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Purpose: Diffusion-weighted imaging allows investigators to identify structural, microstructural, 

and connectivity-based differences between subjects, but variability due to session and scanner 

biases is a challenge.

Methods: To investigate DWI variability, we present MASiVar, a multisite data set consisting 

of 319 diffusion scans acquired at 3 T from b = 1000 to 3000 s/mm2 across 14 healthy 

adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, 

preprocessed, and de-identified data set. With the adult data, we demonstrate the capacity of 

MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject 

variability of four common DWI processing approaches: (1) a tensor signal representation, 

(2) a multi-compartment neurite orientation dispersion and density model, (3) white-matter 

bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region-wise 

fractional anisotropy, mean diffusivity, and principal eigenvector; region-wise CSF volume 

fraction, intracellular volume fraction, and orientation dispersion index; bundle-wise shape, 

volume, fractional anisotropy, and length; and whole connectome correlation and maximized 

modularity, global efficiency, and characteristic path length.

Results: We plot the variability in these measures at each level and find that it consistently 

increases with intrasession to intersession to interscanner to intersubject effects across all 

processing approaches and that sometimes interscanner variability can approach intersubject 

variability.

Conclusions: This study demonstrates the potential of MASiVar to more globally investigate 

DWI variability across multiple levels and processing approaches simultaneously and suggests 

harmonization between scanners for multisite analyses should be considered before inference of 

group differences on subjects.
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1 | INTRODUCTION

Diffusion-weighted MRI imaging is a noninvasive way of elucidating the brain’s 

microstructural makeup.1 Common modes of DWI analysis include representing the 

diffusion signal with tensors,2,3 representing biological tissues with multi-compartment 

models,4–6 identifying white-matter bundles,7 and investigating the human structural 

connectome.8 These approaches form the basis for many studies, including those 

investigating a wide range of neurological disorders including autism,9,10 diabetes,11,12 

multiple sclerosis,13 and schizophrenia,14 as well as differences due to aging15 and sex.16 

These types of studies, however, rely on the identification of group differences with respect 

to an independent variable. Often this variable reflects whether the scanned subject has a 

particular disease, or the age or sex of the subject. Robust study design can control for 

additional subject-level confounders through age-matching and sex-matching and related 

approaches. However, one level of potential confounding in DWI studies that has not been 

thoroughly characterized is the variability of calculations due to differences within and 

between imaging sessions and scanners.
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One particular reason for this is the difficulty in acquiring data configured to perform such a 

characterization. For instance, to quantify variation within a session, imaging sessions with 

repeated scans are needed. To quantify variation between sessions and between scanners, 

multiple imaging sessions on at least one scanner and at least one imaging session on 

multiple scanners are required, respectively. Last, to assess session and scanner effects 

relative to subject effect size, multiple scanned subjects are needed as well.

Another reason for this is the low number of properly configured publicly available data 

sets. Some of the few that exist that allow for investigations of DWI variability are the 

MASSIVE (multiple acquisitions for standardization of structural imaging validation and 

evaluation) data set,17 the Human Connectome Project (HCP) 3T data set,18 the MICRA 

(microstructural image compilation with repeated acquisitions) data set,19 the (SIMON) 

single individual volunteer for multiple observations across networks data set,20 and the 

multisite data set published by Tong et al.21 The MASSIVE data set consists of 1 subject 

scanned repeatedly on one scanner17; the HCP data set consists of multiple subjects with 

multiple acquisitions per session all on one scanner18; the MICRA data set consists of 

multiple subjects scanned repeatedly on one scanner19; the SIMON data set consists of 1 

subject scanned at over 70 sites20; and the Tong et al. data set consists of multiple subjects 

each scanned on multiple scanners.21

These difficulties have resulted in existing DWI variability studies that are largely limited 

in scope and that offer a fragmented view of the variability landscape (Table 1). Many of 

these studies each capture portions of the spectrum of effects due to session, scanner, and 

subject biases, but are unable to assess for all levels at once. In addition, most of the existing 

investigations each focus on one specific DWI processing approach and/or model and as 

such do not provide a holistic assessment of DWI variability. As such, the understanding 

of how one study’s variability estimates in tensor-based metrics between sessions might 

compare to another’s estimates of tractography biases between scanners is not obvious, for 

instance. Thus, to bring the field toward a more global understanding of DWI variability, the 

release of additional publicly available data sets configured to characterize DWI variability 

and a global analysis of variability on multiple levels and across different processing 

approaches is needed.

