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Abstract

Substance use disorders (SUDs) are moderately to highly heritable and are in part cross-

transmitted genetically, as observed in twin and family studies. We performed exome-focused 

genotyping to examine the cross-transmission of four SUDs: alcohol use disorder (AUD, 

n=4,487); nicotine use disorder (NUD, n=4,394); cannabis use disorder (CUD, n=954); and 

nonmedical prescription opioid use disorder (NMPOUD, n=346) within a large nationally 

representative sample (N=36,309), the National Epidemiologic Survey on Alcohol and Related 

Conditions-III (NESARC-III). All diagnoses were based on in-person structured psychiatric 

interview (AUDADIS-5). SUD cases were compared alone and together to 3,959 “super controls” 

who had neither a SUD nor a psychiatric disorder using an exome-focused array assaying 363,496 

SNPs, yielding a representative view of within-disorder and cross-disorder genetic influences on 

SUDs. The 29 top susceptibility genes for one or more SUDs overlapped highly with genes 

previously implicated by GWAS of SUD. Polygenic scores (PGS) were computed within the 

European ancestry (EA) component of the sample (N=12,505) using summary statistics from each 
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of four clinically distinct SUDs compared to the 3,959 “super controls” but then used for two 

distinctly different purposes: to predict SUD severity (mild, moderate, or severe) and to predict 

each of the other 3 SUDs. Our findings based on PGS highlight shared and unshared genetic 

contributions to the pathogenesis of SUDs, confirming the strong cross-inheritance of AUD and 

NUD as well as the distinctiveness of inheritance of opioid use disorder.

Introduction

Access and use of psychoactive substances are associated with risk of substance use 

disorders (SUDs), which themselves precipitate other risky behaviors. SUDs are both 

endemic and epidemically emergent as global public health priorities [1]. SUDs are often 

comorbid, worsening their impact and complicating prevention and treatment, but suggesting 

shared innate and environmental etiologies. Comorbidity of SUDs is associated with more 

severe disease course and worse prognosis. Comorbidity undermines the effectiveness of 

treatment and maintenance services, impairs productivity and return to functionality, and 

complexifies and increases costs of medical care. Four common SUDs that are frequently 

comorbid, namely alcohol use disorder (AUD), nicotine use disorder (NUD), cannabis use 

disorder (CUD) and nonmedical prescription opioid use disorder (NMPOUD), are the focus 

of this study.

Pathways to comorbidity include the gateway drug hypothesis [2], as well as the shared 

impact of environmental exposures and pleiotropy of genetic variants to increase, or 

decrease, risk of different SUDs. SUDs that have been investigated in twin studies 

are mostly moderately to highly heritable, heritabilities ranging from 39%-72% [3, 4], 

indicating that alleles shared between blood relatives moderate risk. In addition, it has 

long been known, both from genetic studies measuring cross-transmission of SUDs in 

monozygotic and dizygotic twins and from studies comparing siblings, that vulnerabilities to 

several SUDs are both cross-transmitted and influenced by genetic variants whose effects are 

limited to one or a few types of SUD [5].

Recently, new light has been shed on the cross-transmission of SUDs and other phenotypes 

by genome wide association studies (GWAS) that identify constellations of genetic 

variants predicting risk [6-13]. These genetic variants have been combined into polygenic 

scores predicting relatively small proportions of genetic risk (heritability) [14] but on the 

other hand implicating common genetic variants in different psychiatric diseases [15]. A 

polygenic score catalog https://www.pgscatalog.org/ includes several phenotypes directly 

related to SUDs (e.g. alcohol dependence) as well as phenotypes that are etiologically 

relevant (e.g. depression, risky behavior; https://www.pgscatalog.org/, December, 2020 

release). GWAS in large samples has yielded a small but partly well-replicated set of loci 

influencing SUDs. Replication via GWAS of CHRNA5 (for NUD) and the ADH gene 

cluster (for AUD) has tended to validate the power of GWAS for gene identification in 

SUDs. Like other complex phenotypes, few new causal genetic variants have been identified 

to date for SUDs, and the proportion of phenotypic variance explained by those identified 

variants is modest; however, genes identification has led to new insights into pathways 
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to vulnerability and cross-inheritance of vulnerability, and with the promise of identifying 

more causal loci accounting for higher proportions of genetic variance in the future.

The National Epidemiologic Survey on Alcohol and Related Conditions-III (NESARC-III) 

is a sample of the US general population ages 18 years and older [16, 17], providing a 

unique opportunity to measure gene effects on individual SUDs and cross-transmission 

of SUDs in a nationally representative framework, the entire sample being ascertained, 

psychiatrically interviewed and diagnosed in consistent fashion. GWAS of SUD performed 

using the Kaiser Permanente study [18] and Million Veterans study [19] were based 

on clinicians’ diagnoses in the electronic health record (EHR). GWAS of SUD-related 

phenotypes in UK Biobank [20] and 23andMe [9] did not utilize assessment of SUDs by 

DSM or ICD criteria. Each of these large GWAS had power to detect loci of relatively small 

effect, and these GWAS studies implicated several of the same genes; however, these studies 

tested individual and polygenic locus effects (as integrated into polygenic scores (PGS)) and 

ability of a PGS to predict cross-transmission in particular contexts. The Kaiser Permanente 

study was based on a HMO located in California; the Million Veterans Program, veterans; 

the UK Biobank, volunteers; 23andMe, customers. The deCode sample was nationally 

representative for the country of Iceland [21]. The NESARC-III dataset, representative 

for the United States, contains sociodemographic characteristics, family history of various 

disorders, and DSM-5 diagnoses via structured psychiatric interview for substance use, 

mood, anxiety, and personality disorders.

The diagnosis of substance use disorder underwent substantial revision in the Diagnostic 
and Statistical Manual of Mental Disorders–Fifth Edition (DSM-5). The DSM-5 definition 

adds a craving criterion and eliminates the “legal problems” criterion. It removes the abuse 

category, uses a diagnostic threshold of ≥2 criteria, and categorizes severity based on criteria 

counts, i.e., mild (2 to 3), moderate (4 to 5), and severe (6+). The focus of the present 

investigation was the detection and quantitation of shared inheritance between different 

SUDs and testing SUD Polygenic scores against the three DSM categories of severity for 

each SUD, in a nationally representative sample. Secondly, we test the ability of this study, 

performed in a nationally representative, psychiatrically interviewed population, to replicate 

genes identified in previous large SUD GWAS.

