor power consumption based on the SHAP results.

Table 2.   The XGBoost parameter settings for predicting VRM indicative energy parameters.

Parameter Value (output temperature) Value (motor power)

Base learner Gradient boosted tree Gradient boosted tree

Tree construction algorithm Exact greedy Exact greedy

Learning objective Regression with squared loss Regression with squared loss

Learning rate ( η) 0.260 0.225

Lagrange multiplier ( γ) 6.53 1

Number of gradients boosted trees 60 81

Maximum depth of trees 16 7

The minimum sum of instance weight (Hessian) needed in a child 1 1

L2 regularization term on weights 1 1

The initial prediction score of all instances (global bias) 0.5 0.5

Subsample ratio of the training instances 1 1

Maximum delta step, we allow each leaf output to be 0 (there is no constraint) 0 (there is no constraint)
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Data availability
The dataset used to support the findings of this study is available from the corresponding author upon request. 

Received: 12 January 2022; Accepted: 25 April 2022

Table 3.   Outcomes of various models in the validation and testing stages.

Method

Output temperature

R2 RMSE

Validation Test p-value Validation Test p-value

Random forest

Avg 0.88 0.83
3.69E − 09

2.42 2.56
6.58E − 14

std (0.02) (0.07) (0.19) (0.50)

Support vector regression 0.49 0.39 1.82E − 168 4.88 4.94 3.78E − 185

XGBoost 0.99 0.99 – 0.36 0.41 –

Motor power

Random forest

Avg 0.71 0.62
1.53E − 25

186.11 217.65
3.30E − 25

std (0.01) (0.01) (2.54) (3.59)

Support vector regression 0.17 0.19 1.33E − 168 313.47 313.22 1.95E − 214

XGBoost 0.80 0.80 – 151.66 155.60 –

Figure 8.   Differences between actual and predicted energy consumption indicative variables generated by 
various models in the testing phase.
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