To fill the first need, we propose MASiVar, a multisite, multiscanner, and multisubject data 

set able to characterize DWI variability due to session, scanner, and subject effects. To fill 

the second need, we demonstrate the potential of MASiVar to characterize DWI variability 

by presenting a simultaneous quantification and comparison of these effects on four different 

common diffusion approaches, hypothesizing that variability increases with session, scanner, 

and subject effects.

2 | METHODS

2.1 | Data acquisition

The MASiVar data set consists of data acquired from 2016 to 2020 to study both DWI 

variability and other phenomena. As such, the data exist in four cohorts, designated as I, II, 

III, and IV (Figure 1).
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Cohort I consists of 1 healthy adult subject (male, age 25 years) with multiple imaging 

sessions on a 3T Philips Achieva scanner (Amsterdam, the Netherlands) at site 1 (scanner 

A). This subject underwent three imaging sessions, one each consecutive day, and received 

two to three scans during each session (Figure 1). Each scan consisted of 96-direction 

acquisitions at b = 1000, 1500, 2000, 2500, and 3000 s/mm2 (Table 2). These scans were 

acquired at 2.5-mm isotropic resolution with TE/TR = 94 ms/2650 ms.

Cohort II consists of 5 healthy adult subjects (3 male, 2 female, age 27–47 years) scanned 

for one to two sessions on each of three to four different scanners. Each subject underwent 

all sessions within 1 year. The scanners included scanner A, another 3T Philips Achieva 

scanner at site 1 (scanner B), a 3T General Electric Discovery MR750 scanner (Boston, MA) 

at site 2, and a 3T Siemens Skyra scanner (Erlangen, Germany) at site 3 (Figure 1). For each 

imaging session, each subject received one scan, consisting of 96-direction acquisitions at 

b = 1000, 1500, 2000, 2500 (or 2465 at site 3 due to hardware limitations) s/mm2 and a 

30- or 32-direction acquisition at b = 1000 s/mm2 (Table 2). The scans acquired on scanner 

B, at site 2, and at site 3, and all the 30-direction or 32-direction scans were acquired at 

2.5-mm isotropic resolution. On scanner A, one subject’s 96-direction acquisitions were also 

acquired at 2.5-mm isotropic resolution, while the remainder were acquired at 1.9 × 1.9 × 

2.2 mm (sagittal, coronal, and axial) resolution. For acquisitions on scanner A, the 2.5-mm 

isotropic 96-direction scans were acquired with TE/TR = 90 ms/5200 ms, whereas the other 

96-direction acquisitions were acquired with TE/TR = 90 ms/5950 ms, and TE/TR = 55 

ms/6127 ms to 7309 ms for the 32-direction acquisitions. For acquisitions on scanner B, 

the 96-direction scans were acquired with TE/TR = 90 ms/5800 ms or 5900 ms, while the 

32-direction acquisitions were acquired with TE/TR = 55 ms/7022 ms to 7069 ms. For the 

96-direction acquisitions acquired at site 2, TE/TR = 90 ms/5800 ms or 5900 ms, while 

the 32-direction acquisitions were acquired with a TE/TR of either 58 ms/7042 ms or 59 

ms/4286 ms. All scans acquired at site 3 were acquired with TE/TR = 95 ms/6350 ms. All 

sessions acquired on scanner A that contained scans of varying resolution were resampled to 

match the resolution of the 96-direction acquisitions before analysis.

Cohort III consists of 8 healthy adult subjects (4 male, 4 female, ages 21–31 years) scanned 

for one to six sessions on scanner B (Figure 1). Each subject underwent all sessions within 1 

year. Each subject received one to two scans during each session, with each scan consisting 

of a 40-direction b = 1000 s/mm2 and a 56-direction b = 2000 s/mm2 acquisition (Table 

2). Most of these scans were acquired at 2.1 × 2.1 × 2.2 mm (sagittal, coronal, and axial) 

resolution and TE/TR = 79 ms/2900 ms, with a few acquired at 2.5-mm isotropic resolution 

and TE/TR = 75 ms/3000 ms.