Materials and methods

Sample and data.

The National Epidemiologic Survey on Alcohol and Related Conditions-III (NESARC-

III) was a nationally representative cross-sectional survey of the U.S. general population 

sponsored by the National Institute on Alcohol Abuse and Alcoholism (NIAAA) and 

conducted 2012-2013. The research protocol was approved by the Institutional Review 

Boards of the National Institutes of Health and Westat, Inc., and written informed consent 

was obtained from all participants. As detailed elsewhere [17], the NESARC-III target 

population was the U.S. noninstitutionalized civilian population, 18 years and older, 

including residents of selected group quarters (e.g., group homes, workers’ dormitories). 

Multistage probability sampling was used to randomly select respondents. Primary sampling 

units (PSUs) were individual counties or groups of contiguous counties, secondary sampling 
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units (SSU) comprised groups of Census-defined blocks, and tertiary sampling units were 

households within SSUs. Finally, eligible adults within sampled households were randomly 

selected. Hispanics, Blacks, and Asians were oversampled and resulted in a total of 36,309 

respondents. Of the 36,309 respondents, 23,860 provided saliva samples for the genetic 

study. The individual-level genetic data (22,848 samples) with phenotypic variables (n 

= 4,320) for NESARC-III (family history, adverse childhood experiences, substance use, 

mood, anxiety, personality and posttraumatic stress disorders) are available in dbGaP 

(accession: phs001590.v2.p1).

Clinical Assessment.

All participants were assessed using the Alcohol Use Disorder and Associated Disabilities 

Interview Schedule 5 (AUDADIS-5), a structured psychiatric interview. The AUDADIS-5 

was designed to measure DSM-5 criteria for AUDs, nicotine use disorder (NUD), specific 

drug use disorders (DUDs), and selected mood, anxiety, trauma related, eating, and 

personality disorders. Lifetime DSM-5 AUD/NUD/CUD/NMPOUD diagnoses required at 

least 2 of the 11 corresponding criteria in the 12 months preceding the interview, or a 

diagnosis before the past 12 months required clustering of at least 2 criteria within a 1-year 

period [22-24].

Subjects who were genetically inferred as being of European ancestry as described later, 

and in 4 non-independent SUD categories were analyzed: AUD (n=4,487), NUD (n=4,394), 

CUD (n=954), NMPOUD (n=346). In all, 6,525 subjects had a SUD, and with comorbidity. 

The SUD groups were compared alone and together with 3,959 healthy controls who 

had neither a SUD nor a related psychiatric disorder. As a replication cohort, cases of 

AUD (n=1,120), NUD (n=1,145), CUD (n=349), NMPOUD (n=71) were identified among 

African Americans (AA). The SUD groups in AA were subsequently compared alone and 

together with 1,889 healthy controls in AA from this survey. The overall study design was 

shown in Supplementary Fig. 1.

Genotyping and quality control.

Of the 23,860 people provided saliva samples for the genetic study, DNA was extracted from 

saliva and genotyped with an Affymetrix Axiom® Exome Array consisting of 319,283 SNPs 

and 103,404 custom-selected SNPs. The custom SNPs were selected based on addiction-

associated genes, and genomic and transcriptomic findings from five GWAS of alcohol 

and other psychiatric disorders, and from animal models of addictions. After filtering out 

poor quality SNPs using the standard Affymetrix SNPs polisher algorithm, 396,581 SNPs 

were potentially available. Several additional quality control criteria were applied to samples 

and genetic variants prior to genetic association analysis. Individuals were excluded for the 

following reasons: a genotyping call rate of <97% (n = 188) or genetically related samples 

(n=824). SNPs were removed if call rate was <97%, for deviation from Hardy-Weinberg 

equilibrium (P<1x10−7), or if monomorphic or represented by a single heterozygote. A total 

of 22,848 samples and 260,779 SNPs were passed for subsequent analyses. Among 260,779 

loci, 121,484 SNPs had a MAF of ≥ 0.05. A total of 21,840 SNPs had MAF 0.01-0.05, and 

the remaining 117,455 SNPs had MAF < 0.01. Sex was determined using 3 SNPs located 

on the X chromosome and 3 SNPs located on the Y chromosome from the 96 SNP RUID™ 
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DNA QC panel (now commercially available through Fluidigm as SNPtrace™). Because 

sex indicated in RUID™ DNA QC is more accurate than imputed sex from PLINK data, 

genetically determined sex from RUID™ DNA QC was used for downstream analyses.

Population stratification.

To identify and correct for population stratification, we included 2,211 reference 

samples representing 66 populations including indigenous peoples. The reference sources 

were a) HapMap-3 (924 individuals from 11 populations) [https://www.sanger.ac.uk/data/

hapmap-3], b) Human Genome Diversity Project (940 individuals in 51 populations from 

sub-Saharan Africa, North Africa, Europe, the Middle East, South/Central Asia, East 

Asia, Oceania, the Americas) [https://www.hagsc.org/hgdp/files.html], and c) 1000 Genome 

Project (347 individuals from four America populations, including MXL, PUR, CLM and 

PEL populations) [https://www.internationalgenome.org/home]. First, we applied PLINK 

[25, 26] to generate genome-wide Identity by State (IBS) estimates between NESARC-III 

and the reference samples at 10,612 common SNPs. We then produced multi-dimensional 

scaling (MDS) plots for examination of genetically inferred ancestry of all NESARC-III 

participants against the reference populations. We also used the Admixture program to 

quantitate the genetic ancestry of each NESARC-III participant. Via these procedures, 

12,505 individuals of predominantly European ancestry (MDS1≤−0.035; MDS2≤−0.01; 

MDS3[−0.02,0.01]; MDS4[−0.031,0.018]) and 4,418 individuals of predominantly African 

ancestry (MDS1≥0.06; MDS2≤0; MDS3[−0.02,0.02]; MDS4[−0.01,0.02]) were identified.

Association analysis.

We used Rvtests [27] to test association between phenotypes and common variants 

(MAF≥0.01) under a score test model. For rare variants, we ran a gene-based analysis 

(at least 2 rare variants in a single gene) under optimal sequencing kernel association test 

(SKAT-O model) using Rvtests software with a MAF cutoff of ≤ 5%. We ran an exome 

wide association analysis controlling for age, sex, and the first 4 multi-dimensional scaling 

(MDS) scores. Healthy super-controls were participants with no history of SUD nor a related 

psychiatric disorder (e.g., mood disorders, anxiety disorders, PTSD, personality disorders, 

and eating disorders).

