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Abstract

Cyanobacterial blooms can have negative effects on human health and local ecosystems. Field 

monitoring of cyanobacterial blooms can be costly, but satellite remote sensing has shown 

utility for more efficient spatial and temporal monitoring across the United States. Here, satellite 

imagery was used to assess the annual frequency of surface cyanobacterial blooms, defined for 

each satellite pixel as the percentage of images for that pixel throughout the year exhibiting 

detectable cyanobacteria. Cyanobacterial frequency was assessed across 2,196 large lakes in 

46 states across the continental United States (CONUS) using imagery from the European 

Space Agency’s Ocean and Land Colour Instrument for the years 2017 through 2019. In 2019, 

across all satellite pixels considered, annual bloom frequency had a median value of 4% and 

a maximum value of 100%, the latter indicating that for those satellite pixels, a cyanobacterial 

bloom was detected by the satellite sensor for every satellite image considered. In addition to 
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annual pixel-scale cyanobacterial frequency, results were summarized at the lake- and state-scales 

by averaging annual pixel-scale results across each lake and state. For 2019, average annual 

lake-scale frequencies also had a maximum value of 100%, and Oregon and Ohio had the highest 

average annual state-scale frequencies at 65% and 52%. Pixel-scale frequency results can assist 

in identifying portions of a lake that are more prone to cyanobacterial blooms, while lake- and 

state-scale frequency results can assist in the prioritization of sampling resources and mitigation 

efforts. Satellite imagery is limited by the presence of snow and ice, as imagery collected in 

these conditions are quality flagged and discarded. Thus, annual bloom frequencies within nine 

climate regions were investigated to determine whether missing data biased results in climate 

regions more prone to snow and ice, given that their annual summaries would be weighted toward 

the summer months when cyanobacterial blooms tend to occur. Results were unbiased by the 

time period selected in most climate regions, but a large bias was observed for the Northwest 

Rockies and Plains climate region. Moderate biases were observed for the Ohio Valley and the 

Southeast climate regions. Finally, a clustering analysis was used to identify areas of high and 

low cyanobacterial frequency across CONUS based on average annual lake-scale cyanobacterial 

frequencies for 2019. Several clusters were identified that transcended state, watershed, and 

eco-regional boundaries. Combined with additional data, results from the clustering analysis may 

offer insight regarding large-scale drivers of cyanobacterial blooms
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1. Introduction

Cyanobacterial blooms can have negative effects on human health and local ecosystems. 

Human exposure to cyanobacteria can occur through either recreational exposure or the 

consumption of contaminated drinking water, and can cause skin and eye irritation, damage 

to liver and kidney function, and flu-like symptoms (World Health Organization, 2003). 

Effects of cyanobacteria and their toxins on ecosystems have been documented for bacteria, 

algae, plants, fish, and aquatic invertebrates (Zanchett and Oliveira-Filho, 2013). In the 

United States, reports of human or animal illness associated with cyanobacterial blooms 

have occurred in 43 of 50 states (Dubrovsky et al., 2016).

Economic impacts of cyanobacteria result in part from water treatment costs, medical 

treatment costs, and surveillance and monitoring costs. As an example, treatment costs for 

toxin removal vary, but totals of $6,000 to $7,000 per day to treat drinking water supplying 

a city the size of Toledo, Ohio (population of approximately 280,000), were reported in 

2013 (Great Lakes Coastal Resilience, 2013). Additional costs can be incurred through 

the treatment of taste-and-odor compounds and disinfection byproducts. Costs associated 

with field monitoring are more difficult to quantify, but one estimate from the Washington 

State Department of Ecology, which manages and budgets a state program for harmful 

algal bloom monitoring, estimated laboratory costs of event response samples at $60,000 
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per year and the staff time to facilitate and coordinate the program at $150,000 per year 

(Anderson-Abbs et al., 2016).

Satellite remote sensing imagery has shown utility as a spatially and temporally efficient 

monitoring technique for inland cyanobacterial blooms in the United States, at both the 

regional scale (Clark et al., 2017; Urquhart et al., 2017) and the national scale (Coffer 

et al., 2020). Satellite imagery cannot be used to detect toxins (Stumpf et al., 2016) nor 

can it be used to characterize water quality at depth, as the algorithms typically used for 

cyanobacteria can detect blooms up to a depth of 2 m in clear water (Mishra et al., 2005) 

and much less than 2 m in more turbid waters (Wynne et al., 2010). However, satellites 

can be used to effectively evaluate surface cyanobacterial presence above the satellite’s 

minimum reporting level (Kutser, 2009). Satellite imagery can provide consistent, near 

real-time assessments of water quality specific to cyanobacterial blooms, which can alert 

water quality managers to potential concerns and emerging risks (Schaeffer et al., 2018). 

Moreover, satellite imagery can characterize the full population of phytoplankton present in 

a waterbody compared to traditional phytoplankton microscopic examination, which does 

not routinely include picoplankton because of their small size (Śliwińska-Wilczewska et 

al., 2018 ). As a result of expanded coverage, the availability of satellite imagery has been 

associated with cost savings specific to cyanobacterial monitoring (Papenfus et al., 2020). 