Cohort IV consists of 83 healthy child subjects (48 male, 35 female, ages 5–8 years) scanned 

for one to two sessions on scanner B (Figure 1). For the subjects with multiple sessions, the 

sessions were longitudinally acquired, spaced approximately 1 year apart. As with cohort 

III, during each session, each subject received one to two scans, with each scan consisting 

of a 40-direction b = 1000 s/mm2 and a 56-direction b = 2000 s/mm2 acquisition (Table 2). 

These scans were acquired at 2.1 × 2.1 × 2.2 mm (sagittal, coronal, and axial) resolution 

with TE/TR = 79 ms/2900 ms.
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All acquisitions were phase-encoded in the posterior–anterior direction and were acquired 

with one b = 0 s/mm2 volume each. Reverse phase-encoded (b = 0 s/mm2 volumes were 

also acquired for all scans in all cohorts except for those from 1 subject in cohort II at 

site 3. Most sessions also included a T1-weighted image for structural analysis or distortion 

correction.22 All images were de-identified and all scans were acquired only after informed 

consent under supervision of the project institutional review board.

2.2 | Data preprocessing

After acquisition, all scans in MASiVar were preprocessed and quality checked with the 

PreQual pipeline.23 In brief, all acquisitions per scan were denoised with the Marchenko-

Pastur technique,24–26 intensity normalized, and distortion corrected. Distortion correction 

included susceptibility-induced distortion correction27 using reverse phase-encoded b = 

0 s/mm2 volumes when available and the Synb0-DisCo deep learning framework22 and 

associated T1 image when not, eddy current–induced distortion correction, intervolume 

motion correction, and slice-wise signal dropout imputation.28,29 The estimated volume-to-

volume displacement corrected during preprocessing, and SNRs of the scans are reported in 

Supporting Information Figure S1.

2.3 | Overview of variability study

Using data acquired in adults, we sought to demonstrate the capacity of MASiVar to 

simultaneously investigate DWI variability due to

1. Intrasession (scans acquired within the same session on the same scanner of the 

same subject);

2. Intersession (scans acquired between different sessions on the same scanner of 

the same subject);

3. Interscanner (scans acquired between different sessions on different scanners of 

the same subject); and

4. Intersubject (scans acquired of different subjects in different sessions on the 

same scanner) effects.

We quantified these levels of effects in four common types of DWI analysis, including

1. A DTI signal representation;

2. A multicompartment neurite orientation dispersion and density imaging 

(NODDI) model4;

3. The RecoBundles white-matter bundle segmentation technique30; and

4. A connectomics representation with graph-based measures.31

For DTI, we investigate variability in regional fractional anisotropy (FA), mean diffusivity 

(MD), and principal eigenvector (V1) measurements. For NODDI, we investigate variability 

in regional CSF volume fraction (cVF), intracellular volume fraction (iVF), and orientation 

dispersion index (ODI) measurements. For bundle segmentation, we investigate variability in 

bundle shape, volume, length, and FA. For connectomics, we investigate whole connectome 
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variability as well as that of the maximum modularity (MM), global efficiency (GE), and 

characteristic path length (CPL) graph measures.

2.4 | Defining intrasession, intersession, interscanner, and intersubject groups

To investigate variability, we first identify qualifying “groups” of intrasession, intersession, 

interscanner, and intersubject scans from cohorts I to III in MASiVar (Figure 2). We define 

an intrasession group as any session with at least two scans. Because sessions are necessarily 

nested in scanners and subjects, these samples are distributed across scanners and subjects. 

We find 24 qualifying groups, each containing two to four scans. To form an intersession 

group, we randomly select one scan from each of a subject’s different sessions on the same 

scanner. We repeat this process without replacement to form additional groups until no 

more groups with at least two scans can be formed. We find 22 qualifying groups, each 

containing two to six scans. As with the intrasession groups, these groups are distributed 

across scanners and subjects. To form an interscanner group, we randomly select one scan 

from each of a subject’s sessions on different scanners and repeat this process without 

replacement to form additional groups until no more groups with at least two scans can be 

formed. These groups are distributed across subjects. We find nine groups, each containing 

two to four scans. To form an intersubject group, we randomly select one scan from each of 

the different subjects scanned on one scanner and repeat this process without replacement to 

form additional groups until no more groups with at least two scans can be formed. We find 

14 qualifying groups, each containing 2–13 scans, distributed across the four scanners used 

in MASiVar.