The GCTA-fastBAT (a fast and flexible gene- or set-Based Association Test) software [28] 

was used to identify gene-level and genetic pathways associations using GWAS summary 

data for common variants (MAF≥0.01).

Meta-analysis.

Meta-analysis for genetic association was accomplished using rareMETAL [29], a 

computationally efficient tool for meta-analysis of both common and rare variants at the 

gene-level. The rareMETAL program utilizes summary statistics and LD matrices generated 

by Rvtests.

Expression quantitative trait loci (eQTL) and methylation QTL analysis.

We used summary-data-based Mendelian randomization (SMR) [30] to identify variants 

pleiotropically associated with both a SUD and level of gene expression (mQTL or 
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eQTL) from 2 different tissues (blood and fetal brain) in EA. SMR was developed to 

detect pleiotropic associations between complex trait and expression levels of genes using 

summary level data from GWAS and Methylation QTL (mQTL) or expression quantitative 

trait loci (eQTL). SMR can ascertain whether the effect of a variant on a phenotype may be 

mediated by expression level of the corresponding gene and is therefore commonly used to 

prioritize genes implicated by GWAS.

Multi-trait analysis of GWAS (MTAG).

SUDs are both clinically and genetically correlated. To parse genetic correlations between 

pairs of SUDs in the presence of clinical comorbidity, we used multi-trait analysis of GWAS 

(MTAG) [31], a method for joint analysis of summary statistics from multiple GWAS with 

overlapping samples. This analysis detected loci contributing to individual SUDs and up to 4 

different SUDs.

Multivariate association analysis on 4 SUDs (TATES).

We carried out multivariate genetic association analysis on all four SUDs together, through 

TATES [32], to identify relational pleiotropic effects on multiple SUDs. TATES (Trait-

based Association Test uses Extended Simes procedure) combines P-values obtained from 

univariate associations of single traits while accounting for cross-trait correlations. TATES 

provides a more comprehensive view of the genetic architecture of complex traits and boosts 

statistical power to detect underlying causal variants.

Polygenic scores.

Polygenic score (PGS) is a single aggregated estimate of an individual’s genetic propensity 

to a phenotype based on a series of genetic markers. PGS of each sample was calculated 

as a sum of effects of risk variants across a genome-wide scale weighted by corresponding 

genotype effect sizes (i.e., OR) using PRSice-2 [33]. Common genetic variants (MAF ≥ 

0.01) were pruned using r2-clumping in PLINK, with a cutoff of r2=0.2 within 250kb 

windows. Pruned SNPs were also filtered at P value of < 0.05 in case-control association 

analysis.

For each disorder we also used external GWAS summary statistics (except for CUD for 

which we used only the NESARC-III summary statistic) [13, 34, 35] as a base association 

result to calculate externally derived PGS of each SUD for NESARC-III EA samples.

Results

GWAS for SUDs in NESARC-III.

GWAS was performed as a foundation for evaluation of cross-inheritances of the 4 

SUDs. The NESARC-III sample was diverse in ancestry (Fig. 1). The ancestry vector 

space defined by multi-dimensional scaling was anchored using 2,211 individuals from 

66 reference populations, also revealing that population admixture was common in the 

NESARC-III sample (Fig. 1). To reduce the potential impact of ancestry stratification in 

estimating individual locus effects and computing PGS, we focused on 12,505 individuals 

of predominantly European Ancestry (EA) and 4,418 individuals -African American (AA)- 
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of predominantly African descent. The characteristics of NESARC-III cases and control 

as well as psychiatric comorbidity for cases in EA are shown in Supplementary Table 1. 

Cases and controls within the EA and AA groups used in the analyses were also plotted 

with regards to their multidimensional scaling scores (Supplementary Fig. 2). Clinically, 

SUDs were highly comorbid (Fig. 2). Jaccard indices (similarity coefficients) between SUDs 

ranged from 0.06 (AUD x NMPOUD and NUD x NMPOUD) to a high of 0.38 (AUD x 

NUD) (all P<10−4).

The quantile-quantile plots for single-SNP case/control associations of common variants 

(MAF≥0.01) in EA revealed minimal inflation of p values (Supplementary Fig. 3). 

Lambda values ranged from 1.01 to 1.03 as follows: AUD:1.02, NUD:1.03, CUD:1.03, 

NMPOUD:1.01, and any SUD:1.01. Therefore, neither polygenicity of SUDs nor residual 

uncorrected population stratification significantly inflated p values.

In this study, in a relatively small sample for GWAS, we were primarily interested in 

cross-disorder genetic transmission as predicted by PGS. However, as a foundation for that 

PGS analysis, we performed within-sample GWAS and we evaluated generalizability of 

these data by replication in other GWAS samples and by candidate gene replications because 

of the “addiction gene” focused design of the array we used. Several well-known candidate 

gene associations to SUDs [3, 36] were replicated in our EA cohort at a nominal level 

(P<0.05) (Supplementary Table 2). For AUD, replicated genes were ADH1B, P= 8.0x10−4; 

OPRM1, P=1.8x10−3 and ALDH16A1, P=7.4x10−3. For NUD, replicated genes were 

CHRNA3, P=3.0x10−3; CHRNA5, P=3.1x10−3, OPRM1, P=1.0x10−2, and ALDH16A1, 
P=3.5x10−2. CYP2A6, a multi-locus, multi-allelic, gene, was marginally significant at 

P=0.08. For CUD, the replicated genes were COMT, P=2.4x10−3, OPRM1, P=1.3x10−2 

and ADH1B, P=1.9x10−2. For NMPOUD, the replicated genes included COMT, P=1.2x10−2 

and OPRM1, P=0.052 was marginally significant. For the grand analysis of all four SUDs, 

the replicated genes were OPRM1, P= 1.6x10−3, CHRNA3, P= 5.2x10−3, ALDH16A1, P= 

6.6x10−3, ADH1B, P= 7.4x10−3, CHRNA5, P= 2.9x10−2 and COMT, P= 4.4x10−2. We also 

list significance levels (P<0.05) for 24 candidate genes previously implicated in addictions 

[37], although not via GWAS (Supplementary Table 3).

