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Abstract

Objective: Emerging studies have demonstrated the promising clinical value of circulating tumor cells  (CTCs)

for  diagnosis,  disease  assessment,  treatment  monitoring  and  prognosis  in  epithelial  ovarian  cancer.  However,  the

clinical  application  of  CTC  remains  restricted  due  to  diverse  detection  techniques  with  variable  sensitivity  and

specificity and a lack of common standards.

Methods: We  enrolled  160  patients  with  epithelial  ovarian  cancer  as  the  experimental  group,  and  90  patients

including 50 patients with benign ovarian tumor and 40 healthy females as the control group. We enriched CTCs

with immunomagnetic beads targeting two epithelial cell surface antigens (EpCAM and MUC1), and used multiple

reverse  transcription-polymerase  chain reaction (RT-PCR) detecting three markers  (EpCAM, MUC1 and WT1)

for quantification. And then we used a binary logistic regression analysis and focused on EpCAM, MUC1 and WT1

to establish an optimized CTC detection model.

Results: The sensitivity and specificity of the optimized model is 79.4% and 92.2%, respectively. The specificity

of the CTC detection model is significantly higher than CA125 (92.2% vs. 82.2%, P=0.044), and the detection rate

of CTCs was higher than the positive rate of CA125 (74.5% vs. 58.2%, P=0.069) in early-stage patients (stage I and

II). The  detection  rate  of  CTCs  was  significantly  higher  in  patients  with  ascitic  volume  ≥500  mL,  suboptimal

cytoreductive surgery and elevated serum CA125 level after 2 courses of chemotherapy (P<0.05). The detection rate

of  CTCEpCAM+ and  CTCMUC1+ was  significantly  higher  in  chemo-resistant  patients  (26.3% vs.  11.9%;  26.4% vs.

13.4%,  P<0.05).  The  median  progression-free  survival  time  for  CTCMUC1+ patients  trended  to  be  longer  than

CTCMUC1− patients, and overall survival was shorter in CTCMUC1+ patients (P=0.043).

Conclusions: Our  study  presents  an  optimized  detection  model  for  CTCs,  which  consists  of  the  expression

levels  of  three  markers  (EpCAM, MUC1 and WT1).  In  comparison with  CA125,  our  model  has  high specificity

and demonstrates better diagnostic values, especially for early-stage ovarian cancer. Detection of CTCEpCAM+ and

CTCMUC1+ had  predictive  value  for  chemotherapy  resistance,  and  the  detection  of  CTCMUC1+ suggested  poor

prognosis.
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Introduction

Epithelial  ovarian  cancer  (EOC)  is  the  most  lethal
gynecologic  malignancy,  with a  5-year  survival  rate  of  less
than  35% (1,2).  Carbohydrate  antigen  125  (CA125)  is  the
most  commonly  used  serological  marker  for  the  clinical
diagnosis  of  EOC,  but  its  diagnosis  rate  for  early-stage
disease  is  only  50%  (3).  In  addition,  its  specificity  is  also
quite poor, as elevated serum CA125 levels can also be seen
in inflammatory diseases and endometriosis (4). Therefore,
there is a need to explore additional detection methods that
might improve early diagnosis of ovarian cancer.

Detection of circulating tumor cells (CTCs), as a form of
liquid biopsy, is a non-invasive tumor detection method
that has attracted extensive attention in recent years (5) due
to its advantages such as easy access, minimal invasiveness
and good patient compliance. CTCs are cells that are shed
into the bloodstream from a primary tumor, metastases, or
recurrent  tumors,  and therefore  possess  tumor-specific
characteristics  such  as  large  size,  low  density,  less
deformation,  and a  high nucleoplasmic  ratio  (N/C) (6),
thus,  making  them good targets  for  liquid  biopsy.  The
clinical  value  of  CTCs  in  ovarian,  breast,  prostate  and
colorectal cancers has been confirmed in several studies and
meta-analyses  (5,7-13),  with  nearly  thirty  articles
concerning the  clinical  application of  CTCs to  ovarian
cancer  being  published  in  the  last  decade.  Due  to  the
variety of detection techniques used, the reported detection
rates in these publications are variable, ranging from 12%
to 100% (14-22). Currently, a common standard for CTC
detection has not been established.

Here, through a review of relevant research databases
and publications,  we identified three markers  (EpCAM,
MUC1 and WT1) that are significantly highly expressed in
ovarian cancer cells  and then used these markers in our
CTC  detection  model.  In  our  previous  study  (12),  we
explored the diagnostic value of these markers in CTCs of
ovarian cancer, however we only enrolled healthy females
as controls, which lead to a sample limitation, as the actual
clinical need is to differentiate ovarian cancer from benign
ovarian tumors. Therefore, in this study we enrolled EOC
patients  as  the experimental  group,  and benign ovarian
tumor patients as well as healthy females, as the control
group.  We  aim  to  analyze  the  diagnostic  value  of  the

above-mentioned markers  in  the  detection of  CTCs in
EOC and the correlation of levels of these markers with
clinical  features,  and  to  establish  an  optimized  CTC
detection model  with  high sensitivity  and specificity  to
assist in clinical applications.

Materials and methods

Study population

This  study  included  patients  with  EOC,  patients  with
benign  ovarian  tumors,  and  healthy  females  who  were
admitted  to  the  Department  of  Gynecology,  Peking
University  Third  Hospital  between  September  2013  and
December  2020.  Peripheral  venous  blood  (5  mL)  was
drawn from all patients before initial treatment, with serum
CA125  levels  being  measured  at  this  time.  All  EOC
patients  were  pathologically  verified,  with  tumor  stage
determined  according  to  the  International  Federation  of
Gynecology  and  Obstetrics  (FIGO)  staging,  and  patients
overlapped  with  other  malignant  tumors  will  be  excluded.
Initial  treatment  included  advanced  chemotherapy  or  full
staging of  ovarian cancer surgery and tumor cytoreductive
surgery,  and  postoperative  adjuvant  chemotherapy  mainly
based  on  platinum.  Patients  with  benign  ovarian  tumors
refer  to  patients  with  benign  tumors  that  have  been
pathologically  proven  to  be  of  ovarian  origin,  including
ovarian  chocolate  cysts,  teratomas,  and  serous
cystadenomas, etc. The healthy female population refers to
adult female patients who have no obvious abnormalities in
the  regular  physical  examination  every  year  and  whose
CA125  is  in  the  normal  range.  Clinical  data  including
medical  history,  physical  examination,  laboratory
examination and imaging evaluation were obtained from all
enrolled  patients.  This  study  was  approved  by  the  Peking
University  Biomedical  Ethics  Committee  (No.
IRB00001052-16022).  All  patients  signed  the  informed
consent form before participation.