2.5 | Computing variability

Overall, we evaluate the variability for a given effect by first computing variability 

within each group and then visualizing the distribution across groups on the intrasession, 

intersession, interscanner, and intersubject levels. To compare across levels, we use six pair-

wise non-parametric Wilcoxon rank-sum statistical tests with an uncorrected significance 

level of 0.05 and a Bonferroni-corrected significance level of 0.008.32

We compute variability with the coefficient of variation (CoV) for scalar metrics, 

angular variation (AV) for V1, Dice variation (DV) for bundle shape, and Pearson 

correlation variation (PCV) for whole connectome variability. These variability metrics are 

mathematically defined as follows (Equations 1–4), and their uses are further refined for the 

different DWI approaches in the following sections.

CoV (%) is defined for each group as the SD of the scalar metrics in each group, σ, divided 

by the mean of the group, x, times 100% (Equation 1). Intuitively, CoV is computed as 

the proportion of the average scalar measurement attributable to variability. As such, as 

variability increases, so does CoV.

CoV ( % ) = 100 % × σ
x (1)
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AV (°) is defined for each group as the average angle between the N members of the 

group, defined with unit vectors, and the group average unit vector, x(Equation 2).33 As 

principal eigenvectors are direction agnostic, x is computed iteratively to ensure the vectors 

are oriented correctly. We (1) compute x, (2) identify all vectors oriented >90° from x, 

(3) negate those vectors, and (4) repeat steps 1–3 until step 2 identifies no additional 

vectors. The AV is computed on the reoriented vectors as follows (Equation 2). Intuitively, 

AV is computed as the radius of the cone of uncertainty around the average eigenvector 

measurement in degrees. As variability increases, so does AV.

AV ( ∘ ) = 1
N ∑

i = 1

N
cos−1 xi ⋅ x (2)

DV (range: 0–1) is defined for each group as the average Dice similarity coefficient, DSC, 

between the N bundles in the group, represented with binary masks, and the group average 

bundle, x(Equation 3).34 The value of x is computed with a voxel-wise majority vote. 

Intuitively, DV extends the concept of “the cone of uncertainty” described for AV to higher 

dimensions around the average segmented bundle. However, unlike AV that describes how 

“large” the radius is with a distance metric, DV describes how “small” it is with the Dice 

similarity metric. As such, as variability increases, DV decreases.

DV = 1
N ∑

i = 1

N
DSC xi, x (3)

PCV (range: −1 to 1) is defined for each group as the average Pearson correlation, ρ, 

between the N connectomes of the group and the group average connectome, x(Equation 4). 

Similar to DV, PCV is computed as the radius of the extended “cone of uncertainty” around 

the average connectome with the Pearson correlation similarity metric. Thus, as variability 

increases, PCV decreases.

PCV = 1
N ∑

i = 1

N
ρ xi, x (4)

2.6 | Variability in DTI and NODDI

For the DTI approach, we extract the b = 1000 s/mm2 acquisition from each scan with the 

largest number of directions. We then calculate the diffusion tensor for each scan using an 

iteratively reweighted least squares approach implemented in MRtrix3.35 The tensors are 

subsequently converted to FA, MD, and V1 representations of the data.36 These images are 

then deformably registered to the Montreal Neurological Institute (MNI) image space with 

the ANTs software package.37,38 From there, we identify the 48 regions of interest in each 

image defined by the Johns Hopkins white-matter atlas39–41 (Figure 3A).
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For the NODDI approach, we extract the b = 1000 s/mm2 acquisition from each scan 

with the largest number of directions and the b = 2000 s/mm2 acquisition. We then fit 

the multicompartment model with the University College London NODDI Toolbox as 

implemented in MATLAB (Natick, MA).4 The models are subsequently converted to cVF, 

iVF, and ODI representations. These images are then deformably registered to MNI space 

with the ANTs software package. From there, we identify the 48 regions of interest in each 

image defined by the Johns Hopkins white-matter atlas (Figure 3B).