As illustrated in Supplementary Fig. 4, exome-wide association in EA of single common 

SNPs in 4 SUDs and in any SUD detected 53 SNPs, including 21 that were genetically 

independent (r2<0.2), that exceeded significance threshold (P<5x10−5) for at least 1 SUD 

(Table 1). A total of 143,324 SNPs with MAF>0.01 were tested, which would correspond to 

a Bonferroni P value threshold of 3.5x10−7 if all these SNPs were genetically independent, 

which they were not. We concluded that using this Bonferroni threshold would be overly 

conservative to investigate replication, obscuring a high rate of replication of previous SUD 

GWAS hits in this national sample. All genes reported here at the nominal P<5x10−5 cutoff 

were previously implicated in large SUD GWAS [8, 9, 13, 19, 38, 39] as susceptibility 

loci (P<0.05 for at least one SNP). Among the 53 SNPs, 21 were implicated in AUD, 14 

in NUD, 7 in CUD, 3 in NMPOUD, 8 in the grand analysis of four SUDs, and 2 SNPs 

(rs3756772 in FRK and rs4888599, an intergenic SNP) were associated with 2 different 

SUDs in NESARC-III data. Among these SNPs, rs72501734 in ULBP3 showed modest 

replication for association to NUD in African Americans (AA, P=0.03). Interestingly, 3 
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genes (SPTLC1, ULBP3, ZMYM4) were also implicated by subsequent gene-based analysis 

of uncommon variants (P<10−4) (Table 2). In addition, among the 53 SNPs, five (NUD: 

rs72501734, rs7918769, rs9935059; CUD: rs4933836, rs2294669) were also implicated 

as top SNPs in genetic pathways of the corresponding disorder (P<0.05), those pathway 

analyses having been performed using GWAS summary-level data in the GCTA-fastBAT 

program.

A total of 67 additional SNPs generated subthreshold association signals to at least 1 SUD 

in EA with single-point P values between 5x10−5 and 10−4 (Supplementary Table 4). Among 

these, 2 for NUD (rs2646782 and rs9571714) were replicated with directional coherence in 

AA (p<0.05). Furthermore, 4 of these SNPs (rs740160 in ARPC1A, rs283690 in RXRG, 
rs7179938 in LIPC, rs9935059 in EEF2K) were top SNPs in genetic pathways associated 

with the corresponding SUD (p<0.05).

Gene-based analysis of uncommon variants (MAF≤0.05).

In EA, gene-level testing for effects of uncommon alleles (MAF≤0.05) implicated 24 genes 

(P<10−4) associated with SUDs (Table 2 and Supplementary Fig. 5). Similar to single-point 

analysis and again because the focus of this study was cross-transmission of SUDs rather 

than locus discovery, we used a nominal threshold (P<10−4) to better test congruence 

between this national sample and previous SUD GWAS. Although not all genes reported 

here met the Bonferroni threshold (3.9x10−6) for gene-level testing (12,664 genes), all genes 

were previously implicated in large SUD GWAS [8, 9, 13, 19, 38, 39] at various significance 

levels (P<0.05).

Among these, 4 gene signals were replicated in AA at the p<0.05 level: 1 in NUD 

(FER1L6), 1 in CUD (FER1L6), and 2 in the grand analysis of SUD (FER1L6 and LENG1). 

In EA, we further identified 52 susceptibility genes (6 in AUD, 14 in NUD, 12 in CUD, 13 

in NMPOUD and 7 in the grand analysis of SUD) with subthreshold gene-level P values 

between 10−4 and 5x10−4 Two of these (NUD: IGSF5 and CUD: BARHL2) were replicated 

in AA (P<0.05) (Supplementary Table 5).

Genetic pathway and set-based analysis of SNPs with common alleles

GCTA-fastBAT (a fast and flexible set-Based Association Test) was used for gene-based 

association analysis of common variants (MAF≥0.01) in GWAS summary data. A total of 

36 gene signals (P<5x10−4) were identified by gene-based association in EA, and 4 genes 

were replicated in AA (Supplementary Table 6): 2 in AUD (SMIM17 and ZNF835), 1 in 

NUD (MXRA7), 1 in CUD (EXOC2), and 1 in a grand analysis of four SUDs (MXRA7). 

GCTA-fastBAT was also used to perform association analysis of genetic pathways in 

EA and AA separately, followed by meta-analysis of pathway association analysis in the 

combined sample using Fisher’s method. A total of 9 genetic pathways yielded P<10−3 in 

EA (Supplementary Table 7).

Relationship of SUD-associated SNPs to RNA eQTLs and mQTLs

To prioritize genes for follow-up functional studies, we used Summary-data-based 

Mendelian Randomization (SMR) to identify 20 SNPs (Supplementary Table 8) associated 
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with both SUDs and mQTL/eQTLs (single SNP association P<1x10−4; P_SMR<10−3). 

These results may indicate that the effects of these SNPs on risk of SUD are mediated by 

ability of the SNPs to cis-modulate expression of the corresponding genes. There were 4 

such genes in AUD (CRYGC, ARPC1A, FRK and ZKSCAN5), 2 in NUD (EEF2K and 

FRK), 7 in CUD (FRK, TAP1, EXOC2, LIPC and 3 intergenic variants), 3 in NMPOUD 

(FTO, SPTLC1 and 1 intergenic variant), and 4 in the grand analysis of SUD (TAS2R31, 
FRK, CRYGC, and 1 intergenic SNP).

Furthermore, we performed a co-localization analysis using the LocusFocus program [40] 

to test whether the genetic variants (single-point P<5x10−5) were colocalized with eQTLs 

in GTEx. This analysis yielded supportive evidence for seven genes (ARHGAP15, FRK, 
FTO, KCNH7, PCDH9, SPTLC1, ZMYM4) with relatively strong colocalization (Simple 

Sum P<10−3) of association signals with eQTL in various tissues (Supplementary Table 9).

Shared inheritance of substance use disorders.

In the case-control analysis of SUDs, one gene, FER1L6, was associated with all 4 SUDs 

and the grand analysis of all four SUDs via gene-based association of rare alleles. In 

the single SNP or gene-based analysis on rare alleles, four genes (NRG3, FRK, OMD, 
TUFT1) were associated with at least 2 SUDs. Furthermore, the grand analysis of four 

SUDs implicated 4 independent gene signals (Supplementary Fig. 6).

To boost power to detect gene effects on SUDs, and to identify genetic correlations between 

SUDs, we used multi-trait analysis of GWAS (MTAG), a method for joint analysis of 

summary statistics from multiple GWAS with overlapping samples. We jointly analyzed 

association results for 4 SUDs to identify susceptibility loci specific to individual SUDs, 

and pleiotropic for more than one SUD. Two SNPs (rs35789697, rs35942385) representing 

1 gene (ARHGAP15) were implicated in susceptibility to all 4 SUDs (P<10−4) in EA after 

controlling for within-subject comorbidity (Supplementary Fig. 6 and Supplementary Table 

10).