Study methods

We enriched CTCs with immunomagnetic beads targeting
to  two  epithelial  cell  surface  antigens  (EpCAM  and
MUC1),  which  are  not  expressed  on  the  surface  of  blood
cells,  and  then  used  multiple  reverse  transcription-
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polymerase  chain  reaction  (RT-PCR)  to  detect  three
markers  (EpCAM,  MUC1  and  WT1)  to  quantify  the
enriched  CTCs.  The  binding  of  two  antibody-labeled
immunomagnetic beads (EpCAM and MUC1) to the EOC
cell line SKOV3 is shown in Supplementary Figure S1. The
primer  sequences  of  three  genes  are  shown  in
Supplementary  Table  S1.  A  DNA  1000  LabChips  (Agilent
Technologies,  Santa  Clara,  USA)  was  used  to  detect  the
amplified  sequences  using  an  Agilent  2100  Bioanalyzer
(Agilent Technologies, Santa Clara, USA) according to the
manufacturer’s  instructions.  The  Agilent  2100  bioanalyzer
has  a  list  of  Ladder  with  known  DNA  concentration,  and
polymerase  chain  reaction  (PCR)  amplification  product
concentration  of  each  marker  gene  is  obtained  by
comparing with Ladder.

Then  we  focused  on  EpCAM,  MUC1  and  WT1  to
establish an optimized detection model. We used a binary
logistic  regression  analysis,  where  we  set  Y  as  a  binary
dependent  variable,  EpCAM,  MUC1  and  WT1  are
independent  variables.  The  logistic  regression  model
equation is linearly expressed as:

Y = logit(P) = ln(P=1¡ P)
= ¯0+ ¯1£ PCEpCAM + ¯2£ PCMUC1+ ¯3£ PCWT1

PCEpCAM:  PCR  concentration  of  EpCAM;  PCMUC1:
PCR concentration of MUC1; PCWT1: PCR concentration
of WT1.

Criteria  for  determining  treatment  efficacy  and
chemosensitivity  are  according  to  the  2021  National
Comprehensive  Cancer  Network  (NCCN)  clinical
practice guidelines (23). Chemo-resistance was defined as
recurrence  within  less  than  6  months  when  achieving
complete  recovery  for  an  initial  treatment,  or  disease
progression  during  chemotherapy.  Chemosensitive
patients  were  defined  as  recurrence  after  more  than  6
months when achieving complete recovery for an initial
treatment (23).

Prognostic  criteria  were  assessed  as  progression-free
survival (PFS) and overall survival (OS) of patients with
EOC. During follow-up,  the evidence of  recurrence or
progression  was  based  on  the  imaging  or  pathology
confirmation on biopsy or based on serum CA125 levels
according to Response Evaluation Criteriain Solid Tumors
(RECIST) Version 1.1 and adhering to the Gynecological
Cancer Intergroup (GCIG) definition as greater than, or
equal to, two times the upper limit of the reference range
on  two  occasions  at  least  1  week  apart  (24).  OS  was
calculated  from  date  of  treatment  (surgery  or  chemo-

therapy) to date of death or date of last follow-up (end of
follow-up). PFS was defined as the time from treatment
(surgery  or  chemotherapy)  to  physical,  biological  or
radiological evidence of disease progression, or death as a
result from any cause (23).

Statistical analysis

Data were statistically analyzed using IBM SPSS statistical
software  (Version  23.0;  IBM  Corp.,  New  York,  USA).
Binary  logistic  regression  was  used  to  build  an  optimized
CTC  detection  model.  PCR  concentration  was  compared
using  a  Mann-Whitney  U  test.  Receiver  operating
characteristic (ROC) curve analysis was used to evaluate the
ability  of  different  PCR marker  product  concentrations  to
distinguish  EOC  from  non-cancerous  control  groups.
These results were expressed as area under the ROC curve
(AUC),  with  95%  CI  and  P  values.  Sensitivity,  specificity
and Youden index of the diagnostic results were calculated.
The  threshold  corresponding  to  the  maximum  value  of
Youden  index  was  taken  as  the  best  threshold  for  clinical
diagnosis.  Count  data  were  expressed  as  n  (%)  and χ2 test
was  used.  Multivariate  Cox  regressions  were  used  on  OS
analysis, and P<0.05 was considered statistically significant.
The  survival  curve  was  drawn  by  Graphpad  Prism  8.4.2
(GraphPad  Software,  Inc.,  San  Diego,  CA,  USA)  for  the
prognostic correlation analysis.

Results

Clinical characteristics of enrolled patients

A  total  of  160  patients  with  EOC  were  enrolled  in  the
experimental  group,  whereas  90  patients  were  enrolled  in
the  non-cancerous  control  group,  including  50  patients
with  benign  ovarian  tumor  (i.e.,  teratoma,  ovarian
chocolate  cysts  and  serous  cystadenoma)  and  40  healthy
females. The general clinical characteristics of the patients
are presented in Table 1.

