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An Archimedes' screw for light
Emanuele Galiffi 1✉, Paloma A. Huidobro 2 & J. B. Pendry 3✉

An Archimedes’ Screw captures water, feeding energy into it by lifting it to a higher level. We

introduce the first instance of an optical Archimedes’ Screw, and demonstrate how this

system is capable of capturing light, dragging it and amplifying it. We unveil new exact

analytic solutions to Maxwell’s Equations for a wide family of chiral space-time media, and

show their potential to achieve chirally selective amplification within widely tunable parity-

time-broken phases. Our work, which may be readily implemented via pump-probe experi-

ments with circularly polarized beams, opens a new direction in the physics of time-varying

media by merging the rising field of space-time metamaterials and that of chiral systems, and

offers a new playground for topological and non-Hermitian photonics, with potential appli-

cations to chiral spectroscopy and sensing.
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Fundamental aspects of wave interactions in time-dependent
systems have recently attracted renewed interest, thanks to
the discovery of ultrathin and highly nonlinear materials.

Freed from constraints such as reciprocity and energy conserva-
tion, these systems can enable new and exotic wave behaviours. In
this work we open a new direction in the rising field of space-time
metamaterials by blending it for the first time with the established
field of chiral systems, realising the electromagnetic analogue of
the famous Archimedes’ screw for fluids.

The significance of time-varying media for wave manipulation
rose from the several proposals amidst the decade-long quest for
achieving magnet-free nonreciprocity both in photonics1–3 and
with mechanical waves4,5. Temporal structuring of matter opens
several new avenues for wave control: periodic modulations of
material parameters can enable the design of topologically non-
trivial phases6 as well as Floquet topological insulators7 and
topological insulators with synthetic frequency dimensions8. In
addition, appropriate tailoring of the temporal dependence of
reactive elements can enable arbitrary energy accumulation9,
whereas the introduction of time-modulated, non-Hermitian
elements can lead to nonreciprocal mode-steering and gain10, as
well as event cloaking and perfect absorption11, and surface-wave
coupling on spatially flat interfaces12. In non-periodic systems,
abrupt switching holds the key to new directions such as time-
reversal13, time-refraction14 and anisotropy-induced wave
routing15, as well as frequency conversion16–18, bandwidth
enhancement19 and Anderson localization20.

Furthermore, drawing from the combination of spatial and
temporal degrees of freedom, space-time metamaterials, whose
parameters are modulated in a travelling wave-type fashion21–25,
have recently acquired renewed momentum both for funda-
mental reasons, as they enable the mimicking and generalization
of physical motion beyond the common relativistic constraints,
leading to optical drag26, localization27 and novel amplification
mechanisms28,29, and for practical applications such as harmonic
generation30, beam steering31 and power combination from
multiple sources32. Successful experiments with spatiotemporal
modulation include works in acoustics5,7,33 and elasticity34,
microwaves3,30, in the infrared35 and even in diffusive systems36,
and they have recently started pushing closer to the optical
domain37 thanks to the introduction of novel highly nonlinear
materials such as ITO38 and AZO39. Finally, homogenization
schemes have recently been developed for both temporal40,41 and
spatiotemporal42 metamaterials.

A longer-established, yet still rampant, multidisciplinary field
of research is that of chiral systems (we note that the term “chiral”
is also used to signify a medium with bianisotropic coupling.
Here, however, we only refer to its helical character, and asso-
ciated circular dichroism properties). Owing to its crucial tech-
nological applications, ranging from display technology to
spectroscopy and biosensing, the mathematical study of chiral
electromagnetic systems dates back several decades43, with
experimental observations of optical activity dating much farther
back to the early observations of Biot and Pasteur in the 19th
century44. Theories of chiral media have been successfully applied
to the study of cholesteric liquid crystals45, as well as a variety of
naturally occurring structures46 and, since the advent of meta-
materials, to negative refraction47–49, broadband and enhanced
optical activity50, asymmetric transmission51–53 and, more
recently, topology54.