Finally, we carried out a multivariate genetic association analysis on all 4 SUDs through 

the TATES program [32], to identify relational pleiotropic effects on multiple SUDs. 

Multivariate analysis identified 25 SNPs (P<10−4) within 5 genes (NRG3, FRK, KCNH7, 
PCDH9 and TAP1) or intergenic regions conferring susceptibility to multiple SUDs 

(Supplementary Fig. 6 and Supplementary Table 11).

Prediction of mild, moderate and severe SUD by four SUD polygenic scores (PGS).

Polygenic scores (PGS) were calculated for all NESARC-III European ancestry samples 

(N=12,505) using summary statistics obtained from substance-specific GWAS, in which 

each of the 4 DSM-5 SUDs was compared to 3,959 “super controls” only. Each SUD PGS 

was then divided into deciles with each decile representing 1250 or 1251 subjects. Each 

substance-specific PGS was examined to assess its ability to predict severity (mild, moderate 

or severe) of the corresponding SUD, as well as to predict the other three SUDs. Notably, 

the GWAS from which the substance-specific SUD PGS was derived was qualitative for 

the presence or absence of the binary trait, and did not specify the severity of symptoms. 

Therefore, the relative proportions of mild, moderate and severe SUD in the different PGS 
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deciles represent independent observations. Additionally, samples that were not originally 

used as cases or controls in the baseline GWAS analysis, such as samples with other SUD or 

related psychiatric diseases, were included in the PGS derivation.

Within disorder, and for example when using AUD PGS to predict the severity of AUD, 

the genetic risk and severity of each SUD escalated in higher PGS deciles, especially 

in the top decile (Fig. 3-6). For example, in the top decile for AUD PGS to AUD, 

24.9%, 19.8% and 42.8% of subjects had mild, moderate, and severe AUD, respectively, 

while the corresponding percentages of the severity levels of AUD cases ranged between 

0.2%-0.4% in the bottom decile (Fig. 3a). A similar pattern was observed for NUD PGS in 

relation to NUD (Fig. 4b). Meanwhile, 89.2% of CUD cases (n=851) and 100% NMPOUD 

cases (n=346) clustered in the top decile for CUD PGS to CUD and NMPOUD PGS to 

NMPOUD, respectively, perhaps partially due to the relatively small number of cases (Fig. 

5c and Fig. 6d). Moreover, AUD and NUD PGS tended to predict comorbidity of these two 

SUDs (dual diagnosis) (Fig. 3b and Fig. 4a). Most prominently, the AUD PGS and NUD 

PGS revealed strong cross inheritances of these disorders (Fig. 3b and Fig. 4a). Conversely, 

neither AUD PGS nor NUD PGS strongly predicted CUD/NMPOUD (Fig. 3c-d and Fig. 

4c-d), and likewise, neither did CUD PGS nor NMPOUD PGS strongly predict AUD or 

NUD (Fig. 5a-b and Fig. 6a-b). Future studies are needed to extend this analysis to other 

populations, particularly clinically ascertained SUD patients.

Phenotypic correlation and genetic correlation.

The genetic correlation between phenotypes is the proportion of phenotypic variance 

attributable to shared genetic components [41]. The NESARC-III study of deeply 

phenotyped individuals presents a rare opportunity to compare phenotypic and genetic 

correlations among pairs of SUDs simultaneously in a national sample.

Genetic correlations were calculated as pairwise correlations between polygenic scores 

(PGS) of 2 SUDs, where PGS scores of NESARC-III samples for each SUD were 

formulated on the basis of external large GWAS (non-NESARC-III, except for CUD for 

which we used NESARC-III CUD GWAS results) summary statistics. Here, we used 

externally derived PGS to exclude the effects of comorbid SUD cases in binary trait GWAS, 

which is different from the use of internally derived PGS to predict SUD severity that was 

described earlier. Phenotypic correlations were derived as the phi correlation coefficient 

(rφ) between a pair of SUDs. Confirming our within-study observations, we noted that 

AUD and NUD were most strongly genetically and phenotypically correlated. On the other 

hand, NMPOUD showed the weakest genetic and phenotypic correlations with other SUDs, 

among all pairs of SUDs (Supplementary Fig. 7).

Discussion

Increasingly, GWAS studies of the same SUDs are implicating the same genes, although 

with important exceptions due to differences in sampling frameworks and phenotyping. In a 

nationally representative, psychiatrically interviewed sample, we identified 21 independent 

SNPs (P<5X10−5) and 17 unique gene-based loci (P<10−4) that were associated with at least 

1 SUD. Overall, a total of 29 unique genes were identified as top susceptibility loci to one or 
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more SUDs. For gene identification, large GWAS samples are key. However, the NESARC-

III nationally representative sample, with a total of 23,860 human subjects with genetic data, 

was well-suited for capturing polygenic effects at less than genome-wide significance. All of 

top nominally significant genes in NESARC-III were previously implicated in SUD GWAS 

[8, 9, 13, 19, 38, 39], although not always with the same SNP. Unlike prior GWAS for which 

these genes were identified based on single-SNP analysis of common alleles, some genes 

were implicated in our study based on tests of different single SNPs in the same gene, or 

gene-based analysis on rare variants located in coding regions (Supplementary Table 12). 

Three genes (ULBP3, FER1L6 and LENG1) were further replicated in the NESARC-III AA 

population. Additionally, we observed that 3 genes (SPTLC1, ULBP3 and ZMYM4) were 

implicated in SUDs based on both common and uncommon variants, whereas previous 

GWAS and candidate gene discoveries in SUDs have mainly been based on common 

variants only. These findings provided evidence that both uncommon and common alleles, 

sometimes at the same gene, contribute to risk of SUDs. These results support the impact 

of previously implicated genes in an epidemiologically representative sample, thus setting 

the stage for analysis of cross-transmission via PGS. In addition, we compared NESARC-III 

GWAS on AUD with genome-wide meta-analysis of problematic alcohol use in 435,563 

individuals [42]. Among 29 independent variants that were genome-wide significant in 

problematic alcohol use study, 3 SNPs (rs1229984 in ADH1B, rs62250713 in CADM2 
and rs8008020 in C14orf2) were replicated with directional coherence in NESARC-III; 11 

SNPs were not replicated; the remaining 15 SNPs were not typed in NESARC-III array 

data. It bears mentioning that although NSENRC-III is a nationally representative sample, 

the current investigation is largely based on individuals of European ancestry. Due to the 

limitation of smaller sample size of other ancestry groups, the generalizability of these 

findings to other ancestry populations (such as African American, Hispanic American, East 

Asian and Native American) is limited. The fact that only 3 genes among our top hits were 

replicated in AA with nominal threshold (P<0.05) is related to the observation that PGS 

derived in one population tend not to be as highly predictive in others [43] although this idea 

was not tested here for the 4 SUDs.