We perform the DTI and NODDI variability calculations on a regional basis in MNI space 

with voxel-wise correspondence between images. For FA, MD, cVF, iVF, and ODI, we 

compute the CoV for each region as the median voxel-wise CoV. We report the regional 

median across the groups for each level. Similarly, for V1 we compute the AV for each 

region as the median voxel-wise AV and report the regional median across the groups for 

each level.

2.7 | Variability in bundle segmentation

For the white-matter segmentation approach, we extract the b = 2000 s/mm2 acquisition 

from each scan. We calculate a whole-brain tractogram with DIPY of 2 million 

streamlines.42 We use the constrained spherical deconvolution model43 with probabilistic 

local tracking with a maximum angle of 25°, a seeding criterion of FA > 0.3, and a stopping 

criterion of FA < 0.2. We extract 43 white-matter bundles (Supporting Information Table 

S1) from each tractogram using the RecoBundles algorithm as implemented in DIPY. In 

short, each tractogram is registered to an MNI tractogram template and streamlines from 

each tractogram are assigned to bundles within the template.30 The length, volume, and FA 

of each bundle are then calculated. We calculate bundle length by calculating the median 

streamline length. We calculate volume by first converting each bundle to a tract density 

image representation. From there, a binary bundle mask is calculated by thresholding the 

tract density image at 5% of the 99th percentile density. Volume is calculated by multiplying 

the number of voxels in the mask by the volume of each voxel. FA is calculated by first 

converting the image to a tensor representation35 and then to an FA representation.36 Each 

bundle’s binary mask is then applied to obtain the median voxel-wise FA value per bundle 

(Figure 3C).

Unlike the DTI and NODDI cases, streamline-wise and subsequent voxel-wise 

correspondence cannot be achieved with tractography and bundle segmentation, so we 

compute variability on a bundle-wise basis. For bundle shape, we compute the DV on the 

binary masks for each bundle, and for volume, FA, and length we compute the CoV for each 

bundle. We report the bundle-wise median across the groups for each level for each of these 

measures.

2.8 | Variability in connectomics

For the connectomics approach, we extract the b = 2000 s/mm2 acquisition from each scan. 

We then calculate a whole-brain tractogram with MRtrix3.44 We first use the constrained 

spherical deconvolution model with probabilistic tracking with a maximum angle of 25°, a 

seeding criterion of FA > 0.3, and a stopping criterion of FA < 0.2 to calculate a 10 million 
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streamline tractogram. The tractogram is then filtered with the SIFT approach to 2 million 

streamlines.45 We parcellate the brain into 96 cortical regions using the Harvard-Oxford 

cortical atlas46–49 and compute a connectome, where each edge represents the average 

streamline distance connecting the two nodes. The MM, GE, and CPL are then calculated 

from each connectome using the Brain Connectivity Toolbox as implemented in MATLAB31 

(Figure 3D).

To evaluate whole connectome variability, we report the PCV across the groups for each 

level. To evaluate variability in the MM, GE, and CPL graph measures, we report the CoV 

across the groups for each level.

2.9 | Comparing variability across processing approaches

Last, to obtain a more global understanding of the session, scanner, and subject effects 

across the four different processing approaches, we compare the median CoV estimates 

for FA and MD (DTI), cVF, iVF, and ODI (NODDI), volume, FA, and length (bundle 

segmentation), and MM, GE, and CPL (connectomics) on the intrasession, intersession, 

interscanner, and intersubject levels. We determine differences with six pair-wise Wilcoxon 

signed-rank tests at an uncorrected significance level of 0.05 and a Bonferroni-corrected 

significance of 0.008.

3 | RESULTS

3.1 | Variability in DTI

As shown in Figure 4 and tabulated in Table 1, we find that the median CoV for FA 

across intrasession groups is 3.34%, across intersession groups is 5.29%, across interscanner 

groups is 8.78%, and across intersubject groups is 11.95%. We find the corresponding 

estimates in the MD case to be 1.37%, 3.43%, 6.22%, and 5.12%, and the corresponding AV 

estimates in the V1 case to be 4.49°, 7.28°, 9.48°, and 13.42°, respectively. The differences 

between most of these estimates are statistically significant after Bonferroni correction (P < 

.008; Wilcoxon rank-sum test). Notably, we find for the FA and MD cases that interscanner 

variability is comparable to intersubject variability.

