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Abstract

Docosahexaenoic acid (DHA), a polyunsaturated fatty acid (PUFA) enriched in phospholipids in 

the brain and retina, is known to play multi-functional roles in brain health and diseases. While 

arachidonic acid (AA) is released from membrane phospholipids by cytosolic phospholipase 

A2 (cPLA2), DHA is linked to action of the Ca2+-independent iPLA2. DHA undergoes 

enzymatic conversion by 15-lipoxygenase (Alox 15) to form oxylipins including resolvins and 

neuroprotectins, which are powerful lipid mediators. DHA can also undergo non-enzymatic 

conversion by reacting with oxygen free radicals (ROS), which cause the production of 4-

hydoxyhexenal (4-HHE), an aldehyde derivative which can form adducts with DNA, proteins and 

lipids. In studies with both animal models and humans, there is evidence that inadequate intake of 

maternal n-3 PUFA may lead to aberrant development and function of the central nervous system 

(CNS). What is less certain is whether consumption of n-3 PUFA is important in maintaining 

brain health throughout one’s life span. Evidence mostly from non-human studies suggests that 

DHA intake above normal nutritional requirements might modify the risk/course of a number of 

diseases of the brain. This concept has fueled much of the present interest in DHA research, in 

particular, in attempts to delineate mechanisms whereby DHA may serve as a nutraceutical and 
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confer neuroprotective effects. Current studies have revealed ability for the oxylipins to regulation 

of cell redox homeostasis through the Nuclear factor (erythroid-derived 2)-like 2/Antioxidant 

response element (Nrf2/ARE) anti-oxidant pathway, and impact signaling pathways associated 

with neurotransmitters, and modulation of neuronal functions involving brain-derived neurotropic 

factor (BDNF). This review is aimed at describing recent studies elaborating these mechanisms 

with special regard to aging and Alzheimer’s disease, autism spectrum disorder, schizophrenia, 

traumatic brain injury, and stroke.
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1. Docosahexaenoic acid (DHA) – an essential (n-3) polyunsaturated fatty 

acid (PUFA) enriched in the mammalian brain

The brain is a fatty tissue with higher proportions of lipids than proteins. Brain lipids, 

including phospholipids, sphingolipids, and cholesterol, are known to play critical roles in 

the structure and functions of cell membranes. Phospholipids in mammalian brain, including 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylethanolamine 

plasmalogen (PEpl), phosphatidylserine (PS) and phosphoinositides (PI, PIP and PIP2) have 

polyunsaturated fatty acids (PUFA) esterified in the sn-2 position (Fig. 1). Although all 

phospholipids have PUFA, each one has specific profile. For example, fatty acids in PS 

are comprised of high levels of palmitic acid (16:0) and docosahexaenoic acid (DHA; 22:6 

n-3), whereas fatty acids in PI have high levels of stearic acid (18:0) and arachidonic acid 

(AA; 20:4 n-6) [1–3]. Besides being an integral part of the membrane structure, PS and PI 

have unique functions. PI and its phosphorylated derivatives are linked to G-protein coupled 

phospholipase C (PLC) for the release of inositol trisphosphates (IP3) and diacylglycerol 

(DG), which in turn serve as second messengers for mobilization of intracellular calcium 

stores and activation of protein kinase C (PKC), respectively. In contrast, PS is an anionic 

phospholipid present mainly in the inner monolayer of the plasma membrane, but its 

translocation to the outer monolayer serves as an indication of cell apoptosis [1,4].

The PUFAs in membrane phospholipids are metabolically active and undergo turnover 

through a deacylation-reacylation mechanism mediated by phospholipases A2 (PLA2) and 

ATP-dependent acyl-CoA acyltransferases [5,6] (Fig. 1). Under pathological conditions such 

as stroke, stimulation of PLA2 together with depletion of ATP can perturb the deacylation-

reacylation cycle and resulting in a rapid accumulation of free fatty acids [7]. The release of 

PUFA from membrane phospholipids is mediated by two major groups of PLA2, namely the 

group IV cytosolic PLA2 (cPLA2) and the group VI calcium-independent PLA2 (iPLA2) 

(Fig. 1). Although each PLA2 family is comprised of multiple isoforms, studies have 
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focused mainly on the cPLA2α and iPLA2β [8–10]. cPLA2α is linked to inflammatory 

pathways through cell-specific receptors and activation of protein kinases, including the 

mitogen activated protein kinases (MAPK) and protein kinase C (PKC) [10]. This enzyme 

prefers acting on PC and releases AA, which serves as a substrate for cyclooxygenases 

(COX1/ COX2) and lipoxygenases (LOX). In turn, this leads to production of a large 

number of lipid mediators including prostanoids, thromboxanes, lipoxins and leukotrienes 

[11]. The Ca2+-independent iPLA2β does not exhibit obvious substrate specificities and is 

not regulated by protein kinases. However, there is evidence that this PLA2 is the major 

source for the release of DHA [12,13]. In rodents, dietary deprivation of n-3 PUFA for 

15 weeks can cause a decrease in iPLA2 mRNA and protein in the brain [14]. Genetic 

depression of iPLA2 and inhibition of its activity by its specific inhibitor, bromoenol lactone 

(BEL) indicated a relationship between iPLA2 with oxidative stress and mitochondrial 

functions [15]. iPLA2 is highly expressed in the prefrontal cortex area, and its activity 

appears to play a role in acquisition of memory functions [16], and long term potential (LTP) 

[17]. Recent studies further demonstrated a role for iPLA2 in exacerbating antidepressant 

effects and nociceptive responses [18–20]. A recent study demonstrated the effects of iPLA2 

and DHA release to interaction with 15-lipoxygenase (Alox 15), responsible for conversion 

of DHA to the oxylipin intermediates such as resolvin D1 (RvD1) [21].