Due to the depth of psychiatric assessment in NESARC-III we were able to identify a 

large sample of so-called “super-controls” who had neither a SUD nor another psychiatric 

disorder. Importantly, all phenotyping, sample collection, genotyping and analyses were 

performed simultaneously, super-controls and cases with various SUDs only being identified 

post-hoc. Among the 3,959 super controls, only 499 (12.6%) were lifetime abstainers 

from alcohol and nicotine. Many SUD GWAS have used exposed users (drinkers and 

smokers) as controls, assuming lifetime abstainers do not have the opportunity to develop 

SUD. Nevertheless, the exposure may progress at a slower pace for later onset SUD, and 

SUD vulnerability itself may be mediated by propensity for exposure (gene x environment 

correlation). As shown in both the Australia and Virginia twin studies, genes that influence 

choice to use or age at first use independently alter future risks associated with use [2, 

44]. This may be regarded as an example of inverse causation, where “riskiness” of early 

use reflects, in substantial part, genetic predisposition to early use rather than the effect of 

early use itself [2, 44]. More importantly, the drinker/smoker may have a second SUD that 

is highly genetically correlated with the first disorder (e.g., NUD/AUD). Non-SUD users 
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with related psychiatric diseases are also likely to share risk alleles with users who have 

SUDs. In addition, another common concern for control groups is whether they are more 

female or younger in composition. Females are less likely to develop SUDs, either because 

of genetic or cultural factors or both, and younger controls may manifest SUDs later in life. 

Among our super controls, 59.3% were female. Although prevalences of SUDs were lower 

in females than males, many other psychiatric diseases were more common in females, 

including major depressive disorder, persistent depression, anxiety disorders and PTSD. 

Therefore, our female super-controls were less likely to carry risk genes for those psychiatric 

diseases, and as could be important if some of these genes pleiotropically increase risk of 

SUDs. Finally, 65.6% of our super-controls were 45 years of age or older, and 89.0% of 

super-controls passed beyond mean age at AUD onset (i.e., 26.2 years) [23].

Prior to the advent of GWAS, shared versus unshared inheritance among SUDs was 

primarily studied in twin and sibling pairs, where cross-inheritance was measured [5] and 

to some extent also in families where other types of relative pairs were compared for cross-

transmission of phenotypes. Consistent with our within-study PGS decile prediction model 

of SNP-based cross-inheritance of AUD and NUD, and as we replicated with PGS externally 

derived from outside GWAS, twin and sibling based cross-inheritance studies also found 

strongest cross-inheritance of AUD and NUD [5]. AUD and NUD are not only frequently 

comorbid, but are cross-inherited. In contrast, twin studies have revealed that opioid use 

disorder has the lowest cross-inheritance with other SUDs and the highest substance-specific 

inheritance [5]. In line with those findings, the three genetic correlations that we calculated 

as PGS correlations using external GWAS summary between NMPOUD and other SUDs 

were the lowest.

Genes involved in vulnerability to SUDs include substance-specific genes and genes that 

act on common genetic pathways involved in multiple, sometimes comorbid substance use 

disorders [2, 3, 45, 46]. We implicated 5 susceptibility genes (NRG3, FRK, FER1L6, OMD, 
TUFT1) associated with at least 2 SUDs. The finding of genes shared by SUDs could be 

due to the confound that the same person has more than 1 SUD. Furthermore, to explore 

the effects of SUD comorbidity, we adopted the multi-traits method (MTAG program) and 

discovered 1 gene (ARHGAP15) involved in all 4 SUDs that was among the AUD top hits. 

Multivariate analysis identified 5 additional genes that increase susceptibility to multiple 

SUDs.

Beyond identifying SNPs and gene-level association signals that individually account for a 

small proportion of phenotypic variance, we estimated combined contributions of multiple 

loci to phenotypic variance, and genetic correlations between pairs of SUDs. Unlike most 

studies of genetic correlations, which apply summary GWAS statistics obtained from 

different projects, our analyses on genetic correlation were performed using individual-level 

data within a single project. To our knowledge, this is the first study to calculate genetic 

correlation between two disorders using samples from a single project. In addition, we used 

internally derived PGS scores to predict different phenotypes, including other SUDs and 

three different levels of SUD severity, as defined by DSM5, and as such the results produced 

on cross-disorder polygenic effects and within-disorder prediction of severity were not 

tautological. Of note, the analyses of genetic correlations in previous studies had different 
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limitations, namely sampling frameworks and depth of phenotype. Sampling frameworks 

can alter effect sizes of alleles and combinations of alleles, and quantitative estimates of 

cross-transmission. We observed that genetic correlations, extracted independently from 

phenotypic correlations, strongly predicted phenotypic correlations (comorbidity). This 

observation points to the importance of genes responsible for innate vulnerability, and 

common to multiple SUDs, rather than to a gateway drug, or other cause-effect actions 

of one drug use on another, an important mechanism in the genesis of SUDs [47]. These 

findings highlight the need to identify genes involved in shared pathways to addiction to 

different substances; for example, targeting genes that may alter neurofunctional domains 

such as negative emotionality, executive function, and stimulus salience/reward that can 

impact vulnerability to different SUDs [48, 49].