Using a 2017 cyanobacterial bloom in Utah Lake, Utah, as a case study, Stroming et al. 

(2020) estimated that the use of satellite data for harmful algal bloom monitoring resulted 

in approximately $370,000 in cost savings related to human health outcomes in that single 

event.

This study uses satellite imagery to build on regional results presented in Clark et al. (2017) 

by assessing annual cyanobacterial frequency at multiple spatial scales. At the smallest 

spatial scale considered, annual pixel-scale cyanobacterial frequency can be computed as 

the percentage of satellite observations throughout the year that indicate a cyanobacterial 

bloom is present. At broader spatial scales, these pixel-scale results can be summarized into 

average annual lake-scale and state-scale cyanobacterial frequencies by averaging annual 

results for all pixels contained in each lake and state. Previous studies have used satellite 

imagery to present annual cyanobacterial bloom frequencies at various regional scales: Clark 

et al. (2017) analyzed bloom frequency for lakes in the states of Ohio and Florida; Kahru et 

al. (2007) assessed bloom frequency in the Baltic Sea; both Hu et al. (2010) and Yang et al. 

(2016) quantified the temporal frequency of cyanobacterial blooms for Taihu Lake in China. 

Despite the use of a cyanobacterial frequency metric in past studies, the effect of missing 

observations on annual summaries has not been documented. While satellite imagery has the 

potential to provide frequent, year-round observations, cold-season data can be limited as 

observations are often quality flagged and discarded due to snow and ice cover (Coffer et al., 

2020). Quantifying this effect can demonstrate if annual frequency metrics are appropriate at 

all lakes and if comparisons across lakes or states in differing regions are valid.

Here, surface cyanobacterial bloom frequency is presented at the pixel-, lake-, and state-

scales using satellite observations from over 2,000 lakes across the contiguous United 

States (CONUS). State boundaries were selected as opposed to watershed boundaries to 

align with typical state management approaches. Average annual lake-scale results were 
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used to explore two additional components of the dataset. First, potential biases caused by 

the inclusion of cold-season data in annual summaries were explored. This was done by 

testing the hypothesis that summary metrics would be biased toward summertime data, when 

cyanobacterial blooms tend to occur, resulting in an artificially higher annual cyanobacterial 

bloom frequency metric in areas affected by snow and ice. Second, spatial patterns were 

explored to identify spatial clusters of high and low bloom frequency lakes. This information 

may be useful for prioritizing management efforts as well as for understanding large-scale 

drivers of cyanobacterial blooms. The analysis of drivers was beyond the scope of this effort 

but has been reported through other analyses at the regional level (Myer et al., 2020). This 

study addresses the following research objectives:

1. Characterize the temporal frequency of surface cyanobacterial blooms across 

CONUS at the satellite pixel-, lake-, and state-scales for the years 2017 through 

2019.

2. Explore potential biases caused by the inclusion of cold-season data. This 

was done by comparing average annual lake-scale results to lake-scale results 

computed using a temporal subset to represent the snow-free period.

3. Identify spatial clusters of lakes with high cyanobacterial frequency and lakes 

with low cyanobacterial frequency using average annual lake-scale results.

2. Data and methods

2.1. Satellite observations

Satellite observations were obtained from the European Space Agency’s (ESA’s) Ocean 

and Land Colour Instrument (OLCI) onboard the Sentinel-3A satellite. Sentinel-3A was 

launched in February 2016. Continuous observations spanning the full year over CONUS 

became available beginning in 2017 and are expected to be available for similar analyses 

in future years. OLCI offers a 2 to 3 day revisit period, 12-bit radiometric resolution, and 

300-m spatial resolution at nadir, where nadir is defined as the point on Earth’s surface 

directly below the satellite. Imagery is collected in 21 spectral bands spanning 400 nm to 

1020 nm.

OLCI spectral surface reflectance imagery was obtained from the National Aeronautics 

and Space Administration (NASA) Ocean Biology Processing Group (OBPG; https://

oceandata.sci.gsfc.nasa.gov) and was further processed and quality assured as described 

in Urquhart and Schaeffer (2020). The OBPG redistributes this data record through a 

data sharing agreement between NASA and ESA. Briefly, the OBPG acquired Level-1B 

(calibrated, top-of-atmosphere) data directly from ESA and processed them to Level-2 

imagery through removal of the contribution of spectral Rayleigh scattering from the top-of-

atmosphere signal using NASA’s standard data processing software packaged as part of the 

SeaWIFS Data Analysis System (SeaDAS; https://seadas.gsfc.nasa.gov). A high resolution 

(approximately 60-m) land mask based on the NASA Shuttle Radar Topography Mission 

Water Body Data Shapefiles (NASA JPL, 2013) was used, with modifications by Urquhart 

and Schaeffer (2020) to correct for embedded inaccuracies in the dataset, such as missing 

lakes and reservoirs in Rhode Island and Massachusetts. Several processing masks were 
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applied to exclude questionable Level-2 data. A cloud flag was adopted following Wynne 

et al. (2018) and a flag for mixed land and water pixels was developed to identify cases 

where the land mask reported a water pixel, but that pixel did not contain water at the time 

of satellite observation. Flags to indicate potential contamination due to adjacency effects 

and to identify snow- or ice-covered waterbodies were also applied (Wynne et al., 2018). In 

summary, satellite pixels containing mixed land and water, Sun glint, cloud cover, or those 

adjacent to a bright target, such as land, snow, or ice, were discarded. Satellite observations 

were aggregated to weekly composites that preserved the maximum data value for each 

pixel. Hereafter, a valid satellite pixel refers to a satellite pixel in a weekly composite that 

was not discarded due to any of these exclusion criteria.