In this work, we combine the essential ingredients of these two
dominant themes of the current metamaterial scene, chirality and
time-modulation, to propose the first instance of chiral space-
time metamaterials, realising the electromagnetic analogue of the
famous Archimedes’ Screw for fluids. In developing our exact
analytical model for a wide class of these systems, we uncover

closed-form analytic solutions to Maxwell’s Equations, and use
them to demonstrate the potential of these structures for chirally
selective amplification resulting from Parity-Time (PT)-broken
phases. The richness of our analytic model paves the way to
future systematic studies of chiral space-time media as a new
playground for topological and non-Hermitian physics, and may
be realized in the near future both in optics, via pump-probe
experiments with circularly polarized pump beams, and at RF,
with nonlinear circuit elements.

Results and discussion
Formalism. Consider a medium with the following anisotropic
permittivity and permeability tensors:

ε̂=ε1 ¼ Iþ δ̂ε ¼ Iþ 2αεR
T
�x̂x̂

TR� ð1Þ

μ̂=μ1 ¼ Iþ δ̂ε ¼ Iþ 2αμR
T
þŷŷ

TRþ ð2Þ
where x̂ and ŷ are unit vectors in the plane perpendicular to the
propagation axis of the screw, 2α is the modulation amplitude of
the respective electromagnetic parameter, ε1 and μ1 are the
background permittivity and permeability of the medium, and the
rotation matrix

R± ¼
cðθ ± Þ sðθ ± Þ 0

�sðθ ± Þ cðθ ± Þ 0

0 0 1

0
B@

1
CA ð3Þ

describes (c= “cos” and s= “sin”) the screwing operation along
the spatiotemporal variable θ±= gz−Ωt ± ϕ. Note that we have
chosen units such that ε0= μ0= c0= 1. The wavenumber g and
frequency Ω of the modulation define the screw velocity vs=Ω/g,
and the electric and magnetic components of the screw are
separated by a dephasing 2ϕ, such that the system is impedance-
matched everywhere if αε= αμ and ϕ= 0. Figure 1(b) depicts the

tip of the principal axes (eigenvectors) δε
!

and δμ
!

of the modu-
lated part of the material tensors for ϕ= 0, which correspond to
the respective screwing coordinates:

x0
! ¼ cðθÞ x!þ sðθÞ y! y0

! ¼ �sðθÞ x!þ cðθÞ y! ð4Þ
The complete form of the material tensors is:

ε̂=ε1 ¼ Iþ 2αε

c2ðθ�Þ cðθ�Þsðθ�Þ 0

cðθ�Þsðθ�Þ s2ðθ�Þ 0

0 0 0

0
B@

1
CA ð5Þ

μ̂=μ1 ¼ Iþ 2αμ

s2ðθþÞ �cðθþÞsðθþÞ 0

�cðθþÞsðθþÞ c2ðθþÞ 0

0 0 0

0
B@

1
CA ð6Þ

For simplicity, we assume to be working in a regime where
material dispersion is negligible, and focus on the normal-
incidence case kx= ky= 0. In order to write an eigenvalue
problem for the eigenfrequencies ω(k), we use Maxwell’s
Equations for the displacement field D and magnetic induction B:

∂D
∂t

¼ ∇ ´ μ̂�1B
∂B
∂t

¼ �∇ ´ ε̂�1D: ð7Þ

In order to seek an analytic solution for normal incidence, we
transform our fields into a new, coordinate-dependent basis of
forward (⇀ )- and backward (↼ )-propagating fields:

F*
x0 ¼ cðθÞðDx þ �ByÞ þ sðθÞ½Dy þ ð��BxÞ� ð8Þ

F*
y0 ¼ �sðθÞðDx þ �ByÞ þ cðθÞ½Dy þ ð��BxÞ� ð9Þ
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F(
x0 ¼ cðθÞðDx � �ByÞ þ sðθÞ½Dy � ð��BxÞ� ð10Þ

F(
y0 ¼ �sðθÞðDx � �ByÞ þ cðθÞ½Dy � ð��BxÞ� ð11Þ

which follow the screw symmetry (x0, y0) of the system. Here
�Bx=y ¼

ffiffiffiffiffiffiffiffiffiffiffi
ε1=μ1

p
Bx=y ¼ Bx=y=Z1, where Z1 is the wave impedance

of the background medium. Remarkably, thanks to this symmetry
operation we can completely absorb into the new basis fields the
θ-dependence of Maxwell’s Equations induced by the screw
modulation, so that the infinite system of coupled equations
decouples into independent 4-by-4 blocks for any dephasing ϕ
(see SM for details). Upon assuming a Floquet-Bloch ansatz
Ψ= ei(kz−ωt)∑mamei(2m−1)(gz−Ωt), where m 2 Z, each 4-by-4
block can be written as an eigenvalue problem for the nth set of
four bands:

ωn

F*n
F(n

� �
¼

M*
*;n

M*
(;n

M(
*;n

M(
(;n

 !
F*n
F(n

� �
ð12Þ

where n= 2m− 1 is an odd integer, and the four 2-by-2 matrices
M coupling forward and backward waves are given in closed
form in the SM, together with a detailed derivation of the basis
transformation. The motivation for the doubly periodic harmonic
form of this Fourier expansion is that, due to the squared
trigonometric functions in Eqs. (5)–(6) the actual spatiotemporal
period of the system is halved. In addition, the presence of the
trigonometric functions of θ in our modified basis fields implies
an existing e±i(gz−Ωt) offset, which must be accounted for in our
ansatz in order to account for all even Fourier components. It is
worth remarking that the possibility of block-diagonalizing the
problem in this fashion is unusual for a photonic crystal. It is

owed to the fact that, as opposed to the discrete symmetries
present in a conventional crystal, screw symmetry is a continuous
symmetry. Hence, the change induced on the fields by an
infinitesimal perturbation which respects this symmetry can
always be recovered by applying the same symmetry operation to
the fields themselves, which is the essence of Eqs. (8)–(11).

Analytic band structures. In the impedance-matched (αε= αμ
and ϕ= 0) case, the 4-by-4 system above further decouples for-
ward and backward-propagating waves, so that the off-diagonal
matrices M*

(;n
and M(

*;n
vanish, as expected due to the

impedance-matching condition. In this case, the eigenvalues can
easily be calculated by hand. The eigenvalues for the ϕ= 0 case
can thus be written as:

ω"
n;± ðkÞ ¼ �nΩþ σ"�knð1þ �αþ

2 Þ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�kn �αþ

2 Þ
2 þ Δ"

0

q
ð13Þ

where �α± ¼ �αε ± �αμ are the sum (+ ) and difference (− ) between
the electric and magnetic modulations, �αε=μ ¼ �αε=μ=ð1þ 2αε=μÞ,
kn= k+ ng, Δ"

0 ¼ ½ð�g � σ"ΩÞ þ �αþ�g�ð�g � σ"ΩÞ, while σ⇀=
+ 1 and σ↼=−1 stand for forward and backward-travelling
modes. Note that in the impedance-matched case we have
α� ¼ �α� ¼ 0. In Fig. 2 we show the analytic (lines) and numerical
(triangles/circles for RHP/LHP) forward-propagating bands of first
and second order, in order to show their interaction, as well as the
first-order backward-propagating band (which only interacts
weakly with the screw in this case) for increasing values of Ω.
Details of the numerical Floquet-Bloch calculations are given in the
SM. Throughout the paper, we use g= ε1= μ1= 1, so that the
temporal modulation frequency Ω corresponds numerically to
the screw velocity vs, and we refer to them equivalently. Here we use
αε= αμ= α= 0.4. Note how the two bands display opposite cir-
cular polarisation in their fundamental harmonic, which we define
as right-hand-polarized (RHP, blue) or left-hand polarized (LHP,
red) according to the fixed-position/varying-time convention.

At low velocities (a-c), no band gaps are present in this
impedance-matched scenario, as expected. Note how the first and
second forward bands with the same polarization approach one
another as Ω is increased. In fact, as Ω/g approaches a critical
value Ω�

crit ¼ 1=ð1þ 2αÞ a transition occurs (in this instance
Ω�

crit ¼ 0:5556), with the appearance of a diagonal band-gap,
hosting growing and decaying states, bounded by two exceptional
points (d). This unstable gap closes again at the upper critical
value Ωþ

crit ¼ 1. These boundaries can be easily shown by
studying the argument of the square root in the eigenvalues
above. The complex pairs of states in the unstable phase are
marked with a dashed line, located at ℜ[ωn(k)]+ ℑ[ωn(k)]. The
appearance of the unstable band-gap within the impedance-
matched regime is a peculiar feature of luminal systems, which
has been pointed out before29. However, the amplification
mechanism in previous works did not manifest itself as a pair
of exceptional points separated by a PT-broken phase with
complex eigenvalues as in this case, but rather on the generation
of a supercontinuum. Therefore, this is the first instance of such
PT-symmetry breaking occurring near the luminal regime in spite
of impedance-matching, which would normally be expected to
prevent the formation of band-gaps. Note, furthermore, how this
instability only occurs for one circular polarization, whereas states
with the opposite polarization retain real eigenvalues.