The preferential production of AA by cPLA2 and DHA by iPLA2 led to further interest in 

understanding the multiple and diverse roles of these PUFA in mediating brain cell functions 

[22]. In particular, interest has focused on the role of DHA in neuropsychiatric diseases, 

including schizophrenia, depression, autism and age-related diseases such as Alzheimer’s 

disease [23]. DHA is particularly important in brain development as there is a “DHA 

accretion spurt” during the last gestational period [24]. With increasing age, over the life 

span from 20 to 100 years, there is a 30% increase in PS (high in 16:0/22:6 species) and 

a 25% decrease in mitochondrial PE with 18:0/20:4 species [25]. The age-related changes 

in phospholipids with 22:6- and 20:4-containing phospholipid species suggest the need for 

these phospholipids to maintain proper brain functions. Due to rapid neurogenesis during 

the brain developmental period, sufficient dietary sources of DHA and (n-3) fatty acids are 

needed for maintenance of neuronal functions [22]. This pertains especially to the synaptic 

membranes which contain high levels of 22:6 phospholipids [26]. Findings from animal and 

clinical studies support the role of n-3 fatty acids as essential nutrients and a life-long factor 

spanning from childhood to old age [27].

2. Source of DHA in brain and cautionary notes regarding studies with 

dietary DHA

The DHA found in the CNS is not produced de novo in mammals. Instead, it must be 

obtained from the diet or synthesized from the precursor fatty acid, alpha-linolenic acid 

(ALA, 18:3 n-3). From a pure nutrition perspective, ALA is the only omega-3 fatty acid 

that is defined as a dietary essential nutrient [28]. Since the conversion of ALA into DHA 

is quite inefficient, involving many desaturase and elongase enzymes, many researchers 

speculate that there could be benefits in providing pre-formed DHA in the diet rather than 

relying solely on ALA [29]. This is particularly problematic during fetal and neonatal 
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development when CNS demands for DHA cannot readily be met by ALA alone [30]. In 

fact, it has been argued that nutrition guidelines associated with consumption of omega-3 

fatty acids, particularly to those related to maternal and perinatal periods for infants, should 

be reconsidered [31].

Over the past decade, the focus of DHA research has shifted from its role in CNS 

development to maintenance of CNS health and function, particularly during aging and/or 

diseases. Among the most pressing questions for researchers are whether supplementation 

of the diet with DHA and/or other long-chain omega-3s can alter the risk of development 

or progression of these diseases [32]. For studies with animal models, it is important to 

distinguish between those studies that compare DHA treatment throughout life vs. those 

that provide DHA treatment at later stages of the animal’s life. Additionally, many animal 

studies use dosages of omega-3s that exceed what is achievable in humans. Therefore, 

caution should be taken when interpreting results from such studies.

Dietary supplementation of DHA is thought to offer neuroprotection against chronic and 

acute inflammation within the CNS [33,34]. However, these studies may need to consider 

factors such as dosage, duration and mode of diet. In one study, two-month old (i.e., 

young adult) rats were fed a diet supplemented either with 150–300 mg/kg/day or a high 

dose of 600 mg/kg/day of DHA for one month. The low dose group resulted in improved 

spatial learning performance (escape latency) as well as retention (probe trial) in the Morris 

water maze, but the high dose group actually showed impairment in performance [35]. 

As referenced by a recent review, excess DHA administration showed either no effects 

or harmful effects in neurodevelopment [36]. Many forms of stress are known to induce 

oxidative stress and inflammatory responses which subsequently lead to alterations of 

neuronal and glial cell functions [37]. Studies directed to investigating whether dietary 

intake of DHA mitigates stress-induced oxidative and inflammatory responses need to 

consider these factors [37].

3. DHA on aging and Alzheimer’s disease

3.1. Studies with cell and animal models

The potential neuroprotective effects of DHA have drawn interest in the investigation of 

whether it may have a positive impact on age-related decline in cognition and in AD-related 

neuropathology. In a study with female young (3 months) and old (24 months) mice, total 

DHA levels in blood and brain were significantly lower in aged mice as compared with the 

young mice [38]. The decrease in DHA in the aged group could be partially compensated 

upon administration of fish oil (550 mg DHA/kg body weight/day via oral gavage for 

21 days). In several studies with aged rodents, DHA and/or eicosapentaenoic acid (EPA) 

supplementation was shown to improve performance in cognitive tests and elicit protection 

against neuroinflammation and oxidative stress [39–41]. Studies with AD transgenic (Tg) 

animal models appear to provide a general consensus suggesting beneficial effects of 

dietary DHA on learning and memory. It is important to note that many studies used 

long-term DHA administration and DHA supplementation started before evident behavioral 

impairments in the Tg animals. Nevertheless, positive effects were observed in the Morris 

water maze test with the APPswe/PS1 mice [42], in the radial arm maze with 5 X FAD 
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mice [43], in the novel object recognition with the 3 X Tg-AD mice [44], and in the Y 

maze and fear conditioning for Tg2576 mice [45]. On the other hand, in a study with the 

AD transgenic mice (TgCRND8), diets supplemented with 0.246% DHA (~0.5%) or an 

equivalent amount of corn oil (control) for six months indicated poorer spatial memory and 

elevated levels of TNFα expression in the DHA treated mice [46].