3.2 | Variability in NODDI

As shown in Figure 5 and tabulated in Table 1, we find that the median CoV for cVF across 

intrasession groups is 27.33%, across intersession groups is 34.57%, across interscanner 

groups is 40.34%, and across intersubject groups is 53.11%. We find the corresponding 

estimates in the iVF case to be 3.64%, 5.48%, 7.89%, and 8.27%, and in the ODI case to 

be 4.56%, 6.49%, 13.14%, and 19.54%, respectively. As with the DTI case, most of these 

estimates are statistically different after Bonferroni correction (P < .008; Wilcoxon rank-sum 

test). Of note, we evaluated cVF only in white-matter regions defined by the Johns Hopkins 

atlas and thus dealt with very low cVF values when computing CoV. Additionally, we find 

that for the cVF and iVF cases that interscanner variability is comparable to intersubject 

variability.
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3.3 | Variability in bundle segmentation

As shown in Figure 6 and tabulated in Table 1, we find that bundles overlap at a median DV 

of 0.82 across intrasession groups, 0.81 across intersession groups, 0.76 across interscanner 

groups, and 0.68 across intersubject groups. We find the median CoV estimates for the 

corresponding levels of variation across groups in the bundle volume case to be 4.63%, 

5.82%, 9.07%, and 15.04%, in the FA case to be 0.71%, 1.10%, 3.15%, and 2.47%, and in 

the bundle length case to be 1.27%, 1.93%, 2.42%, and 6.11%, respectively. As with the 

DTI and NODDI cases, most of these estimates are statistically different after Bonferroni 

correction (P < .008, Wilcoxon rank-sum test). Notably, we find that in the FA case, 

interscanner variability is comparable to intersubject variability.

3.4 | Variability in connectomics

As shown in Figure 7 and tabulated in Table 1, we find that the whole connectomes correlate 

at a median PCV of 0.89 across intrasession groups, 0.89 across intersession groups, 0.85 

across interscanner groups, and 0.80 across intersubject groups. We find the median CoV 

estimates for the corresponding levels of variation across groups in the MM case to be 

3.29%, 3.83%, 6.49%, and 14.55%, in the GE case to be 0.44%, 0.91%, 3.38%, and 3.80%, 

and in the CPL case to be 0.40%, 0.93%, 3.52%, and 3.76%, respectively. As with the other 

processing approaches, most of these estimates are statistically different after Bonferroni 

correction (P < .008; Wilcoxon rank-sum test). Additionally, we note that for both the GE 

and CPL cases, interscanner variability is comparable to intersubject variability.

3.5 | Comparing variability across processing approaches

As shown in Figure 8, we find that the overall CoV estimates across the four processing 

approaches increase with consideration of intrasession, intersession, interscanner, and 

intersubject effects. Additionally, we find that all of these estimates are statistically 

different after Bonferroni correction, with the exception of the interscanner and intersubject 

comparison. Last, with the exception of the outlier (cVF in white matter), we note that all of 

the approaches exhibit similar variability within each level, with a median CoV of 3.29% on 

the intrasession level, 3.83% on the intersession level, 6.49% on the interscanner level, and 

8.27% on the intersubject level.

4 | DISCUSSION AND CONCLUSIONS

Here, we present MASiVar, a data set designed for investigation of DWI variability. 

Additionally, to demonstrate the capacity of MASiVar as a resource, we characterize 

intrasession, intersession, interscanner, and intersubject variability in four common DWI 

processing approaches. In support of our hypothesis, we consistently find that variability 

increases with consideration of session, scanner, and subject effects. We also find that 

overall and for each of the four approaches, interscanner variability can approach or 

even be comparable to intersubject variability. Last, we find that most of the DWI 

scalar measurements investigated presently exhibit intrasession and intersession variability 

approximately less than 5% CoV, interscanner effects of approximately 5%−10% CoV, and 

intersubject effects of approximately 5%−15% CoV. We interpret two primary conclusions 

from these results. The first is that MASiVar provides the field a resource to obtain an 
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improved global understanding of session, scanner, and subject effects within and between 

different DWI processing approaches. Second, we interpret these results to mean that 

harmonization between scanners for multisite analyses should be carefully considered prior 

to inference of group differences on subjects.

