Table 3.
Performances of pN2 lymph node metastasis prediction models.
| Model | AUCa | APb | ||||
|
|
Mean | SD | 95% CI | Mean | SD | 95% CI |
| LRc | 0.778 | 0.041 | 0.747-0.809 | 0.442 | 0.075 | 0.385-0.499 |
| L2-LRd | 0.768 | 0.038 | 0.739-0.796 | 0.413 | 0.072 | 0.359-0.467 |
| ANNe | 0.769 | 0.051 | 0.730-0.808 | 0.434 | 0.095 | 0.363-0.506 |
| SVMf | 0.771 | 0.071 | 0.718-0.825 | 0.453 | 0.084 | 0.389-0.516 |
| RFg | 0.792 | 0.042 | 0.760-0.825 | 0.456 | 0.075 | 0.399-0.512 |
| LGBMh | 0.787 | 0.044 | 0.755-0.820 | 0.457 | 0.101 | 0.381-0.534 |
aAUC: area under the receiver operating characteristic curve.
bAP: average precision.
cLR: logistic regression.
dL2-LR: L2-logistic regression.
eANN: artificial neural network.
fSVM: support vector machine.
gRF: random forest.
hLGBM: LightGBM.