Expression  level  differences  of  three  marker  (EpCAM,
MUC1  and  WT1)  in  EOC  patients  vs.  non-cancerous
controls

mRNA  abundance  of  EpCAM,  MUC1  and  WT1  was
quantified  using  multiplex  RT-PCR.  Comparison  of  the
mRNA abundance levels of EpCAM, MUC1 and WT1 in
EOC patients  and  non-cancerous  controls  showed that  all
of  the  three  markers  were  significantly  more  abundant  in
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EOC (P<0.001, Figure 1).
We plotted ROC curves (Supplementary Figure S2)  to

find  the  sensitivity  and  specificity  of  single  marker
(EpCAM, MUC1 and WT1) in distinguishing EOC from
non-cancerous controls.  The thresholds,  sensitivity and
specificity of each single marker are shown in Table 2. The
results of this analysis showed that each marker gene had a
high  specificity  (92.1%−95.5%),  but  relatively  low

sensitivity (56.1%−62.6%) (Table 2).

Establishment  of  an  optimized  detection  model  for  CTCs
that distinguishes EOC from non-cancerous controls

To  assess  the  contributions  of  three  marker  genes  more
comprehensively,  we  used  a  binary  logistic  regression
analysis.  The  regression  coefficients  of  EpCAM,  MUC1
and  WT1  are  shown  in Supplementary  Table  S2.  The
regression equation of the optimized CTC detection model
is:

Y=5:413£PCEpCAM+2:463£PCMUC1+3:586£PCWT1¡1:917:

PCEpCAM:  PCR  concentration  of  EpCAM;  PCMUC1:
PCR concentration of MUC1; PCWT1: PCR concentration
of WT1.

As  shown in  Figure  2,  the  optimal  threshold  for  Y  is
0.617,  the  corresponding  sensitivity  is  79.4%,  and  the
specificity is 92.2%. So we define Y≥0.617 as positive for
CTC detection.  And  we  also  performed  ten-fold  cross
validation on the dataset (Supplementary Table S3).

Correlation  analysis  between  CTC  detection  model  and
clinical features in EOC patients

In comparison with CA125, the specificity of the optimized
model was significantly higher than that of CA125 (92.2%
vs.  82.2%,  P=0.044),  while  the  sensitivity  was  also  slightly
higher  than  that  of  CA125  (79.4% vs.  75.6%,  P>0.05).
Especially in early-stage EOC (stage I and II), the detection
rate of CTCs was significantly higher than the positive rate
for  CA125  (74.5% vs. 58.2%,  P=0.069).  But  in  advanced-
stage EOC (stage III  and IV),  the detection rate  of  CTCs
was close to CA125 (81.9% vs. 84.8%, P=0.579).

Univariate  analysis  showed that  the  detection rate  of
CTCs  was  significantly  higher  in  patients  with  ascitic
volume ≥500 mL, suboptimal cytoreductive surgery and
elevated  serum  CA125  levels  after  2  courses  of
chemotherapy (P<0.05, Table 3).

Application  value  of  CTC optimized  detection  model  and
CTCs  characterized  by  single  marker  genes  in  predicting
chemo-resistance and prognosis in EOC patients.

Among  the  160  EOC  patients,  115  were  found  to  be
chemo-sensitive  and  28  were  chemo-resistant.  The  results
showed that the detection of CTCs through the optimized
detection  model  was  not  correlated  with  chemotherapy
resistance  (P>0.05, Supplementary  Table  S4).  But  the
detection  rate  of  CTCEpCAM+ (defined  as  EpCAM  PCR

Table 1 Patients’ clinical information

Clinical characteristics
n (%)

Experimental
group (N=160)

Control
group (N=90)

Age (year)

　Mean (range) 55.7 (19−82) 44.4 (20−81)
CA125 level before initial
treatment (U/mL)

　≤35 39 (24.4) 74 (82.2)

　>35 121 (75.6) 16 (17.8)

Ascites volume (mL)

　<500 93 (58.1) 89 (98.9)

　≥500 67 (41.9) 1 (1.1)

Pathological typing

　Serous 126 (78.8) 8 (8.9)

　Mucinous 10 (6.2) 4 (4.4)

　Endometrioid 2 (1.3) −
　Clear cell-like 17 (10.6) −
　Mature teratoma − 12 (13.3)

　Chocolate cyst − 10 (11.1)

　Fibro-theca cell tumor − 5 (5.6)

　Fallopian mesangial cyst − 4 (4.4)

　Serous mucinous
　cystadenoma − 4 (4.4)

　Others (including 40
　health females) 5 (3.1) 43 (47.8)

FIGO staging

　I 34 (21.3) −
　II 21 (13.1) −
　III 84 (52.5) −
　IV 21 (13.1) −
Grading

　1 9 (5.6) −
　2 8 (5.0) −
　3 127 (79.4) −
　Others 16 (10.0) −

FIGO, the International Federation of Gynecology and Obstetrics.
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concentration ≥0.195  ng/μL)  and  CTCMUC1+ (defined  as
MUC1 PCR  concentration  ≥0.355  ng/μL)  were
significantly  higher  in  chemo-resistant  EOC  patients
(P<0.05, Supplementary Table S4).

The time distribution of PFS was 4−84 months, with a
median PFS of 34 months. The time distribution of OS
was 5−84 months, with a median OS of 42 months. While
no  statistical  difference  was  found,  PFS  of  CTCMUC1+

patients  trended  to  be  shorter  than  that  of  CTCMUC1−

patients  (P=0.357,  Figure  3A).  But  OS  of  CTCMUC1+

patients was significantly shorter (P=0.043, Figure 3B). In
addition, PFS and OS of CTC+ (detected by the optimized
model), CTCEpCAM+ and CTCWT1+ patients did not show
any significant difference with their corresponding negative
patients (P>0.05, Supplementary Figure S3−5).

Multivariate Cox regression analysis was performed on
the  effects  of  CTCMUC1+,  staging,  the  level  of  CA125,
ascites  volume,  cytoreductive  surgery,  lymph  node
metastasis, and chemotherapy sensitivity on the prognosis
of  patients.  The  results  showed  that  advanced  staging
(P=0.006)  and chemotherapy  resistance  (P<0.001)  were
independent  risk  factors  affecting  PFS  of  patients
(Supplementary Table S5). The volume of ascites ≥500 mL
(P=0.006), suboptimal cytoreductive surgery (P=0.046) and

chemotherapy resistance (P<0.001) were independent risk
factors affecting OS of patients (Supplementary Table S6).

