Table 4.
Model | AUCa | APb | ||||
|
Mean | SD | 95% CI | Mean | SD | 95% CI |
LRc | 0.740 | 0.035 | 0.714-0.766 | 0.467 | 0.058 | 0.423-0.510 |
L2-LRd | 0.736 | 0.044 | 0.704-0.769 | 0.465 | 0.058 | 0.422-0.509 |
ANNe | 0.734 | 0.047 | 0.698-0.770 | 0.479 | 0.087 | 0.413-0.545 |
SVMf | 0.735 | 0.023 | 0.717-0.752 | 0.474 | 0.047 | 0.439-0.509 |
LGBMg | 0.768 | 0.030 | 0.745-0.791 | 0.524 | 0.044 | 0.491-0.557 |
RFh | 0.771 | 0.026 | 0.752-0.791 | 0.524 | 0.057 | 0.481-0.567 |
aAUC: area under the receiver operating characteristic curve.
bAP: average precision.
cLR: logistic regression.
dL2-LR: L2-logistic regression.
eANN: artificial neural network.
fSVM: support vector machine.
gRF: random forest.
hLGBM: LightGBM.