In Fig. 3 we investigate the changes to the bands at long-
wavelengths as we vary Ω between the two critical values Ω�

crit and
Ωþ

crit , which bound the velocity regime within which complex
states can be found. One characteristic feature of space-time
media which was recently discovered is their ability to exert a

Fig. 1 Illustration of an optical Archimedes’ screw. a A mechanical
Archimedes screw carries fluids from a lower to a higher ground56. b An
optical screw is a medium whose permittivity and permeability tensors are
modulated such that the principal axes δε

!
and δμ

!
of their modulation

describe two helices. Furthermore, in our model we allow for a dephasing
2ϕ between the two modulations. For zero-dephasing (ϕ= 0), at
θ= gx−Ωt= 0, δε

!
points along the x-axis while δμ

!
points along the y-axis.

For finite dephasing ϕ≠ 0 the two modulations are shifted forward and
backward in space-time by 2ϕ, so that their total phase difference is 2ϕ.
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drag on light, in analogy with the Fresnel drag exerted by a
moving medium, but with a wider tunability and with the
possibility of superluminal modulation. This drag manifests itself
as an asymmetry between the velocity of the forward and
backward waves in the long-wavelength/low frequency limit

k≪ g ∧ ω≪Ω. By Taylor-expanding the ω(k) eigenvalues above,
we can clearly see that the first-order contribution: ω"ðkÞ ¼
± ð1þ �αþ=2Þkþ Oðk2Þ yields the same speed for both propaga-
tion directions, and for both polarizations. This first-order
contribution is depicted as dot-dashed black lines in Fig. 3,

Fig. 2 Band structure of the photonic Archimedes’ Screw for the zero-dephasing (ϕ= 0) and αε= αμ= α= 0.4 (impedance-matched) case, for g= 1
(so that vs=Ω). The different panels correspond to increasing modulation frequency/speed (a) Ω= 0, (b), Ω= 0.4, (c) Ω= 0.55 and (d) Ω= 0.7. Note
the attraction (c) between forward RHP bands: as Ω ! Ω�

crit � 0:5556, this interaction gives rise to the PT-broken phase, with complex RHP bands (the
dashed lines show the two complex states ℜ[ω] ±ℑ[ω]) being shown for Ω= 0.7 in (d).

Fig. 3 Band structure of the photonic Archimedes’ Screw near the origin for the zero-dephasing (impedance-matched) case across the luminal vs→ 1
regime. Continuous lines denote analytic solutions for the lowest LHP (red) and RHP (blue) bands, and dots (LHP) and triangles (RHP) of the respective
colours correspond to numerical simulations. The different panels correspond to different modulation frequencies (and velocities) across the luminal
regime (a) Ω= 0.65, (b) Ω= 0.7, (c) Ω= 0.75, (d) Ω ¼ Ω0

crit ¼ 1þ �αþ=2 � 0:78, (e) Ω= 0.85 and (f) Ω= 0.9. Note how the exceptional points for the
RHP bands in the first quadrant reaches the origin for Ω ¼ Ω0

crit, giving rise to a broadband chiral PT-broken phase. In addition, at this critical point the
optical drag flips sign from negative (opposing the flow of light) to positive.
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which helps us visualise the optical drag induced by the screw as a
result of the higher-order contributions. It is easy to see how
forward waves of both polarizations are being dragged backwards
as Ω increases towards another key critical value Ω0

crit ¼ 1þ
�αþ=2 (≈0.78 in panels a-c).
As Ω ! Ω0

crit , something quite spectacular happens: the
velocity of both RHP and LHP waves first tends to zero near
the origin, the waves being effectively led to a halt by the screw,
then becomes negative and tends to−∞, implying that the
optical drag becomes now infinite and opposite to the direction of
the screw. In addition, while LHP states remain stable, the
instability affecting RHP modes reaches the origin, implying a
bandwidth-unlimited instability, so that the system can now
amplify RHP waves of any frequency. It is important to stress
that, in sharp contrast to previously studied luminal
instabilities28,29, this amplification mechanism preserves and
amplifies the original frequency of a wave without generating a
supercontinuum, as we show later in the Paper. Finally, for
Ω0

