Skip to main content
. 2022 Apr 26;14:871706. doi: 10.3389/fnagi.2022.871706

Table 4.

Classification results of AD vs. CN and MCI convention on ADNI-2.

Method AD vs. CN pMCI vs. sMCI
ACC SEN SPE AUC F1 ACC SEN SPE AUC F1
Voxel+SVM 0.759 0.677 0.810 0.729 0.705 0.736 0.107 0.769 0.609 0.162
3D-CNN 0.872 0.874 0.839 0.933 0.856 0.769 0.427 0.831 0.721 0.467
Multi-Slice 0.838 0.755 0.826 0.894 0.813 0.728 0.267 0.792 0.620 0.317
Multi-Patch 0.841 0.790 0.844 0.924 0.803 0.722 0.373 0.821 0.698 0.438
MSA3D 0.911 0.888 0.914 0.950 0.898 0.801 0.520 0.856 0.789 0.553

All the models are trained on ADNI-1. The best results are highlighted in bold.