Studies with DHA dietary interventions also provided evidence for beneficial effects on 

neuropathology such as amyloid-beta and tau pathology, inflammation, and changes in 

certain biomarkers [47–51]. DHA was able to reduce AD-like neuropathology even when 

given to older Tg mice [52]. Sex-specific effects of the DHA diet have also been described; 

DHA had a greater effect on reducing plaque load in female than in male APPswe/PS1 mice. 

DHA diet also resulted in an increase of cortical synaptotagmin levels in female Tg mice 

but not in males [53]. A recent review on DHA and EPA, and oxylipins in pre-clinical and 

animal models of AD revealed evidence for differences in action between EPA and DHA 

[54]. The underlying mechanisms responsible for these effects are unknown and should be 

investigated in the future.

Considering iPLA2 being a major source of DHA, the deficiency of DHA in the AD brain 

can be attributed to a reduction of iPLA2 and in turn the availability of lipid mediators 

responsible for memory function [55]. In support of this phenomenon, bromoenol lactone 

(BEL), a specific inhibitor for iPLA2, was shown to cause impairment of long term 

potentiation in the cortico-straital brain region, and the impairment could be rescued by 

an acute injection of DHA [56].

The evidence for chronic inflammation in the pathogenesis of AD has raised the question 

regarding whether n-3 PUFA may suppress the inflammatory responses. One hypothesis 

for the increase in oxidative stress and inflammatory responses in AD brain is related to 

the production of toxic beta amyloid (Abeta) species from the amyloid precursor protein 

(APP). Studies with cultured neurons demonstrated ability for oligomeric Abeta to cause 

excitotoxicity, increase production of reactive oxygen species (ROS) and activation of 

cPLA2 [57]. Although this study did not test the effects of DHA, botanical antioxidants 

could reverse the neurotoxic effects of oligomeric Abeta [58]. In a more recent study, 

oligomeric Abeta were observed in an extract from AD brain and their exposure caused 

impairment of synaptic proteins [59]. In fact, oligomeric Abeta could also alter PLA2s 

in astrocytes and despite of unknown mechanism of action, these interactions resulted 

in mitochondrial dysfunction [60]. There is increasing evidence supporting the role of 

microglial cells in mediating the oxidative and inflammatory responses in the AD brain. A 

recent review demonstrated a role for DHA and its oxygenated derivatives to modulate these 

inflammatory responses in glial cells through interacting with the peroxisome proliferator-

activated receptor-γ (PPARγ) [61]. Microglial cells are known to exhibit multi-functions 

with ability to show phenotypic changes depending on the micro-environment. In a study 

with human CHME3 microglial cells, treatment with DHA and EPA was shown to stimulate 

microglial phagocytosis of Abeta, decrease in secretion of cellular inflammation markers, 

and increase neurotrophin production [62].
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3.2. Studies with human subjects

Over recent years, numerous studies have been carried out to investigate whether fish oil 

or omega-3 PUFA has a protective effect in AD in human subjects [54,63]. Although 

there are supports for beneficial effects of n-3 PUFA on mild cognitive impairment (MCI), 

especially during the very early phase [64,65], other studies have provided contradictory 

results instead [66]. In a Medline search for epidemiological evidence for n-3 PUFA on 

dementia, 17 studies provided beneficial effects but 3 showed negative effects [67]. With 

few exceptions, many randomized controlled trials of omega-3 fatty acids in AD have not 

yielded obvious benefits [68–70]. There is possibility that beneficial effects of n-3 PUFA are 

related to specific demographic factors, and subgroups of AD patients, e.g., subjects with 

apolipoprotein E epsilon 4 (APOE4) status [71]. Studies with mouse models demonstrated 

influence of DHA on APOE4 alleles [72,73]. Since APOE is linked to transport of lipids, 

there is strong rationale to further investigate effects of DHA on APOE4-related changes 

during aging and AD. A review by Cederholm (2017) concluded that healthy populations 

may have preventive benefits from fish and docosahexaenoic acid intake [74]. Taken 

together, there is general support for the notion that long term supplementation of n-3 PUFA 

may benefit older adults with memory complaints/mild cognitive impairment as well as 

subgroups of patients with mild/moderate AD [71]. Since n-3 PUFA can generate bioactive 

lipid mediators, whether these lipids may play a role in mitigating the chronic inflammatory 

responses and cognitive decline in AD brain are studies that need further investigation.

4. DHA and autism spectrum disorder (ASD)

The important role of DHA for brain development has generated extensive interest on 

whether this fatty acid may offer therapeutic effects on ASD. Similar to AD, this is again 

a highly controversial subject. A number of studies demonstrated differences in DHA/AA 

ratio in plasma of ASD patients [75–79]. However, studies with DHA supplementation on 

ASD children have not provided consistent results. In a recent pilot non-randomized study, 

ASD children ranging 7–18 years old were provided DHA for 12 weeks, and significant 

improvements were observed in all subscales including blood fatty acid profiles [80]. 

Positive response was also observed in another study, albeit with a single ASD patient 

[81]. However, in a randomized, placebo controlled study, DHA supplementation (1.5 g/

day) was not able to significantly alter the behavioral deficits of young children with 

ASD [82]. A recent meta-analysis using Medline and EMBRASE data-bases [83] together 

with another study searching the Cochrane data-base also concluded no evidence of an 

effect of omega-3 supplements for the ASD spectrum [84]. One difficulty for these studies 

is the sampling of subjects from different geographical locations with different dietary 

backgrounds. Furthermore, once a child already has autism, DHA is not likely able to 

correct the deficits, suggesting involvement of other factors [82]. However, these studies do 

not exclude the possible presence of a subgroup of ASD who are “responders” to DHA [81].