crit <Ω< 1, the drag suddenly flips sign, tending to+∞ as Ω !
Ω0

crit from above. This occurs after the exceptional point touches
the origin, so that the opposite PT-exact branch is now pinned to
it. Thus, forward waves now travel faster than backward ones, and
the Screw is exerting a positive drag on the waves. Note how the
velocities of the two polarizations are pinned together at the
origin. This is a consequence of the PT-symmetry underlying this
system: since a PT operation must flip the two polarizations into
each other along with the k and ω axes, the requirement that the
bands be analytic near the origin implies that their slopes must be
identical in its proximity.

With some more algebra, we can also derive the closed-form
dispersion relation for the ϕ= π/4 case, which reads:

ω"
n;± ¼ �nΩ� �g 1þ �αþ

2

� �

þ σ"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �αþ

2

� �
�k
2
n ± 2ð1þ �αþÞΩ�kn þ Δπ=4

s ð14Þ

where Δπ=4 ¼ ð�αþ�g2 Þ2 þΩ2 and n is an odd integer. Note that in
this case the offset between the modulations in ε̂ and μ̂ implies
that the system is no longer impedance-matched. As a result,
band gaps are present at any screw velocity. In Fig. 4 we
investigate the bands near the origin as we sweep over different
modulation frequencies (velocities) Ω for α= 0.4.

Despite having changed only the dephasing parameter ϕ, we
notice that the bands are remarkably different from the
matched case, highlighting the richness and diversity of
physics at play in this system. Firstly, note how, as opposed
to the ϕ= 0 case, here it is the forward waves which are hardly
interacting with the screw, whereas the backward bands are
dramatically altered. Secondly, note how the band-gaps here
are conventional ω-gaps and k-gaps, and no diagonal gaps are
observed. The occurrence of k-gaps is well-known in the
literature on time-varying media, and it is a signature of
parametric amplification. However, k-gaps have only been
observed in superluminal regimes, whereby the modulation
travels faster than the waves in the pristine medium. On the
contrary, this system is the first studied one (to the best
knowledge of the authors) to exhibit k-gaps at modulation
speeds well below c. Our analytic solution allows us to calculate
the exact screw velocity Ω=g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �αþ
p

at which the k-gaps
open (exceptional point), which in this case is 0.7454.
Similarly to the ϕ= 0 case, the second critical point is at
Ω0

crit ¼ 1þ �αþ=2, and it coincides with the positive and
negative complex bands touching each other at the origin
(panel d). Note that, concurrently with this critical point, the
unstable band occurs precisely at ω= 0 since the first two
terms in the lowest eigenvalues cancel out, and the square root
returns an imaginary number. Thus, this regime hosts a DC
instability. Once again, this instability is chiral in nature, as
only one of the two polarizations is affected by it, whereas the
other is only subject to an optical drag.

In order to study in more depth the asymptotic slope of the
bands at long wavelengths, in Fig. 5 we plot the velocity of the

Fig. 4 Band structures across the luminal regime for the ϕ= π/4 case. As in the previous scenario α= 0.4 and the colour/marker scheme is identical.
The different panels correspond to modulation frequencies (and velocities) (a) Ω= 0.6665, (b) Ω= 0.7, (c) Ω= 0.75, (d) Ω ¼ 0:78 � Ω0

crit, (e) Ω= 0.85
and (f) Ω= 0.9. Note the qualitative difference with the ϕ= 0 case in the character of the complex bands. Note how the band gaps here are either purely
vertical or purely horizontal. Moreover, k-gaps in this system appear below the luminal limit, in contrast to all previous observations, where they only
appear in superluminal scenarios.
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forward and backward waves in the limit k→ 0 as a function of
the screw velocity, for the ϕ= 0 (top panel) and ϕ= π/4
(bottom panel) cases, and for α= 0.4 (continuous lines and
dots) and α= 0.1 (dashed and dot-dashed lines). For ϕ= 0 it is
evident that the forward waves are the only ones to be
significantly affected by the screw. As Ω approaches the critical
value Ω0

