Table 4.
Method | AD vs. CN | pMCI vs. sMCI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ACC | SEN | SPE | AUC | F1 | ACC | SEN | SPE | AUC | F1 | |
Voxel+SVM | 0.759 | 0.677 | 0.810 | 0.729 | 0.705 | 0.736 | 0.107 | 0.769 | 0.609 | 0.162 |
3D-CNN | 0.872 | 0.874 | 0.839 | 0.933 | 0.856 | 0.769 | 0.427 | 0.831 | 0.721 | 0.467 |
Multi-Slice | 0.838 | 0.755 | 0.826 | 0.894 | 0.813 | 0.728 | 0.267 | 0.792 | 0.620 | 0.317 |
Multi-Patch | 0.841 | 0.790 | 0.844 | 0.924 | 0.803 | 0.722 | 0.373 | 0.821 | 0.698 | 0.438 |
MSA3D | 0.911 | 0.888 | 0.914 | 0.950 | 0.898 | 0.801 | 0.520 | 0.856 | 0.789 | 0.553 |
All the models are trained on ADNI-1. The best results are highlighted in bold.