Maternal high fish intake during pregnancy does appear to have neuropsychological benefits 

for offspring [85]. One study revealed that mothers with the lowest 5% of intake of omega-3 

during pregnancy had a significant increase in ASD risk in offspring [86]. Although not 

directly related to ASD, maternal diet enriched in n-3 PUFA was shown to enhance cell 
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proliferation in the dentate gyrus and subsequently alter the contents of neurotransmitters, 

including gama-aminobutyric acid and dopamine and its metabolites [87]. Omega-3 fatty 

acids have been shown to rescue the fragile X phenotype in Fmr1-KO mice [88], one genetic 

model relevant to autism. DHA has also been shown to rescue the ASD-related behaviors 

in prenatally stressed mice born to dams that are genetically susceptible to stress [89]. In 

a mouse model of maternal immune activation (MIA) induced by gestational exposure to 

the viral mimetic polyriboinosinic-polyribocytidilic acid (Poly I: C), dietary DHA was able 

to protect offspring of autism-associated behaviors [90]. In a rat model of autism induced 

by prenatal exposure to valproic acid (VPA), oral administration of DHA (300, but not 75 

or 150, mg/kg/day) for 21 days from post-natal age of 14 days, rescued the VPA-induced 

reduction of DHA in plasma and hippocampus, increased levels of p-CaMKII and p-CREB, 

and inhibited caspase-3 activity [91]. Finally, a maternal diet with a relative deficiency 

in omega-3 was able to induce ASD-associated behaviors in mice [92]. Taken together, 

these studies with different animal models and feeding paradigms have provided evidence 

showing beneficial effects of DHA to ameliorate behavioral deficits due to MIA or other risk 

factors associated with autism.

The BTBR mice have been regarded as a model of idiopathic autism as they show many 

manifestations of autistic behaviors including impaired social interaction, communication, 

and increased repetitive behaviors [93,94]. Zilkha et al. showed that high-fat diet could 

aggravate autism-related behaviors in the BTBR mice but not in the C57 mice [95]. 

Apparently, despite that the effects of omega-3 fatty acids in established ASD are unclear, 

future studies may use different mouse models to test whether DHA supplementation may 

reduce behaviors and physiological abnormalities that mimic ASD.

5. N-3 fatty acids effects on schizophrenia (SZ) and other psychiatric 

disorders

Currently, only 40–50% of SZ patients respond favorably to pharmacological treatment [96] 

and those who do not respond to treatment often have prominent cognitive deficits and 

persistent negative symptoms. Recent studies have indicated a link between a low content 

of n-3 PUFAs in diet to an increased susceptibility to psychiatric disorders [97,98]. There 

are also data showing a deficiency in n-3 fatty acids in phospholipids in subjects with SZ 

[99–101], and supplementation of n-3 fatty acids has proved to provide a favorable treatment 

modality for SZ patients and women with psychotic-like symptoms [102,103]. In fact, a 

causative role has been proposed to link phospholipid and fatty acid metabolism deficits 

to the development of cognitive disorder in SZ [104,105]. Supplementation with n-3 fatty 

acids has shown promising results, not only for movement-related symptoms [106], but also 

for cognitive impairments [107]. Data from human subjects suffering with SZ showed a 

reduction in perseverative errors (performance on the Wisconsin Card Sort Test) at 3- and 

6-months after initiating EPA supplementation (2 g/day in 4×500 mg ethyl-EPA capsules 

daily) and these changes paralleled the more than 2.5- and 3-fold increases in red blood cell 

(RBC) membrane levels of EPA [108,109]. In another randomized placebo-controlled study, 

subjects with first-episode schizophrenia were given either 2.2 g/day of concentrated fish 

oil (containing EPA and DHA) or olive oil as placebo for 26 weeks, and results of clinical 
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evaluation of schizophrenia symptom severity change analyzed by the Positive and Negative 

Syndrome Scale (PANSS) indicated ability for the fish oil diet to reduce the severity of 

schizophrenia symptoms [110].

There is evidence linking n-3 PUFA with mood disorders, including depression [111,112]. 

Analysis of erythrocyte EPA and DHA composition indicated lower n-3 PUFA in patients 

with major depressive disorder (MDD). In a systematic review and meta-analysis of 

31 studies on fish oil consumption and depression, results support the consensus that 

dietary n-3 PUFA intake are associated with lower risk of depression [113]. Studies 

with rodents suggest that n-3 PUFA deficiency during perinatal development exhibit 

neuropathological, neurochemical, and behavioral features reflecting mood disorders, and 

n-3 PUFA supplementation can correct these deficits [114]. Since serotonin is known to 

regulate a wide variety of brain functions and behaviors, alleviation of the depressant effects 

upon n-3 PUFA supplementation was attributed to a link to serotonergic neurotransmission 

in the hippocampus [114]. There is evidence that supplementation with EPA and DHA 

together with vitamin D, could increase serotonin release from presynaptic neurons [115]. 

Obviously, more studies are needed to further establish the mechanism linking n-3 PUFA 

and neurotransmitter release.

Besides mood disorders [116], studies have also demonstrated effects of n-3 PUFA on 

psychosis. In a clinical trial, supplementation of n-3 fatty acids (2 g ethyl-EPA/day) has 

shown promising results in first-episode psychosis patients with better clinical response, 

requiring lower doses of antipsychotic drugs, and fewer extrapyramidal side effects [106]. 