crit , the velocity of the forward waves decreases to the
point where it becomes negative and tends to−∞ with a
resonance-like profile, as expected from our discussion of Fig. 3.
This divergence and sign-flipping of the long-wavelength
velocity occurs at Ω ¼ 1þ �αþ=2, and is common to both the
ϕ= 0 and the ϕ= π/4 cases. For the ϕ= π/4 case, the situation
is inverted, with the backward waves slowing down with Ω and
flipping to forward-travelling ones, diverging at the above
critical velocity and re-emerging as fast backward waves again
after the transition. From these plots it is even more evident to
observe how the two polarizations (lines for RHP, dots for LHP,
shown for α= 0.4 only) share the same velocity at the origin, as
per our PT-symmetry argument above.

Chiral instabilities. We now turn our attention to the chiral
instabilities observed in the band diagram for ϕ= 0. In Fig. 6 we
show the opening of the diagonal band gap as we vary Ω for fixed
α= 0.4 (left column) and as we vary α for fixed Ω= 0.6. It can
clearly be seen how, for RHP waves, the first two bands attract
one another, to give rise to two complex solutions within the
interval, bound by a pair of exceptional points, a well-known
signature of PT-symmetry breaking55. In fact, while the system
under study is only characterized by real material parameters, its
time-dependence allows for the existence of PT-broken phases,
where the material can amplify incoming waves. Crucially, the
chiral nature of the optical Archimedes’ screw implies that this
system selectively amplifies RHP waves, as we set out to
demonstrate.

In Fig. 7 we plot the transmission of incoming circularly
polarized plane waves through a finite length d of optical
Archimedes’ screw by plotting the Lissajous figure described by a
cycle of the outgoing wave as a result of the beating between the
frequency ω= 1 of the incoming waves and the rotation
frequency Ω of the screw. We plot the real part of the x and y-
components of the electric field. The left and right columns
correspond to LHP and RHP input waves respectively. For LHP
input, the top panel considers Ω= 1, while the bottom panel
assumes Ω= 0.5, and the blue, red, yellow and purple curves
correspond to different thicknesses d= 0, 0.2π, 0.35π and 0.5π,
chosen to illustrate the change in the resulting Lissajous figure.
Note that, as expected, the time required for the waves to
complete a cycle of Lissajous figure corresponds to the beating
time between the frequency ω= 1 of the incoming waves and that
of the screw Ω.

For LHP waves, the interaction between the incoming wave
and two real eigenstates simply results in Lissajous figures for the
outgoing waves, whose complexity increases with the least
common multiple between the two frequencies ω and Ω, and no
net gain is achieved. This picture changes dramatically for RHP
waves: now the two states which the incoming wave couples to
share the same real part, which results in simpler beating
patterns. However, the imaginary part of the eigenvalues soon
causes a net amplification of the outgoing waves as d increases, a
signature of the chiral nature of this amplification process. Note
how the curves corresponding to increasing values of d= 0, π/2,
π and 3π/2 result in the electric field to acquire larger and larger
values, the curves moving farther away from the origin. The top
right panel corresponds to Ω= 1 and the bottom one to
Ω= 0.75.

Finally, in order to further investigate the underlying
amplification mechanism at work, in Fig. 8 we plot the modulus
of the x-component of the electric field as a function of time, over
a period 2π/Ω of the screw. We consider incoming waves of
frequency ω= 1, temporal screw frequency Ω= 0.8 and dephas-
ing ϕ= 0. Panel (a) shows the dynamics of the transmitted field
in the stable phase for small α= 0.05. The interaction with the
screw leads to a beating between the two, with a periodic
exchange of energy between the screw and the waves, whose
extent oscillates periodically with the thickness d of the screw. By
contrast, panel (b) shows the results for the unstable case α= 0.4,
where the incoming waves are exciting the unstable states in the
PT-broken phase.