 

Figure  1 Expression  of  three  markers  in  EOC  patients vs. non-cancerous  controls.  mRNA  abundance  levels  are  quantified  by  PCR.
Expression  of  (A)  EpCAM  (P<0.001);  (B)  MUC1  (P<0.001)  and  (C)  WT1  (P<0.001)  in  EOC  patients vs. non-cancerous  controls,
respectively. EOC, epithelial ovarian cancer; PCR, polymerase chain reaction; EG, experimental group; CG, control group.

Table 2 Detection thresholds, sensitivity and specificity of single marker to distinguish EOC patients from non-cancerous control group

Marker Cut-off value (ng/μL) Sensitivity (%) Specificity (%) AUC 95% CI

EpCAM 0.195 62.6 95.5 0.794 0.739−0.849

MUC1 0.355 56.1 92.1 0.721 0.658−0.784

WT1 0.305 61.3 95.5 0.791 0.736−0.846

EOC, epithelial ovarian cancer; AUC, area under the curve; 95% CI, 95% confidence interval.

 

Figure  2 ROC  curve  for  three  combined  markers  to  distinguish
EOC  patients  from  the  non-cancerous  control  group
(AUC=0.893; Y=0.617; specificity=0.922; sensitivity=0.794). ROC,
receiver  operating  characteristic;  EOC,  epithelial  ovarian  cancer;
AUC, area under the curve.
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Discussion

CTCs have become popular as it is expected that they will
become  screening  markers  for  early  diagnosis,  treatment
monitoring,  chemotherapy  reaction  and  prognostic
evaluation (12,25).  A large  amount  of  research concerning
ovarian  cancer  CTCs  has  been  reported  in  the  recent  5
years  (Table  4).  Though  promising  evidence  for  their
clinical application in assessing patient prognosis, real-time
monitoring of treatment effects and disease recurrence has
been  reported  (12,25),  many  researchers  still  focus  on
continuous optimization of CTC detection technologies.

Classically,  the  Cell  Search®  system  is  a  positive
enrichment  method  using  an  EpCAM  targeted
immunomagnetic bead to separate CTCs from peripheral
blood samples (43), and is the only FDA-approved CTC
detection technology that can be used for metastatic breast,
colorectal  and  prostate  cancers  (11,40).  However,  the
biggest limitation of this detection method is that EpCAM
is  a  marker  of  epithelial  cells  and  not  a  tumor-specific
marker  (44).  When  tumor  cells  undergo  epithelial-
mesenchymal  metastasis  (EMT),  CTCs  expressing
mesenchymal-derived  markers  become  undetectable,
resulting in the loss of CTC detection (45,46). Besides, we
reviewed the researches  of  CTC detection methods for
EOC  over  the  past  5  years,  a  series  of  new  detection
methods have emerged, such as streptavidin-biotin cascade
amplification effect coupled with folate receptor binding
method (25), invasiveness CTC subgroup labeling method
(18,29)  and a  high-throughput  microfluidic  technology
system designed by organically  combining physical  and
biological  characteristics  (37,39).  Also,  based  on  the
antigen-antibody binding enrichment methods similar to

CellSearch system, studies reported the use of immuno-
magnetic  beads  coupled  with  two  or  more  antibodies
(including  epithelial  markers:  EpCAM,  MUC-1,  CK,
HER2 and ESA;  interstitial  markers:  Vimentin  and N-
cadherin).  The  above  mentioned  detection  methods
significantly increased the detection rates by 58%−95%
(Table 4).

Our study also used an antigen-antibody binding method
to screen and separate CTCs with immunomagnetic beads,
which was then combined with multiple RT-PCR to detect
CTCs  in  the  peripheral  blood  of  EOC  patients.  To
compensate for the decrease in detection rate caused by
weak expression of a single target antigen, three molecules
(EpCAM, MUC1 and WT1), which are significantly more
abundant  in  ovarian  cancer  cells,  based  on  a  literature
review,  were  selected  as  gene  markers  to  establish  an
optimized  CTC  detection  model.  Early  in  2018,  our
laboratory successfully used this method to detect CTCs in
the  peripheral  blood  of  EOC  patients  (12).  If  PCR
concentration of any of the six marker (EpCAM, HER2,
MUC1, WT1, P16 and PAX8) was greater than or equal to
0.3 ng/μL, it was defined as positive for CTCs. Based on
this detection method, we detected CTCs in 90% (98/109)
of the newly diagnosed EOC patients, demonstrating the
feasibility of this detection method. However, our previous
study only enrolled healthy females in the control group
which inevitably becomes a limitation, as benign ovarian
tumor is the first need to be differentiated from EOC. Our
pre-experiment showed that, when compared with benign
ovarian tumor patients, only EpCAM, MUC1 and WT1
transcripts  were  significantly  more  abundant  in  EOC
patients (P<0.05). This result suggests that the other three

 

Figure  3 Comparison  of  PFS  and  OS  curves  in  CTCMUC1+ and  CTCMUC1− patients.  (A)  Median  PFS  of  CTCMUC1+ and  CTCMUC1−

patients was 35.0 and 45.0 months, respectively, but there was no statistical difference (HR=1.242; 95% CI: 0.787−1.959; P=0.357); (B) OS
of  CTCMUC1+ patients  tended  to  be  significantly  shorter  than  CTCMUC1− patients  (HR=1.900;  95%  CI:  1.020−3.540;  P=0.043).  PFS,
progression-free survival; OS, overall survival; CTC, circulating tumor cell; HR, hazard ratio; 95% CI, 95% confidence interval.
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marker (HER2, P16 and PAX8) fail to differentiate benign
ovarian  tumor  from  EOC.  Therefore,  to  establish
optimized detection model, we expanded the sample sizes
and  focused  on  EpCAM,  MUC1  and  WT1  to  achieve
optimal differentiation between the 160 EOC and 90 non-
cancerous patients.