Another double-blind, random-assignment clinical trial of n-3 fatty acids supplementation 

(700 mg EPA and 480 mg DHA/day) involving individuals at familial risk for psychotic 

disorders also showed a reduction of the rate of progression to psychosis together with an 

improvement in functioning and symptomatology in the treatment group as compared with 

the placebo group [117]. Subsequently, a longer-term follow-up of the above clinical trial 

at a median of 6.7 years further demonstrated that the majority of individuals from the n-3 

PUFA treated group did not show severe functional impairment and no longer experienced 

psychotic symptoms at follow-up [118]. On the other hand, not all studies show positive 

outcomes as another double-blind, placebo controlled randomized multi-center clinical trial 

conducted with young males at ultra-high risk for psychotic disorders – the NEURAPRO, 

indicated no significant difference in transition rates comparing the n-3 PUFA group with 

the placebo groups [119]. Taken together, n-3 PUFAs supplementation appears to be more 

suitable for early intervention in high-risk subjects.

In general, n-3 PUFA supplement is well tolerated, even when used in relatively high 

doses (10 g EPA/day) [120]. However, although a dose of up to 3 g EPA/DHA per day 

is considered safe by the US FDA [121], it is recommended that clinicians be aware of 

possible increases in bleeding time, as well as changes in body weight and lipid metabolism 

[122,123]. Obviously, it deems prudent to regularly monitor these variables in this type of 

clinical study [120,124,125].

Altered membrane PUFAs have been linked to the severity of a variety of clinical symptoms 

including development of tardive dyskinesia, cognitive impairments, as well as physiological 
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responses, such as reduced niacin-induced cutaneous flushing [126,127]. Previously, it 

has been suggested that molecular changes in membrane phospholipids may contribute 

to the clinical and biological manifestations of SZ [128]. In this regard, it is possible 

to analyze RBC PUFA as a potential biomarker for assessing treatment response in SZ 

patients [129]. In studies with a rat model, chronic deficiency in n-3 PUFAs was shown to 

influence dopamine function in the frontal cortex [130] as well as in the ventral striatum 

[131]. It appears that changes in behavior due to supplementation of n-3 PUFAs are in 

part associated with changes in monoamine neurotransmission [132–134]. There is also 

evidence of abnormal fatty acid metabolism in plasma, RBC, platelets, skin fibroblasts and 

in post-mortem brain tissues from SZ patients [100,101,124]. Two separate meta-analyses 

of RBC-PUFA composition concluded that levels of both DHA and AA are lower in SZ 

patients than in healthy control subjects [135,136]. On the other hand, a recent study 

reported that both DHA and AA were significantly higher in patients with psychosis 

and their unaffected siblings than in healthy controls [137]. It should be noted, however, 

that not all SZ patients demonstrate low levels of PUFAs in RBC membranes and that a 

bimodal distribution of DHA and AA can occur in SZ patients and not in healthy control 

subjects [138,139]. Obviously, further studies are needed to evaluate possible presence of 

two genetically distinct subgroups within these subjects.

6. DHA alters membrane physical properties and cell functions

As discussed in the previous paragraph, PUFA in membrane phospholipids may affect 

membrane physical properties and alter activities of transmembrane enzymes and binding 

of receptor proteins [140]. Although the mechanism(s) remains elusive, there is evidence 

for interactions of DHA with adenosine A2A and dopamine D2 receptors which causes 

an increase in the rate of receptor oligomerization, and subsequently neuropsychiatric 

conditions [141]. In a recent study, rat brain DHA levels were enhanced by administering 

micro-emulsions of linseed oil (gavage for 60 days); this regimen was shown to change 

n-6/n-3 fatty acid ratios in synaptic membranes and alter synaptic membrane fluidity 

and enzymes, including Na+-K+ ATPase, acetylcholine esterase, Ca2+-Mg2+ ATPase, 

monoamine oxidases, and subsequently increased dopamine and serotonin levels [142]. In 

another study, DHA treatment could ameliorate the avoidance learning deficit observed in 

rats after infusion with amyloid beta (1–40) (a toxic peptide), and the beneficial effects were 

attributed to alterations in synaptic plasma membrane fluidity [143]. In another study using 

atomic force microscopy measurements, DHA was shown to cause an increase in membrane 

fluidity and protected membranes from damage due to effects with Aβ(25–35) peptide 

aggregates [144]. Other studies also showed effects of DHA to increase neuronal membrane 

fluidity and alter non-amyloidogenic processing of amyloid precursor protein (APP), leading 

to enhanced secretion of the neurotrophic and neuroprotective α-secretase-cleaved soluble 

APP (sAPPα) [145,146]. Besides altering membrane fluidity, DHA and EPA treatment also 

alters activities of G-protein-coupled receptors, namely, GPR40 and GPR120. Using an 

immortalized cell model derived from rat hypothalamus (rHypoE-7), DHA treatment was 

shown to inhibit activation of GPR120 by TNFα and the signaling pathways associated with 

activation of AKT and ERK [147].

Sun et al. Page 9

Prostaglandins Leukot Essent Fatty Acids. Author manuscript; available in PMC 2022 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A study with microglial cells showed that excess DHA was incorporated into dynamic 

organelles named lipid bodies, and their accumulation may result in disruption of 

mitochondrial integrity as well as alteration of cellular responses to lipopolysaccharide 

(LPS) [148]. In all, these studies provide evidence for DHA interacting with cell membranes 

through a number of mechanisms and eliciting changes in neuronal membrane protein 

activities and functions. However, caution should be given to interpretation of results from 

studies that elucidate effects of DHA on brain cell cultures because cells in the culture 

medium do not reflect the true environment as in the brain.