The reproducibility of DWI analyses has received significant attention in the field, including 

the analysis of tensor representations,50–53 multicompartment models,53,54 tractography and 

bundle segmentation,55,56 and connectomics57,58 (Table 1). Looking at the literature, we find 

many existing studies used CoV to estimate variability. Thus, we elected to center our study 

around this approach to better place our results in the context of the literature. We found 

similar estimates of variability between our results and those of prior studies. However, 

review of the literature also demonstrates a fragmented picture of DWI variability. Previous 

studies have largely each focused on one type of approach and one or two levels of variation. 

This, coupled with different definitions of variability and different study objectives, has 

made it difficult to understand how the different effects relate to each other and how they 

affect a multitude of common DWI processing approaches. To the best of our knowledge, 

this study represents the first attempt to characterize all four types of diffusion processing 

and all four levels of variation consistently and simultaneously. Thus, we hope that the 

data set and study presented here will promote further investigation into a wide spectrum 

of DWI variability issues from a large pool of models, to push the field toward a global 

understanding of the effects of session, scanner, and subject biases on different DWI 

measurements.

For this study, we chose popular software toolboxes to do all of the analyses, parameter 

configurations that we were familiar with, and consistent similarity assessments that we 

found to be interpretable. However, we recognize that there are many other software options 

available to do similar tasks, each with a large number of different configurations and 

a large number of ways to assess variability. For instance, there are different methods 

for fitting tensors,59–61 for identifying regions48,62–64 and bundles,65–68 for comparing 

bundles,69 and for configuring and representing connectomes.31,58,70,71 Additionally, there 

are a number of other microstructural measures that can be characterized as well.19 Thus, 

the goal of the present study was not to provide an analysis between different processing 

toolboxes or parameters, and because each approach was not necessarily optimized, we do 

not recommend thorough use of the absolute reproducibility values presented here for any 

one processing approach. Instead, we aimed to contribute to a global understanding of DWI 

variability and its relative trends across the four processing approaches and across sessions, 

scanners, and subjects in a generally interpretable way that demonstrated the potential of 

the data set. As such, we hope that the release of MASiVar will prompt other investigators 

in the field to optimize and further characterize differences between software tools and 

their parameters, different DWI processing and variability measures, and other potential 

confounders in DWI analysis.

In addition to the ability of MASiVar to serve as a utility for variability analysis, we note 

that the pediatric subjects in cohort IV present another unique resource for the field. The 

majority of the existing DWI data sets and studies for variability use adult subjects. Of 

the existing pediatric data sets, many have focused on older age ranges. For example, the 
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Adolescent Brain Cognitive Development project72 and the Lifespan Human Connectome 

Project in Development73 contain longitudinal DWI data acquired from children starting at 

age 9 and 10 through adolescence. Thus, to the best of our knowledge, MASiVar represents 

one of the first publicly available longitudinal DWI data sets of children before adolescence, 

aged 5–8 years old, and is further distinguished by its inclusion of repeated scans within 

each session. As a demonstration of the usefulness of cohort IV, we include an analogous 

characterization of the longitudinal intersession variability in children with 1 year between 

sessions compared with the adult intersession variability computed previously for all four 

processing approaches (Supporting Information Figure S2). We hope that investigators in 

developmental neuroscience and pediatric neurology will be able to take advantage of this 

resource for their work.

We note that the groups in each of the variability levels described in this study are 

necessarily distributed across different nested effects. For instance, because sessions are 

nested in scanners which are nested in subjects, the intrasession groups are distributed 

across different sessions, scanners, and subjects; the intersession groups are distributed 

across different scanners and subjects, and so forth. Thus, one limitation of our study is 

that in an effort to better place our results in context of the literature with interpretable 

metrics like CoV, we partially but not fully isolate the appropriate session, scanner, and 

subject biases. Similarly, another limitation of our study is the differences in the number 

of gradient directions between the different cohorts. Cohort III consists of a 40-direction 

b = 1000 s/mm2 acquisition and a 56-direction b = 2000 s/mm2 acquisition in contrast to 

the 96 directions for cohorts I and II. This is a potential effect that could be biasing the 

results. Similarly, due to hardware limitations, the data collected at site 3 in cohort II were 

collected at a maximum shell of 2465 s/mm2, as opposed to the 2500 s/mm2 across the rest 

of MASiVar. This shell was not used for the present variability analysis, but this discrepancy 