Orientation of the light polarisation is crucial to its coupling to
a moving grating and to whether it extracts energy from or
delivers energy to the grating. At low and high grating speeds the
polarisation wave travels at a velocity markedly different from
that of the grating and drifts through alternately amplifying and
attenuating regions. Energy exchange oscillates up and down but

Fig. 5 Long-wavelength (k → 0) velocity of the bands across all velocity
regimes for half-dephasing (a) ϕ = 0 and (b) ϕ = π/4. Continuous lines
and circles are for α= 0.4, whereas the dashed and dotted lines are for
α= 0.1, demonstrating the shrinking of the velocity range over which the
interaction with the screw is strongest. Note that for ϕ= 0 the screw
interacts significantly only with the forward bands, whereas the opposite
occurs for ϕ= π/4. Note that the slopes of RHP and LHP bands are always
degenerate in the k→ 0 limit, as a consequence of PT symmetry. Shaded
regions correspond to velocity regimes comprised between the exceptional
points Ω�

crit and Ωþ
crit (for the α= 0.4 case), while the critical point Ω0

crit (also
for α= 0.4), common to both the ϕ= 0 and ϕ= π/2 cases, is marked as a
black, dashed line.
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averages to zero and PT symmetry rules. On the other hand when
the two speeds are comparable the polarisation has a means of
locking its velocity to that of the grating: it can choose an
orientation such that the local velocity, as determined by its
overlap with the grating, is equal to that of the grating, thus
maintaining its relative orientation as they move together, as
evidenced by Fig. 8b. There are two orientations where this might
happen; one is in the gain region, the other in the loss region.
This gives rise to the band gap seen in figure 6 where we have two
solutions, one gaining energy in time, the other losing energy.
This mechanism is possible only over a range of velocities
dictated by the amplitude of the grating. We contend that this
grabbing hold of the light to raise its energy level is analogous to
the function of an Archimedes screw in raising the level of water.
It is worth remarking that, although the problem is mathema-
tically more amenable in the impedance-matched case, this
amplification effect is not contingent on both ε and μ being
modulated. In Supplementary Figure 1 we demonstrate this,
showing the case where only ε is modulated, as most easily
accomplished in pump-probe experiments.

In this work we introduced chiral space-time metamaterials as
an electromagnetic analogue of the Archimedes’ Screw for fluids,
investigating the exotic properties of their photonic bands by
developing an analytic model which uncovered exact closed-form
solutions to Maxwell’s Equations, which we benchmarked against
numerical calculations showing perfect agreement. Furthermore,

Fig. 6 Band-gap opening for ϕ= 0. In the left column (a-c) we vary Ω from 0.55 (a) to 0.57 (c) at a fixed α= 0.4 and in the right column we vary α from
0.3 (d) to 0.4 (f) ad a fixed Ω= 0.6. Notice how both parameters induce the attraction between the two bands that gives rise to the transition into the PT-
broken phase.

Fig. 7 The x and y components of the transmitted electric field form a
Lissajous figure, which originates from the beating between the
frequency of the input wave ω= 1 and that of the screw Ω. The
commensurability ratio between the two determines the number of lobes in the
figure.ForRHPinput(a-b)thescrewisabletoamplifythewavesastheypropagate
through a thickness d. By contrast, a LHP input wave (c-d) is not amplified, but
additional beating results from the additional, distinct real eigenvalue.
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we investigated the instabilities arising in these systems, and
demonstrated their ability to amplify light of a specific
polarization. The richness of the model presented offers plenty
of opportunities for further investigation of the broad parameter
space available, and the combination of time-dependence and
chirality makes this new direction a promising ground for future
studies of topological and non-Hermitian physics, and we
envision that much of the physics at play can already be tested
in optics with pump-probe experiments in highly nonlinear
epsilon-near-zero materials, and at RF with nonlinear inductors
and capacitors.

Methods
Full details on all analytical and numerical methods used are freely available in
the Supplementary Information, and could not be included in the main manuscript
due to formatting limitations.

Data availability
The main data supporting the findings of this study are available within the article and
its Supplementary Information files. All the raw data generated in this study are available
from the corresponding authors upon reasonable request. Requests will be dealt with by
E.G. within a maximum timeframe of two weeks. Data will be provided under guarantee
of acknowledgement/appropriate citation of this work and a scientifically sound reason
for request.

Code availability
All the data analysis codes related to this study are available from the corresponding
authors upon reasonable request. Requests will be dealt with by E.G. within a maximum
timeframe of two weeks. Codes used to produce the data will be provided under
guarantee of acknowledgements/appropriate citation of this work, and a scientifically
sound reason for request.
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