7. Conversion of DHA to lipid mediators

DHA and AA are substrates for metabolism by a number of enzymes. While AA is 

metabolized by COXs and LOXs and is converted to prostanoids and leukotrienes, DHA 

appears to be metabolized mainly by the 15-LOX and is converted to oxylipins, such 

as resolvin (RvD1) and neuroprotectin D1 (NPD1) (Fig. 1.). Biosynthesis and structure 

of RvD1 and NPD1 had been extensively studied and were verified by Serhan’s group 

[149]. These metabolites are active lipid mediators with specific effects on resolving 

neuroinflammation in different body systems including the brain [150,151]. Besides DHA, 

EPA (precursor of DHA) can also produce resolving metabolites, namely, resolvin E1 

(RvE1). In fact, differences in mechanisms of action were observed between DHA-derived 

RvD1 and EPA-derived RvE1 in microglial cells. While RvD1 is targeted towards activating 

the nuclear factor kappa-light-chain-enhancer (NF-κB) pathways, RvE1 appears to be 

regulated by miRNAs instead [150].

Studies by Bazan’s group have demonstrated ability for NPD1 to protect injury to the 

brain and retina [152,153]. Interestingly, NPD1 can be further activated by aspirin which 

converts it to the AT-NPD1 form [154,155]. In a brain ischemia model induced by occlusion 

of middle cerebral artery (MCAo), administration of NPD1 was shown to protect and 

ameliorate the acute and long-term tissue damage as early as 3 h after onset of ischemia 

[156]. In another study with aged NMR1 mice, fish oil supplementation for 21 days 

improved mitochondrial function in these mice, and this effect was attributed to the increase 

in synthesis of a NPD1-like compound [38].

In a study by Hashimoto et al. [157], the effects of EPA versus TAK-085 (a prescription 

drug containing both EPA and DHA) on eicosanoids and docosanoids production as well 

as learning ability of aged rats were compared. Animals administered TAK-085 for 17 

weeks showed reduced reference memory errors. Furthermore, while both TAK-085 and 

EPA showed increase in DHA and decrease in AA in plasma and brain, differences in the 

EPA- versus TAK-085-derived mediators (PD1, RvD1 and RvE1) were observed [157]. This 

study suggests better effects with a regimen containing both EPA and DHA.

8. DHA enhances expression of brain-derived neurotrophic factor (BDNF)

Together with the cAMP responsive element-binding protein (CREB), BDNF is an 

important neurotropic factor for regulation of synaptic transmission. In a study in which 

rats were subjected to traumatic brain injury (TBI), the increase in oxidative stress and 

Sun et al. Page 10

Prostaglandins Leukot Essent Fatty Acids. Author manuscript; available in PMC 2022 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



learning impairment was marked by a decrease in BDNF, and supplementation of DHA 

counteracted the effects of TBI and normalized levels of BDNF, synapsin as well as CREB 

[158]. In another study, dietary deprivation of n-3 PUFA for 15 weeks in rats resulted in an 

increase in depression and aggression scores, and a decrease in BDNF and CREB expression 

[159]. Study with primary astrocytes showed ability for DHA to induce BDNF expression 

through a pathway involving p38MAPK. In another study, aged Kunming-line mice given 

DHA orally for 7 weeks showed improvement in age-related decline in cognitive function 

and a positive relationship with the protein level of BDNF [39]. In fact, BDNF is becoming a 

useful biomarker for assessing neurologic disorders.

9. Oxidative AA and DHA metabolites are substrates of the Nrf2 

antioxidant pathway

Recent studies have placed emphasis on the antioxidant pathway involving the Kelch-like 

ECH-associated protein 1 (Keap1) and Nuclear factor (erythroid-derived 2)-like 2 (NFE2L2, 

Nrf2) [160,161]. Upregulation of this pathway is linked to transcriptional activation of 

a large number of genes encoding the Antioxidant Response Elements (AREs) in their 

promoters [162]. These genes are responsible for production of a number of Phase 

II proteins such as GSH, and gamma-GCS, which are involved in detoxification and 

maintenance of cell redox homeostasis (Fig. 3). Under normal conditions, Nrf2 is kept at a 

low level due to constant degradation by the Keap1/cul3 protein through the ubiquination 

process. Since Keap1 has a number of cysteine residues, compounds that interact with these 

residues can perturb the ubiquination process leading to stabilization of Nrf2. Indeed, a 

large number of structurally diverse compounds, both from within the cell as well as from 

exogenous sources (including botanical polyphenols and lipids), can perturb the Keap1-

mediated repression of Nrf2, leading to its stabilization and subsequently translocation 

to the nuclei and interaction with the AREs [163]. Transcriptional synthesis of these 

antioxidant genes is known to play a central role in both intrinsic resistance and cellular 

adaptation to ROS and consequently regulation of neuroinflammation [164]. Much interest 

has been focused on induction of heme oxygenase-1 (HO-1), a potent antioxidant enzyme 

responsible for catabolizing heme to biliverdin, carbon monoxide and free iron [165]. Serini 

and Calviello (2016) provided a recent review with supporting evidence that n-3 PUFA 

may modulate the oxidative – antioxidative balance in brain through regulating the Nrf2 

anti-oxidant pathway and expression of heme oxygenase −1 (HO-1) [64].