In conclusion, exome-focused genotyping analysis of four common SUDs in a nationally 

representative sample implicates both common and rare genetic variants in the pathogenesis 

of SUDs and tends to replicate GWAS of SUD performed in other sampling frameworks 

and using other SUD phenotypes. This study highlights that SNP-based genetic correlations 

predict comorbidity between pairs of SUDs. More importantly, consistent with previous 

cross-transmission data from twin and some GWAS studies, AUD and NUD were strongly 

cross-inherited. Cross-inheritance of different SUDs directly suggests the usefulness of 

measuring brain phenotypes, for example, differences in executive cognition, reward or 

emotionality, that are pan-diagnostic in relevance. The results also suggest the need to 

identify pathways of gene action that are modifiable and beneficial as an integral part 

of the prevention and treatment of specific SUDs. In this regard, NMPOUD was not 

highly genetically correlated with other SUDs, and thus, it would be important to focus 

on differences in the neurobiology of NMPOUD as well as each of the other SUDs, better 

targeting mechanisms of vulnerability that are unshared.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Multidimensional scaling (MDS) of ancestry using the top two MDS scores for 22,848 

NESARC-III samples from a nationally representative survey: NESARC-III. Four ancestral 

continental population clusters, established via genotyping reference obtained from 1000 

Genomes and the Human Genome Diversity Project, are shown in grey circles.
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Fig. 2. 
Clinical overlap (comorbidity) of four substance use disorders (SUDs) in EA in NESARC-

III, a nationally representative, psychiatrically interviewed sample: AUD (n=4,487), NUD 

(n=4,394), CUD (n=954) and NMPOUD (n=346). Not shown in the figure for clarity of 

display: AUD and NMPOUD clinically overlapped in 273 cases. Also, all four SUDs were 

present in 101 cases.
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Fig. 3. 
Relationship of AUD polygenic score to severity of four SUDs. Within NESARC-III EA, 

12,505 participants were stratified according to decile of the AUD PGS distribution, each 

decile representing 1,250 or 1,251 individuals. AUD PGS was computed using summary 

statistics obtained from the AUD GWAS that compared AUD cases to the 3,959 “super 

controls” and in the absence of severity information. For each SUD, effect of AUD PGS on 

severity of that SUD, comorbidity between AUD and that SUD, other SUD, non-SUD but 

with related psychiatric diseases and super controls is shown.

a Ability of AUD PGS to predict AUD severity (mild, moderate or severe).

b Ability of AUD PGS to predict NUD severity (mild, moderate or severe) and NUD 

comorbid with AUD.

c Ability of AUD PGS to predict CUD severity (mild, moderate or severe) and CUD 

comorbid with AUD.

d Ability of AUD PGS to predict NMPOUD severity (mild, moderate or severe) and 

NMPOUD comorbid with AUD.
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Fig. 4. 
Relationship of NUD polygenic score to severity of four SUDs. Within NESARC-III EA, 

12,505 participants were stratified according to decile of the NUD PGS distribution. NUD 

PGS was computed using summary statistics obtained from the NUD GWAS that compared 

NUD cases to the 3,959 “super controls” and in the absence of severity information.

a Ability of NUD PGS to predict AUD severity (mild, moderate or severe) and AUD 

comorbid with NUD.

b Ability of NUD PGS to predict NUD severity (mild, moderate or severe).

c Ability of NUD PGS to predict CUD severity (mild, moderate or severe) and CUD 

comorbid with NUD.

d Ability of NUD PGS to predict NMPOUD severity (mild, moderate or severe) and 

NMPOUD comorbid with NUD.
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Fig. 5. 
Relationship of CUD polygenic score to severity of four SUDs. Within NESARC-III EA, 

12,505 participants were stratified according to decile of the CUD PGS distribution. CUD 

PGS was computed using summary statistics obtained from the CUD GWAS that compared 

CUD cases to the 3,959 “super controls” and in the absence of severity information.

a Ability of CUD PGS to predict AUD severity (mild, moderate or severe) and AUD 

comorbid with CUD.

b Ability of CUD PGS to predict NUD severity (mild, moderate or severe) and NUD 

comorbid with CUD.

c Ability of CUD PGS to predict CUD severity (mild, moderate or severe).

d Ability of CUD PGS to predict NMPOUD severity (mild, moderate or severe) and 

NMPOUD comorbid with CUD.
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Fig. 6. 
Relationship of NMPOUD polygenic score to severity of four SUDs. Within NESARC-

III EA, 12,505 participants were stratified according to decile of the NMPOUD PGS 

distribution. NMPOUD PGS was computed using summary statistics obtained from the 

NMPOUD GWAS that compared NMPOUD cases to the 3,959 “super controls” and in the 

absence of severity information.

a Ability of NMPOUD PGS to predict AUD severity (mild, moderate or severe) and AUD 

comorbid with NMPOUD.

b Ability of NMPOUD PGS to predict NUD severity (mild, moderate or severe) and NUD 

comorbid with NMPOUD.

c Ability of NMPOUD PGS to predict CUD severity (mild, moderate or severe) and CUD 

comorbid with NMPOUD.

d Ability of NMPOUD PGS to predict NMPOUD severity (mild, moderate or severe).
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Table 1

Single-point SNPs associated with SUDs in EA (P<5x10−5) in NESARC-III.

Disorder Chr Pos SNP
a

Gene
b Function Ref Alt N AF

c Effectd SE
Pathway 

Pvalue
e Pvalue

AUD 2 163678535 rs4574131 KCNH7 Intron T G 8446 0.676 0.16 0.04 0.15 6.39x10−6

AUD 2 163689483 rs10930073 KCNH7 Intron C T 8446 0.674 0.16 0.04 NA 8.83x10−6

AUD 2 163703739 rs12476629 Intergenic Intergenic T G 8446 0.677 0.16 0.04 NA 8.88x10−6

AUD 2 163682494 rs12465289 KCNH7 Intron G T 8446 0.674 0.16 0.04 NA 1.05x10−5

AUD 2 163696863 rs16847467 Intergenic Intergenic A G 8446 0.676 0.15 0.04 NA 1.15x10−5

AUD 2 163691715 rs10180917 KCNH7 Intron T A 8446 0.674 0.15 0.04 NA 1.36x10−5

AUD 2 163692689 rs10171918 KCNH7 Intron G A 8446 0.675 0.15 0.04 NA 1.56x10−5

AUD 2 163687672 rs12476040 KCNH7 Intron T C 8446 0.676 0.15 0.04 NA 1.59x10−5

AUD 2 163692347 rs10169170 KCNH7 Intron G A 8446 0.671 0.15 0.04 NA 1.64x10−5

AUD 2 163669642 rs3912909 KCNH7 Intron G T 8446 0.677 0.15 0.04 NA 1.71x10−5

AUD 2 163690219 rs11898091 KCNH7 Intron C T 8446 0.675 0.15 0.04 NA 1.93x10−5

AUD 2 163694878 rs4667768 KCNH7 Intron C G 8446 0.671 0.15 0.04 NA 2.12x10−5

AUD 2 163670203 rs3912911 KCNH7 Intron C T 8446 0.674 0.15 0.04 NA 2.25x10−5

AUD 2 163681163 rs12611890 KCNH7 Intron G A 8446 0.676 0.15 0.04 NA 2.34x10−5

AUD 2 163689167 rs1389092 KCNH7 Intron G T 8446 0.676 0.15 0.04 NA 2.34x10−5

AUD 2 163669750 rs3912910 KCNH7 Intron G A 8446 0.674 0.15 0.04 NA 2.36x10−5

AUD 2 163684757 rs9646728 KCNH7 Intron A G 8446 0.671 0.15 0.04 NA 2.48x10−5

AUD 2 163680351 rs4667759 KCNH7 Intron C T 8446 0.676 0.15 0.04 NA 2.51x10−5

AUD 2 144248718 rs35789697 ARHGAP15 Intron G A 8446 0.368 −0.14 0.03 0.54 3.25x10−5

