Skip to main content
. 2022 Apr 26;14:871706. doi: 10.3389/fnagi.2022.871706

Table 6.

The performance comparison of our model with other state-of-the-art studies report in the literature using the ADNI database for prediction of AD vs. CN and pMCI vs. sMCI.

Method Test subjects AD vs. CN pMCI vs. sMCI
ACC SEN SPE AUC ACC SEN SPE AUC
VBF 137AD+76sMCI+
134pMCI+162CN
0.760 0.660
SVM-Landmark 154 AD+346 MCI
+207 CN
0.822 0.774 0.861 0.881
LBM
385AD+465sMCI+
205pMCI+429CN
0.822 0.774 0.861 0.881 0.686 0.395 0.732 0.636
MLP-RNN 198AD+229CN 0.897 0.868 0.925 0.921
Whole-3DCNN 50AD+77sMCI+
43pMCI+61CN
0.800 0.870 0.520 0.520
Multi-3DCNN 48AD+58CN 0.850 0.880 0.900
3D-DenseNet 97AD+233MCI
+119CN
0.889 0.866 0.808 0.925
wH-FCN 385AD+465sMCI
+205pMCI+429CN
0.903 0.824 0.965 0.951 0.809 0.526 0.854 0.781
Our model 326AD++470sMCI
+242pMCI+413CN
0.911 0.888 0.914 0.950 0.801 0.520 0.856 0.789

The best results are highlighted in bold.