Similar to our results, relevant studies demonstrated that
EpCAM,  MUC1  and  WT1  are  significantly  more
abundant  in  ovarian  cancer  (32,47-50).  Among  them,
EpCAM is a type I transmembrane glycoprotein located on
epithelial cells (51) and is a tumor-associated antigen that is
highly  expressed in  ovarian cancer  and is  also the most
widely  used  marker  for  ovarian  cancer  CTC detection

technology  (47,48).  Zhao  et  al.  (52)  used  the  Gene
Expression  Omnibus  (GEO)  database  to  analyze
differentially expressed genes in ovarian cancer and found
that the abundance of EpCAM transcripts in ovarian cancer
differs significantly from normal tissues (P=0.0048), and
especially  is  high  in  ovarian  cancers  with  recurrence,
metastasis, invasiveness and chemotherapy resistance (53).
This  supports  EpCAM  role  in  the  occurrence  and
metastasis  of  ovarian  cancer.  Mucin  1  (MUC1)  gene
encodes a membrane-bound O-glycosylated protein that
plays  an  essential  role  in  forming  protective  mucous
barriers on epithelial surfaces (54), which is overexpressed
in 90%−100% of serous carcinomas (55-57). The role of

Table 3 Univariate analysis of factors affecting CTC detection in EOC

Factors N
n (%)

χ2 P
CTCs positive rate CTCs negative rate

Age (year) 0.666 0.414

　≤55 78 64 (82.1) 14 (17.9)

　>55 82 63 (76.8) 19 (23.2)

CA125 (U/mL) 1.919 0.166

　≤35 39 34 (87.2) 5 (12.8)

　>35 121 93 (76.9） 28 (23.1)

Ascites (mL) 5.311 0.021

　<500 93 68 (73.1) 25 (26.9)

　≥500 67 59 (88.1) 8 (11.9)

Cytoreductive surgery* 5.732 0.017

　R0−R1 126 95 (75.4) 31 (24.6)

　R2 34 32 (94.1) 2 (5.9)

Staging 1.194 0.275

　I−II 55 41 (74.5) 14 (25.5)

　III−IV 105 86 (81.9 ) 19 (18.1)

Grading 0.354 0.552

　1−2 17 15 (88.2) 2 (11.8)

　3 127 100 (78.7) 27 (21.3)

Lymph node metastasis 0.023 0.880

　Yes 60 48 (80.0) 12 (20.0)

　None 100 79 (79.0) 21 (21.0)

Normalized CA125 with the course of chemotherapy 4.323 0.038

　≤2 72 50 (69.4 ) 22 (30.6)

　>2 39 34 (87.2) 5 (12.8)

Chemosensitivity 1.913 0.167

　Sensitivity 121 93 (76.9) 28 (23.1)

　Resistance 33 29 (87.9) 4 (12.1)

CTC, circulating tumor cell; EOC, epithelial ovarian cancer; *, R0 refers to no residual disease; R1 refers to residual disease with
tumors <1 cm; R2 refers to residual disease with tumors ≥1 cm.
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Table 4 Overview of studies on detection methods for CTCs in ovarian cancer.

References Year
No. of

patients
Tumor
stage

Isolation method Detection method
Targeted antigen/
targeted gene

Positivity
rate (%)

HR (95% CI)

Fan,
et al. (26)

2009 66 I−IV
CAMt (functional
enrichment)

ICC
EpCAM; CK4, 5, 6, 8, 10, 13,
18

  60.6
PFS: 1.44 (0.78−2.64),
P=0.040;
OS: 0.89 (0.40−1.95), NS

Aktas,
et al. (27)

2011 122 NR
Immunomagnetic
(Adnatest®)

RT-PCR
(Adnatest®)

EpCAM, MUC-1,
CA-125, HER-2

  19.0 (BT)
  27.0 (AT)

PFS: 1.58 (0.86−2.88), NS
OS: 4.56 (1.94−10.73),
P=0.050

Sang, et al.
(28)

2014 80 I−IV Red blood cells lysis RT-PCR MAGE-As   47.5 OS: P=0.002

Pearl,
et al. (29)

2014 88 I−IV
CAMt (functional
enrichment)

ICC
EpCAM, CA-125,
DPP4 and CKs

  88.6

PFS: 1.21 (0.49−2.97),
P=0.0024;
OS: 1.06 (0.41−2.73),
P=0.022

Kuhlmann,
et al. (30)

2014 143 I−IV
Immunomagnetic
(Adnatest®)

RT-PCR
(Adnatest®)

EpCAM, MUC1,
MUC6, ERCC1

  14.0
PFS: 1.50 (0.81−2.79), NS
OS: 1.85 (1.03−3.32),
P=0.041

Pearl,
et al. (18)

2015 31 I−IV
CAMt (functional
enrichment)

ICC/RT-PCR
EpCAM, CA-125, CD44,
seprase. Gene expression:
EpCAM, CD44, MUC16, FAP

100
Risk for PD, P<0.001
OR=121.3

Blassl,
et al. (31)

2015 10 NR
Immunomagnetic
(Adnatest)

Multiplex RT-PCR
(Adnates)

19 gene transcripts:
epithelial, EMT and stem cell
markers

  30.0 NR

Kolostova,
et al. (32)

2016 56 NR MetaCell® ICC/RT-PCR
EpCAM, MUC1, MUC16,
KRT18, KRT19, ERCC1, WT1

  58.0 NR

Liu,
et al. (33)

2016 10 NR
Immunomagnetic
(Folic acid)

ICC HE4 and FITC AffiniPure   50.0 NR

Chebouti,
et al. (34)

2017 91 I−IV
Immunomagnetic
(Adnatest)

Multiplex RT-PCR
(Adnatest)

EpCAM, ERCC1, MUC1,
MUC16, PI3Kα, Akt-2, Twist

  82.0

I−III:
PFS: 2.35 (1.06−8.74),
P=0.042
OS: 7.22 (3.21−111.5),
P=0.001

Suh,
et al. (35)

2017 31 I−IV
Tapered-slit
membrane filters

ICC EpCAM, CK9   77.4 NR

Lee,
et al. (36)

2017
24 (ND)
30 (RD)

I−IV Microfluidic device ICC
EpCAM, TROP-2, EGFR,
CD45 vimentin, N-cadherin,
DAPI