9.1. Action of 4-HNE and 4-HHE on the Nrf2/HO-1 antioxidant pathway

Polyunsaturated fatty acids in membrane phospholipids are targets of lipid peroxidation by 

free radicals resulting in the release of hydroxyl-alkenals such as 4-hydroxyhexenal (4-HHE) 

from DHA and 4-hydroxynonenal (4-HNE) from AA (Fig. 2). Both metabolites are readily 

detected in human and rodent plasma [166]. Initially, 4-HNE and 4-HHE are regarded 

as cytotoxic molecules, especially when added to cultured cells at high non-physiological 

concentrations [167]. However, there is evidence that at sublethal concentrations, these 

compounds exhibit adaptive responses and can actually protect neurons (such as PC12 

cells) against oxidative stress induced by H2O2 and 6-hydroxydopamine (a neural toxin) 

through activation of the Nrf2 pathway [168,169]. More recent studies further demonstrated 
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that these compounds can induce the production of heme oxygenase-1 (HO-1), a potent 

antioxidant enzyme downstream of Nrf2/ARE activation [165,170,171]. Mice fed a fish 

oil diet for 3 weeks showed changes in n-3 fatty acid levels together with an increase in 

4-HHE and a decrease in 4-HNE levels in plasma [170]. In fact, DHA-induced HO-1 has 

been shown to occur in multiple organs, including liver, kidney, brain, heart and skeletal 

muscle [170]. In a study using 3T3-L1 adipocytes, treatment with (n-3) PUFA (DHA 

and EPA) could cause an increase in HO-1, and this effect was attributed to increased 

synthesis of 4-HHE which in turn, caused an up-regulation of the Nrf2 pathway [165]. 

Obviously, ability of these alkenal products to interact with the Nrf2 pathway and production 

of HO-1 may differ depending on cell types and oxidative conditions [172,173]. Using 

Nrf2 deficient mice, DHA, but not EPA, was shown to provide protective effects and 

increased synthesis of HO-1 in endothelial cells through generation of 4-HHE [174]. Besides 

the increase in HO-1 production, the endogenous nature of these n-3 PUFAs derivatives 

can also activate other cytoprotective pathways and enhance expression of other phase II 

detoxification genes [175]. Taken together, these studies demonstrated pleiotropic properties 

of these peroxidation products; besides interacting with macromolecules, they also can serve 

as second messengers for regulation of oxidative/electrophilic stress through activation of 

the antioxidant defense system [176,177]. It is important to recognize that although 4-HHE 

and 4-HNE are both oxidative products of PUFA, there are subtle differences between 

their ability to form adducts (with DNA, proteins, GSH and PE) and their involvement in 

the Nrf2 detoxification pathways [178]. Obviously, more studies are needed to explore the 

physiologic mechanisms whereby these DHA metabolites may affect the brain under normal 

and pathologic conditions. Understanding the endogenous nature of these PUFA-derived 

electrophiles and their ability to activate multiple signaling pathways is important for 

development of new drugs for treatment of inflammatory diseases [175,179].

9.2. Regulation of the NF-κB and Nrf2 pathways by DHA and metabolites

Recent studies with microglial cells demonstrated ability for botanical polyphenols such as 

quercetin and herbal extracts such as Aswhagandha, to mitigate LPS-induced inflammatory 

responses (such as induction of NO) and enhance the Nrf2/ARE antioxidant pathway 

[180,181] (Fig. 3.). Our study with an immortalized astrocyte cell line (DITNC1) 

transfected with NF-κB and ARE promoters also support the ying-yang mechanism for 

these phytochemicals, i.e., compounds that are potent in inhibiting LPS-induced NO are 

also active in increasing Nrf2-mediated HO-1 [182]. In a study with macrophages, NO 

production due to stimulation with 10 ng/mL LPS was significantly decreased upon 

incubation with 500 nM of 4-HNE [183]. In the same study, the decrease in LPS-induced 

NO was also marked by an increase in HO-1, NQ01 and GCLC, products of the Nrf2/ARE 

pathways. The mechanism for 4-HNE to inhibit LPS-induced NO production and increase 

the Nrf2 phase II products remains to be an interesting area for investigation.

Besides the brain, there is also evidence that DHA and EPA supplementation can protect 

against cardiac ischemia-reperfusion injury through inhibition of NF-κB and induction of 

Nrf2 pathway [184]. In macrophages, DHA could be oxidized to form α,β-unsaturated 

ketone derivatives, which are potent anti-inflammatory signaling mediators [179]. In another 

study, neutrophils were isolated from healthy human subjects who were supplemented with 
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EPA and DHA for 4 month, and increased formation of 7-oxo-DHA and 5-oxo-EPA was 

observed [185]. These results support the precept that DHA can form oxygenate metabolites 

with electrophilic properties and that these metabolites can transduce anti-inflammatory 

actions through activation of the Nrf2/ARE pathway. With advance technology for sensitive 

detection, more studies are needed to discover these metabolites and elucidate their mode of 

action under physiological and pathological conditions.

10. Influence of DHA metabolites in stroke and traumatic brain injury

Cerebral ischemia/reperfusion is associated with depletion in energy supply, increase in 

oxidative stress, and activation of proteases and PLA2 that trigger protein degradation 

and release free fatty acids (Fig. 1). Considering the increases in oxidative stress 

and inflammation in cerebral ischemia, there is increasing interest to test whether 

supplementation of n-3 fish oil could provide beneficial effects and mitigate the progress 

of cerebral injury [186]. Similar therapies have been suggested to target lipid peroxidation 

in traumatic brain injury (TBI) [187]. In a mouse model of injury due to Controlled Cortical 

Impact (CCI), DHA was able to protect against hippocampal neuronal loss and to reduce 

white matter injury, pro-inflammatory response, ER stress, aberrant protein accumulation, 

and neurological deficits [188,189]. Furthermore, treatment with DHA in mice after 

spinal cord injury could significantly reduce the degree of tissue injury and spinal cord 

inflammation, pro-inflammatory cytokine TNF-α expression, nitrotyrosine formation, and 

apoptosis [190]. DHA treatment also improved recovery of limb function, and ameliorated 

the effects of oxidative stress on neurite length and branching in dorsal root ganglion 