should be noted on future studies using the data set. Thus, considering these potential 

effects, future directions include developing a mixed-effects model capable of estimating 

variability in an interpretable manner as well as robustly modeling the nested nature of 

sessions, scanners, and subjects and the acquisition biases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Overview of the MASiVar data set. This data set consists of four cohorts. Cohort I consists 

of 1 adult subject scanned repeatedly on one scanner. This subject underwent three separate 

imaging sessions and acquired three to four scans per session. Cohort II consists of 5 adult 

subjects each scanned on three to four different scanners across three institutions. Each 

subject underwent one to two sessions on each scanner and had one scan acquired per 

session. Cohort III consists of 8 adult subjects, all scanned on one scanner. Each subject 

underwent one to six sessions on the scanner and had two scans acquired per session. Cohort 

IV consists of 83 child subjects, all scanned on one scanner. Each subject underwent one to 

two sessions on the scanner and had two scans acquired per session.
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FIGURE 2. 
Example identification of scan groups at the four levels of variation. The MASiVar data set 

consists of scans across multiple sessions, scanners, and subjects that can be grouped in 

order to satisfy intrasession, intersession, interscanner, and intersubject criteria. The scans 

in each of these groups should produce the same measurements; thus, quantification of 

variation within groups provides an estimate of variability. For the intersession, interscanner, 

and intersubject groups, scans are randomly shuffled within sessions before grouping.
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FIGURE 3. 
Outline of processing and measurements investigated presently in four common diffusion 

MRI analysis approaches. A,B, We quantify variability in the tensor-based fractional 

anisotropy (FA), mean diffusivity (MD), and principal eigenvector (V1) measurements 

and neurite orientation dispersion and density imaging (NODDI)-based CSF volume 

fraction (cVF), intracellular volume fraction (iVF), and orientation dispersion index (ODI) 

measurements in Montreal Neurological Institute (MNI) space in 48 Johns Hopkins white 

matter atlas regions. C, We quantify variability in bundle shape, volume, FA, and length for 

43 white matter bundles (Supporting Information Table S1) identified with the RecoBundles 

segmentation method. D, We quantify variability in whole-brain structural connectomes 

and the maximum modularity (MM), global efficiency (GE), and characteristic path length 

(CPL) scalar graph measures.
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FIGURE 4. 
Variability in DTI. Visualization of variation across intrasession, intersession, interscanner, 

and intersubject groups illustrates increased variability with session, scanner, and subject 

effects. Statistical significance was determined with the Wilcoxon rank-sum test with and 

without Bonferroni correction.
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FIGURE 5. 
Variability in NODDI. Visualization of variation across intrasession, intersession, 

interscanner, and intersubject groups illustrates increased variability with session, scanner, 

and subject effects. Statistical significance was determined with the Wilcoxon rank-sum test 

with and without Bonferroni correction.
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FIGURE 6. 
Variability in bundle segmentation. Visualization of variation across intrasession, 

intersession, interscanner, and intersubject groups illustrates increased variability with 

session, scanner, and subject effects. Statistical significance was determined with the 

Wilcoxon rank-sum test with and without Bonferroni correction.
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FIGURE 7. 
Variability in connectomics. Visualization of variation across intrasession, intersession, 

interscanner, and intersubject groups illustrates increased variability with session, scanner, 

and subject effects. Statistical significance was determined with the Wilcoxon rank-sum test 

with and without Bonferroni correction.
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FIGURE 8. 
Overall trends in coefficient of variation (CoV) across DTI, NODDI, bundle segmentation, 

and connectomics. Visualization of median CoV across all four processing approaches on 

the intrasession, intersession, interscanner, and intersubject levels illustrates consistently 

increased variability with session, scanner, and subject effects. Statistical significance was 

determined with the Wilcoxon signed-rank test with and without Bonferroni correction. The 

outlying points correspond to the NODDI cVF approach in white matter where absolute cVF 

values are expected to be low.
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TABLE 2

Acquisitions acquired in each scan for the different MASiVar cohorts.

Acquisitions per scan

Cohort Shell (b-value) Number of directions

I 1000 96

1500 96

2000 96

2500 96

3000 96

II 1000 30 or 32

1000 96

1500 96

2000 96

2465 or 2500 96

III 1000 40

2000 56

IV 1000 40

2000 56
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