AUD 2 163666127 rs7601793 KCNH7 Intron G A 8446 0.669 0.15 0.04 NA 3.25x10−5

AUD 2 163694024 rs10221628 KCNH7 Intron C G 8446 0.673 0.15 0.04 NA 3.70x10−5

NUD 6 150390149 rs72501734 ULBP3 Stop_Gain G C 8353 0.012 0.65 0.15 5.27x10−3 1.10x10−5

NUD 16 77154226 rs4888599 Intergenic Intergenic C G 8353 0.456 −0.14 0.03 NA 1.26x10−5

NUD 13 67697374 rs7330064 PCDH9 Intron C G 8353 0.936 −0.29 0.07 NA 2.55x10−5

NUD 1 35847032 rs34924462 ZMYM4 Nonsynonymous G A 8353 0.034 −0.37 0.09 NA 2.59x10−5

NUD 12 10383316 rs10772246 Intergenic Intergenic A G 8353 0.959 −0.38 0.09 NA 2.62x10−5

NUD 10 84098252 rs7918769 NRG3 Intron T A 8353 0.191 −0.17 0.04 4.89x10−3 3.34x10−5

NUD 10 84098752 rs3897738 NRG3 Intron C T 8353 0.191 −0.17 0.04 NA 3.58x10−5

NUD 10 84094771 rs3862550 NRG3 Intron T C 8353 0.191 −0.17 0.04 NA 3.66x10−5

NUD 16 22237118 rs9935059 EEF2K Nonsynonymous A G 8353 0.075 −0.25 0.06 2.55x10−4 3.69x10−5

NUD 16 22237273 rs17841292 EEF2K Nonsynonymous C G 8353 0.073 −0.25 0.06 NA 3.96x10−5

NUD 10 84110564 rs7917348 NRG3 Intron A G 8353 0.191 −0.17 0.04 NA 4.38x10−5

NUD 10 84087761 rs7476649 NRG3 Intron C T 8353 0.130 −0.19 0.05 NA 4.84x10−5

NUD 10 84113099 rs11193893 NRG3 Intron A G 8353 0.191 −0.16 0.04 NA 4.87x10−5

Mol Psychiatry. Author manuscript; available in PMC 2022 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 24

Disorder Chr Pos SNP
a

Gene
b Function Ref Alt N AF

c Effectd SE
Pathway 

Pvalue
e Pvalue

NUD 10 84117730 rs12248513 NRG3 Intron G A 8353 0.190 −0.16 0.04 NA 4.99x10−5

CUD 6 116325142 rs3756772 FRK Nonsynonymous C T 4913 0.420 0.25 0.06 NA 1.41x10−5

CUD 6 32814942 rs1057149 TAP1 Nonsynonymous C T 4913 0.025 0.77 0.18 0.15 1.99x10−5

CUD 6 32816772 rs41550019 TAP1 Nonsynonymous C A 4913 0.025 0.76 0.18 NA 2.02x10−5

CUD 10 84137873 rs4933836 NRG3 Intron C T 4913 0.581 0.24 0.06 7.25x10−3 2.14x10−5

CUD 10 84168912 rs10787129 NRG3 Intron T A 4913 0.582 0.23 0.06 NA 2.93x10−5

CUD 6 625673 rs2294669 EXOC2 Intron C G 4913 0.715 0.25 0.06 3.40x10−2 4.51x10−5

CUD 15 58862825 rs71478677 Intergenic Intergenic C T 4913 0.015 0.89 0.22 NA 4.66x10−5

NMPOUD 16 79682751 rs1424233 Intergenic Intergenic T C 4305 0.515 −0.35 0.08 NA 1.89x10−5

NMPOUD 16 53769677 rs6499640 FTO Intron G A 4305 0.608 −0.35 0.08 NA 2.58x10−5

NMPOUD 9 94821861 rs12237598 SPTLC1 Intron A G 4305 0.019 1.20 0.30 0.07 4.96x10−5

Any SUD 16 77154226 rs4888599 Intergenic Intergenic C G 10484 0.454 −0.13 0.03 NA 6.74x10−6

Any SUD 12 11183108 rs12318612 TAS2R31 Nonsynonymous G C 10484 0.269 0.15 0.03 0.74 8.78x10−6

Any SUD 15 36139024 rs2646782 LOC100507
466 Intron A G 10484 0.551 0.13 0.03 NA 1.19x10−5

Any SUD 19 58861808 rs145144275 A1BG Nonsynonymous A G 10484 0.010 −0.63 0.15 0.48 2.86x10−5

Any SUD 7 115335567 rs78431260 Intergenic Intergenic C T 10484 0.050 −0.28 0.07 NA 3.07x10−5

Any SUD 15 22816713 rs8035524 Intergenic Intergenic A C 10484 0.351 −0.13 0.03 NA 3.56x10−5

Any SUD 7 115336270 rs74960260 Intergenic Intergenic T C 10484 0.050 −0.28 0.07 NA 3.87x10−5

Any SUD 6 116325142 rs3756772 FRK Nonsynonymous C T 10484 0.427 0.12 0.03 NA 4.58x10−5

a
32 SNPs among 53 SNPs were previously reported in large GWAS as susceptibility loci with directional coherence for alcohol/nicotine/drug 

related phenotypes (P<0.05) as shown in Supplementary Table 12.

b
All genes (not always with the same SNP) were previously reported in large GWAS for alcohol/nicotine/drug related phenotypes (P<0.05).

c
AF: Allele freq for ALT allele.

d
Positive value indicates ALT allele is the risk allele.

e
P value for Pathway indicates when the SNP is a top SNP in a corresponding pathway.
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