  98.1
PFS: 1.3 (0.230−7.145),
P=0.035
OS: 1.3 (0.350−2.298), NS

Rao,
et al. (37)

2017 23 I−IV
Microfluidics plus
immunomagnetic
beads (EpCAM)

ICC EpCAM, CK3–6H5, panCK   87.0 NR

Obermayr,
et al. (38)

2017
102
(BT)

78 (AT)
II−IV

Density gradient
centrifugation

ICC and FISH
ICC: EpCAM, Cytokeratins,
EGFR, MUC1, HER2
FISH: MECOM, HHLA1

  26.5 (BT)
    7.7 (AT)

PFS: 5.671 (1.560−20.618),
P=0.008
OS: 3.305 (1.386−7.880),
P=0.007

Obermayr,
et al. (39)

2018 20 II−IV
Microfluidic
ParsortixTM

RT-qPCR
EpCAM, PPIC, MAL2,
LAMB1, SERPINE2, TUSC3

  70.0 NR

Nie,
et al. (25)

2018 20 NR
Immunomagnetic
(Folic acid)

ICC HE4, FA   80.0 NR

Guo,
et al. (19)

2018 30 NR
Size-based
microfluidic
technique

ICC
EpCAM, HE4, panCK, CK7,
Vimentin

  73.3 NR

Po,
et al. (40)

2018 20 III−IV
Immunomagnetic
beads (EpCAM, N-
cadherin)

ICC
EpCAM, N-cadherin, CK,
Vecad, Vimentin

  90.0 NR

Zhang,
et al. (12)

2018 109 I−IV
Immunomagnatic
beads (EpCAM,
HER2, MUC1)

Multiplex RT-PCR
EpCAM, HER2, MUC1, WT1,
P16 and PAX8

  90.0 (BT)
  91.0 (AT)

OS: P=0.041

Table 4 (continued)
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MUC1 has been verified in mouse models where MUC1
expression is necessary for the occurrence of ovarian cancer
(56,57). The study by Hou et al. (49) confirmed that the
expression level of MUC1 in malignant EOC tissues was
significantly higher than that  in borderline,  benign and
normal ovarian tissues (P<0.05). WT1 (Wilms tumor gene)
is  located in the nuclei  and encodes a  tumor-associated
antigen (58). In epithelial ovarian tumors, WT1 expression
has been detected, and studies showed that ovarian cancers
with high expression of WT1 are more aggressive (50) and
suggestive of poor prognosis (59,60).

Based on single indicators for CTC detection, our results
showed that the specificity of each gene marker was high
(92.1%−95.5%),  but  their  sensitivity  was  relatively  low
(56.1%−62.6%), which suggests that we need to combine
multiple  markers  to  construct  an  optimized  model  to
increase the sensitivity of detection while ensuring a high
specificity.  However,  the combined application of these
three markers for the detection of CTCs in ovarian cancer
has  been  rarely  reported.  We  used  a  binary  logistic
regression analysis to set up the regression equation of the
optimized CTC detection model. When the threshold was
set as 0.617 (Y≥0.617 as positive for CTCs), the sensitivity
was 79.4%, and the specificity was 92.2%. Compared with
the  application  of  a  single  index,  the  sensitivity  of  the
optimized  detection  model  was  improved  without  any
evident decrease in specificity. Similar to our results, Abreu
et  al.  (42)  published  results  from  their  collection  of
peripheral  blood CTCs from 38 patients with advanced
ovarian high-grade serous cancer and also established an
optimized gene panel for CTC RT-qPCR detection. Their
model  was  composed  of  GAPDH,  TIMP1,  CK19  and
MUC1 (AUC: 0.938, P<0.01; 95% CI: 0.868−1), and its
detection  sensitivity  was  63%,  which  is  lower  than our
optimized model, but had a better specificity of 100%.

Then we compared the diagnostic  value of  our  CTC
detection model with serum CA125 level. CA125 is widely
used as a clinical serological marker, which is commonly
found in the serum of EOC patients (61), so it can assist the
diagnosis of EOC and can be used to monitor the progress
of the disease (62). However, the sensitivity of CA125 in
early-staged  EOC  is  quite  low,  resulting  in  an  early
diagnosis  rate  of  only  50% (3).  Also,  the  specificity  of
CA125 is rather poor, as inflammation, endometriosis and
other benign diseases can also present with elevated serum
CA125  levels  (4).  Therefore,  relying  solely  on  serum
CA125  levels  to  assist  the  diagnosis  of  ovarian  cancer,
monitor treatment effects and recurrence has limitations.
The detection of CTCs can to some extents make up for
the limitations of CA125. Studies (12,19,35) have shown
that, compared with CA125, CTCs have a higher detection
rate for early diagnosis. Our study also confirms this point
of view. In early-stage EOC (stage I and II), the detection
rate of our CTCs detection model was significantly higher
than  the  positive  rate  of  CA125  (74.5%  vs.  58.2%,
P=0.069), and also showed a higher specificity than that of
CA125  (92.2%  vs.  82.2%,  P<0.05).  This  suggests  the
advantage  of  our  CTC  detection  model  in  the  early
diagnosis of EOC and the feasibility to combine CTCs and
CA125 to improve the diagnostic rate of EOC. Moreover,
univariate analysis showed that the detection rate of CTCs
was significantly higher in patients with ascitic volume ≥
500  mL and  in  patients  with  suboptimal  cytoreductive
surgery. The large amount of ascites and the incomplete
cytoreductive surgery all indicate the presence of a large
tumor burden and advanced stage, which suggests that the
detection of CTCs can reflect the severity of the disease.