(DRG) cells in this type of injury [190,191]. Besides increased synthesis of NPD1 [153], 

there is evidence that n-3 PUFAs attenuate brain injury (including cerebral ischemia and 

traumatic brain injury) through activation of the Nrf2/ARE pathway and production of HO-1 

[186]. Under these conditions, reduction of cellular inflammatory responses is attributed in 

part to the increased release of 4-HHE [192,193]. In a mouse model of hypoxic/ischemia 

(H/I), mice fed a diet with n-3 PUFA supplement (from day 2 of pregnancy to 14 days 

after parturition) showed amelioration in blood brain barrier (BBB) leakage and decrease 

in the elevation of matrix metalloproteinase (MMP) activity [194]. In a mouse model of 

compression spinal cord injury, the transgenic fat-1 mice enriched in omega-3 PUFA showed 

better outcomes as compared to mice on a high omega-6 diet or a normal diet [195,196]. 

In another study in which TBI in rats was induced by cortical contusion, intraperitoneal 

injection of DHA (16 mg/kg) at 5 min after TBI and followed by a daily dose for 3–

21 days, was shown to shift microglial morphology from the activated, amoeboid-like 

state into the surveilling state [197]. Finally, in a randomized, placebo-controlled trial 

study, supplementation with n-3 PUFA (3 g/day) for 6 months resulted in lower levels of 

plasma lipids, gelatinases (MMP-2/-9), and inflammatory parameters [198]. Taken together, 

although the mechanism for DHA to confer neuroprotective effects remains to be elucidated, 

there is strong evidence for DHA to serve as a nutraceutical and provide positive effects 

against tissue damage associated with brain injury.
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11. Conclusion and future directions

The high content of DHA in brain phospholipids has generated great interest to search for 

its role in regulating brain cell functions and in maintaining brain health throughout the life 

spectrum. More interest is focused on DHA as a nutraceutical for prevention and treatment 

of neurological diseases. DHA is regarded an essential fatty acid and its limited de novo 

synthesis in the brain has led to question as to whether supplementation of n-3 PUFA can 

ameliorate age-related decline in cognitive function. Due to the immense information in 

this area, coverage in this review is limited to studies on neurological disorders associated 

with autistic spectrum disorder, Alzheimer’s disease, schizophrenia, stroke and TBI. In 

general, many studies with animal models appear to support protective effects of n-3 PUFA 

supplementation under different conditions. However, studies to demonstrate clear benefits 

on human subjects towards a particular disease have not been conclusive, probably due to 

heterogeneous dietary habits and population in different demographic conditions. A recent 

review by Pusceddu et al. also supports the difficulties and challenges to arrive a clear cut 

answer for clinical use of n-3 PUFA for prevention and treatment of psychopathologies 

[199]. In many instances, positive effects appear to better relate to subjects at early stage of 

the disease process or to a specific subgroup of the population.

This review provides a strong evidence for the role of iPLA2 in mediating DHA release. 

Studies also show ability for DHA to undergo a number of enzymatic and non-enzymatic 

reactions, leading to synthesis of potent lipid mediators, such as resolvin (RvD1) and 

neuroprotectin D1 (NPD1). Future studies are needed to determine the cell types responsible 

for their synthesis and elucidate their mechanism(s) of action. DHA also undergoes lipid 

peroxidation and produces oxylipin metabolites including 4-HHE. There is evidence that 

these metabolites may play a role in modulating oxidative homeostasis in cells through 

the NF-κB and the Nrf2/ARE pathway. Since many botanical polyphenols can also up- 

and down-regulate the same pathways [180], future studies may need to include testing 

for combination effects of DHA and these polyphenols. In addition, unique formulations 

may be used to develop new nutraceutical products [200,201]. Lastly, future studies should 

employ new technologies such as involving DHA in nanotechnology in order to enhance 

bioavailability, and using advanced proteomics, lipidomics and bioinformatics approach to 

examine how DHA and metabolites alter proteins and lipids in brain cells under physiologic 

and pathologic conditions.
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Fig. 1. 
Enzymatic and non-enzymatic pathways for metabolism of PUFAs (AA and DHA) in 

membrane phospholipids.
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Fig. 2. 
Free radical oxygen induces lipid peroxidation and conversion of AA and DHA to 4-HNE 

and 4-HHE, respectively.
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Fig. 3. 
Oxylipid electrophiles inhibit LPS-induced NF-κB inflammatory pathway and enhance 

Nrf2/ARE anti-oxidant pathway in microglial cells. Possible cross-talk mediated by protein 

kinases.

Sun et al. Page 29

Prostaglandins Leukot Essent Fatty Acids. Author manuscript; available in PMC 2022 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Docosahexaenoic acid (DHA) – an essential (n-3) polyunsaturated fatty acid (PUFA) enriched in the mammalian brain
	Source of DHA in brain and cautionary notes regarding studies with dietary DHA
	DHA on aging and Alzheimer’s disease
	Studies with cell and animal models
	Studies with human subjects

	DHA and autism spectrum disorder (ASD)
	N-3 fatty acids effects on schizophrenia (SZ) and other psychiatric disorders
	DHA alters membrane physical properties and cell functions
	Conversion of DHA to lipid mediators
	DHA enhances expression of brain-derived neurotrophic factor (BDNF)
	Oxidative AA and DHA metabolites are substrates of the Nrf2 antioxidant pathway
	Action of 4-HNE and 4-HHE on the Nrf2/HO-1 antioxidant pathway
	Regulation of the NF-κB and Nrf2 pathways by DHA and metabolites

	Influence of DHA metabolites in stroke and traumatic brain injury
	Conclusion and future directions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.