A large number of studies have confirmed that CTCs can
indirectly  reflect  the  tumor  proliferation  and  chemo-
sensitivity through dynamically monitoring the changes in

Table 4 (continued)
 

References Year
No. of

patients
Tumor
stage

Isolation method Detection method
Targeted antigen/
targeted gene

Positivity
rate (%)

HR (95% CI)

Kim,
et al. (20)

2019 30 I−IV
Tapered-slit
membrane filters

ICC CK-9, EpCAM
  76.7 (BT)
  57.1 (AT)

NR

Li N,
et al. (41)

2019 30 I−IV
Immunomagnetic
(EpCAM, FRα)

ICC EpCAM, FRα   67.4 NR

Banys-PM,
et al. (21)

2020 43 I−IV

Immunomagnetic
(CellSearchTM

system)

ICC (CellSearchTM

system)
EpCAM, CK   26.0

PFS: P=0.005
OS: P=0.006

Abreu M,
et al. (42)

2020 38 I−IV
Immunomagnetic
beads (EpCAM, CK)

RT-qPCR
GAPDH, TIMP1, CK19,
MUC1

  63.0 NS

ND, new disease; RD, recurrent disease; NR, not reported; RT-PCR, real-time polymerase chain reaction; RT-qPCR, real-time quantitative polymerase chain
reaction; ICC, immunocytochemistry; BT, before treatment; AT, after treatment; HR, hazard ratio; 95% CI, 95% confidence interval; PFS, progression-free
survival; OS, overall survival; NS, not significant;
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CTCs counts during chemotherapy, indicating that CTCs
can be used as a predictive marker to assess the effect of
chemotherapy  (63-65).  However,  results  from relevant
studies  regarding this  question have been controversial.
Some  studies  concluded  that  there  was  no  statistically
significant association between CTC detection and chemo-
resistance (26,66). Although the results of our study showed
no  statistical  difference  between  CTCs  detection  and
chemo-resistance.  In  clinical  practice,  we  found  that
patients with elevated serum CA125 levels after more than
2 courses of postoperative chemotherapy often had poor
outcomes and usually ended up with a high incidence of chemo-
resistance or uncontrolled tumor progression. Our study
also found that the detection rate of CTCs in this group of
patients was significantly higher, suggesting a correlation
between CTCs and chemo-resistance. Besides, an in-depth
analysis  of  the abundance of the different marker genes
suggested that CTCs characterized by positive expression
of EpCAM or MUC1 have a predictive value for chemo-
resistance in EOC patients.

Recent  studies  have  been  devoted  to  exploring  the
predictive value of CTCs as tumor markers for prognosis of
ovarian  cancer,  but  the  result  is  yet  undetermined
(12,18,21,34,36,38,39). We reviewed 20 articles published
in  the  past  10  years,  and  more  than  half  of  the  studies
concluded that the detection of CTCs in peripheral blood
is closely related to the shortening of PFS and OS (Table 4).
Three published meta-analysis articles summarize relevant
studies that CTCs could predict the prognosis of ovarian
cancer patients (67-69), but there are also a few studies that
concluded that CTCs are not significantly related to PFS
and OS (17,26,70). Unfortunately, our study showed that
there  was  no  significant  correlation  between  the  CTC
detection model and the prognosis.  However,  we found
that  patients  with  CTCs  characterized  by  positive
expression  of  MUC1  (CTCMUC1+)  had  a  significantly
shorter  OS,  and  a  trend  for  shorter  PFS  than  patients
without, which suggests that the detection of CTCMUC1+

may  indicate  poor  prognosis.  This  finding  indicates  a
correlation between different CTCs’ molecular phenotypes
and clinical features. The rapid development of single-cell
sequencing  has  paved  the  way  for  the  molecular
characterization of CTCs (71). Our following studies are
needed to resolve the roles of the molecular phenotypic
characteristics of CTCs, and explore the mechanisms for
ovarian cancer metastasis, recurrence and chemotherapy
resistance, and potentially guide individualized treatment of
ovarian cancer patients.

There are some limitations of our study that should be
improved in subsequent studies. The detection method of
our study was not to capture intact CTCs from the blood,
but instead to obtain mRNA after cell lysis from enriched
cells and to evaluate expression of marker genes by RT-
PCR.  In  addition,  since  the  follow-up  period  of  most
patients was short, future studies should extend the follow-
up period and expand sample size to validate the above
findings.

With the continuous optimization of CTCs detection
technology, with increased sensitivity and specificity, it may
become  possible  to  isolate  viable  and  intact  CTCs.
Development of CTCs in vitro cell culture technology, the
construction  of  biomimetic  models,  and  the  combined
application  of  genetic  assessment  and  bioinformatics
analysis  should  help  reveal  the  molecular  biological
characteristics of primary ovarian cancer, metastases and
recurrences. This should lead to improve understanding of
the  mechanisms  of  ovarian  cancer  metastasis  and
chemotherapy resistance, identify new therapeutic targets,
and guide the individualized treatment of ovarian cancer
patients.

Conclusions

This study used immunomagnetic beads targeting EpCAM
and  MUC1  for  CTC  separation,  then  quantified  the
expression  of  EpCAM,  MUC1  and  WT1  in  peripheral
blood  for  CTC  detection,  and  further  used  these  three
markers  to  establish  an  optimized  detection  model  for
CTCs. Compared with a single marker gene, the optimized
detection  model  had  higher  sensitivity  and specificity,  and
had better  diagnostic  value for early-staged ovarian cancer
than  CA125.  However,  for  predicting  drug  resistance  and
prognosis, positive CTCs characterized by a single marker
appeared more advantageous than the optimized detection
model.  Detection  of  CTCEpCAM+ and  CTCMUC1+ has
predictive  value  for  chemotherapy  resistance  and  the
detection of CTC MUC1+ may indicate poor prognosis.
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Figure S1 Confocal laser imaging of immunomagnetic beads combined with SKOV3 cell line. Immunomagnetic beads were incubated with
two monoclonal antibodies (EpCAM and MUC1) without staining; ovarian cancer cell line was SKOV3 cell line, and nucleus was stained
with DAPI.



 

Figure  S2 ROC  curves  for  three  markers  to  distinguish  EOC
patients from the non-cancerous control group. AUC of EpCAM,
MUC1  and  WT1  is  0.794,  0.721  and  0.791,  respectively.  ROC,
receiver  operating  characteristic;  EOC,  epithelial  ovarian  cancer;
AUC, area under the curve.

 

Figure S3 Comparison of PFS and OS between CTC+ and CTC− EOC patients. (A) Median PFS of CTC+ and CTC− patients was 28.5
and 48.0  months,  respectively,  but  there  was  no  statistical  difference  (HR=1.137;  95% CI:  0.638−2.025;  P=0.386);  (B)  OS of  CTC+ and
CTC− patients  was  not  statistically  different  (HR=0.838;  95%  CI:  0.388−1.808;  P=0.652).  PFS,  progression-free  survival;  OS,  overall
survival; CTC, circulating tumor cell; HR, hazard ratio; 95% CI, 95% confidence interval.



Table S1 Primer sequences of three genes

Genes Forward Reverse

EpCAM TGAGCGAGTGAGAACCTA CACAACAATTCCAGCAAC

MUC1 GCACCGACTACTACCAAGAG AAGGAAATGGCACATCACT

WT1 AGTCCGCCATCACAACAT TGGTACAATAATTCCATCCC

ACTIN GAAATCGTGCGTGACATTA AGGCAGCTCGTAGCTCTT

 

Figure S4 Comparison of  PFS and OS curves  between CTCEpCAM+ and  CTCEpCAM− patients.  (A)  PFS of  CTCEpCAM+ and  CTCEpCAM−

patients was not statistically different (HR=1.049; 95% CI: 0.659−1.670; P=0.841); (B) OS of CTCEpCAM+ and CTCEpCAM− patients was not
statistically  different  (HR=0.960;  95%  CI:  0.505−1.823;  P=0.899).  PFS,  progression-free  survival;  OS,  overall  survival;  CTC,  circulating
tumor cell; HR, hazard ratio; 95% CI, 95% confidence interval.

 

Figure S5 Comparison of  PFS and OS curves  between CTCWT1+ and CTCWT1− patients.  (A)  Median PFS of  CTCWT1+ and CTCWT1−

patients was 42.0 and 35.0 months, respectively, but there was no statistical difference (HR=0.869; 95% CI: 0.546−1.384; P=0.308); (B) OS
of  CTCWT1+ and  CTCWT1− patients  was  not  statistically  different  (HR=0.735;  95%  CI:  0.391−1.381;  P=0.201).  PFS,  progression-free
survival; OS, overall survival; CTC, circulating tumor cell; HR, hazard ratio; 95% CI, 95% confidence interval.



Table S2 Regression coefficients

Variables Estimate SE Z (Estimate/se) P

(Intercept) −1.917 0.3369 −5.691 <0.001

EpCAM 5.413 1.5547 3.482 <0.001

MUC1 2.463 0.8748 2.815 <0.01

WT1 3.586 0.8758 4.094 <0.001

SE, standard error.

Table S3 Ten-fold cross validation results

Cross validation Accuracy Sensitivity Precision

1.00 0.84 0.81 0.93

2.00 0.84 0.83 0.91

3.00 0.84 0.84 0.91

4.00 0.84 0.83 0.91

5.00 0.82 0.83 0.89

6.00 0.83 0.83 0.90

7.00 0.84 0.84 0.90

8.00 0.85 0.85 0.92

9.00 0.82 0.83 0.89

10.00 0.85 0.84 0.92

Average 0.84 0.83 0.91

SE 0.01 0.01 0.01

SE, standard error.

Table S4 Detection of CTCs through optimized detection model and CTCs characterized by single marker gene (EpCAM, MUC1 and
WT1) in EOC patients with different levels of chemo-sensitivity

Marker N
n (%)

χ2 P
Sensitivity Resistance

CTCs

　Positive 121 93 (76.9) 28 (23.1) 1.913 0.167

　Negative   33 29 (87.9)   4 (12.1)

CTCEpCAM

　Positive   95 70 (73.7) 25 (26.3) 4.617 0.032

　Negative   59 52 (88.1)   7 (11.9)

CTCMUC1

　Positive   87 64 (73.6) 23 (26.4) 3.888 0.049

　Negative   67 58 (86.6)   9 (13.4)

CTCWT1

　Positive   91 72 (79.1) 19 (20.9) 0.001 0.971

　Negative   63 50 (79.4) 13 (20.6)

CTC, circulating tumor cell; EOC, epithelial ovarian cancer. CTCEpCAM positive defined as EpCAM PCR concentration ≥0.195 ng/μL;
CTCMUC1 positive defined as MUC1 PCR concentration ≥0.355 ng/μL; CTCWT1 positive defined as WT1 PCR concentration ≥0.305
ng/μL.



Table S5 Multivariate Cox regression analysis on PFS in patients with EOC

Factors B SE Exp (B) 95% CI P

Staging 1.060 0.387 2.887 1.353−6.159 0.006

Level of CA125 0.395 0.275 1.485 0.866−2.545 0.151

Ascites 0.241 0.275 1.273 0.743−2.181 0.379

Cytoreductive surgery 0.097 0.276 1.101 0.641−1.893 0.727

Lymph node metastasis 0.116 0.258 1.123 0.677−1.862 0.653

Chemosensitivity 2.613 0.305 13.634 7.499−24.790 <0.001

PFS, progression-free survival; EOC, epithelial ovarian cancer; SE, standard error; 95% CI, 95% confidence interval.

Table S6 Multivariate Cox regression analysis on OS in patients with EOC

Factors B SE Exp (B) 95% CI P

CTCMUC1+ 0.284 0.372 1.328 0.640−2.775 0.446

Staging 0.681 0.593 1.976 0.618−6.320 0.251

Level of CA125 −0.354 0.363 0.702 0.344−1.430 0.330

Ascites 1.107 0.405 3.025 1.367−6.691 0.006

Cytoreductive surgery 0.742 0.371 2.100 1.015−4.346 0.046

Lymph node metastasis 0.179 0.350 1.196 0.603−2.373 0.609

Chemosensitivity 2.211 0.354 9.121 4.555−18.266 <0.001

OS, overall survival; EOC, epithelial ovarian cancer; SE, standard error; 95% CI, 95% confidence interval. CTCMUC1+ defined as
MUC1 PCR concentration ≥0.355 ng/μL.