Cyanobacterial abundance was characterized for each valid satellite pixel using the CI-cyano 

algorithm (Lunetta et al., 2015; Wynne et al., 2010, 2008). Spectral bands centered at 

665 nm, 681 nm, and 709 nm are used to assess bloom biomass and those centered at 

620 nm, 665 nm, and 681 nm are used as exclusion criteria to prevent the quantification 

of non-cyanobacterial blooms. The progression of the CI-cyano algorithm is detailed 

in Coffer et al. (2020). Throughout this study, a pixel is classified as a cyanobacterial 

detection if the CI-cyano algorithm returns any detectable value, indicating cyanobacteria in 

concentrations above the detection limit of the sensor. As a final step, all satellite retrievals 

were remapped onto a consistent Albers conic projection with a 300-m bin size to ensure 

spatial consistencies across all analyses.

CI-cyano has demonstrated success at the national (Coffer et al., 2020) and state (Clark 

et al., 2017; Mishra et al., 2019; Urquhart et al., 2017) scales for detecting cyanobacteria. 

Quantitative validation of CI- cyano has been assessed against cyanobacterial cell counts 

and concentrations of chlorophyll-a across 38 CONUS states (Clark et al., 2017; Lunetta 

et al., 2015). Additionally, qualitative validation of CI-cyano has been assessed against 

cyanobacteria presence and absence (Mishra et al., 2021; Schaeffer et al., 2018). Using 

CI-cyano, Coffer et al. (2020) demonstrated expected seasonality across 46 CONUS states.

Given the spatial resolution of OLCI, a total of 2,196 lakes and reservoirs across 46 states 

can be resolved (Urquhart and Schaeffer, 2020). Hereafter, these are collectively referred 

to as lakes. For a lake to be considered resolvable, it must be of sufficient size and shape 

to accommodate at least one 300-m water-only satellite pixel after applying the exclusion 

criteria described above. These lakes range in surface area from 1.3 square kilometers 

(km2) to over 4,000 km2, limiting this analysis to relatively large lakes. West Virginia and 

Delaware are the only states in CONUS that do not contain any resolvable lakes. The 

number of valid satellite pixels in these resolvable lakes had a median value of 19 and 

ranged from 1 satellite pixel to nearly 40,000 satellite pixels (Figure S1).

2.2. Computing cyanobacterial frequency

The proportion of valid pixels that returned detectable cyanobacteria was used to determine 

annual cyanobacterial frequencies at different scales (Fig. 1). Cyanobacterial bloom 

frequency was computed following Clark et al. (2017) for each satellite pixel as the 

percentage of weekly satellite composites exhibiting cyanobacterial presence above the 

minimum detection limit of the satellite sensor relative to the total number of weekly 
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satellite composites that contained a valid measurement (i.e., measurements that were not 

quality flagged and discarded) for the given pixel (Fig. 1A; Eq. (1)):

Annual pixel‐scale frequency = 100% × n of pixels with detectable CI‐cyano
n of all valid pixels (1)

In addition to pixel-scale bloom frequencies, average annual lake-scale bloom frequencies 

and average annual state-scale bloom frequencies were computed. For each year of 

observations, average annual lake-scale bloom frequencies were computed by averaging 

annual pixel- scale bloom frequencies for all pixels contained within a lake (Fig. 1B; Eq. 

(2)). Pixels within a smaller surface area lake carry a larger weight than pixels within a 

larger surface area lake when computing lake-scale averages. Average annual state-scale 

bloom frequencies were computed by averaging annual pixel-scale bloom frequencies for all 

pixels contained within a state (Fig. 1C; Eq. (3)). Lakes with a larger surface area carry a 

larger weight than lakes with a smaller surface area when computing state-scale averages.

Annual lake‐scale frequency = ∑annual pixel‐scale within lake
n of pixels within lake (2)

Annual state‐scale frequency = ∑annual pixel‐scale frequency within state
n of pixels within state (3)

Annual pixel-scale cyanobacterial frequencies were computed using a range of denominators 

because each denominator reflected the number of weekly composites that contained a valid 

observation for the given satellite pixel. Denominators ranged from 1 to 52 representing the 

52 weeks in a calendar year (Figure S2). Pixel-scale cyanobacterial frequencies computed 

with a small sample size (i.e., a small denominator) may not necessarily be representative of 

conditions across the entire year. Moreover, if pixel-scale frequencies across a lake or state 

were computed using different sample sizes, average lake- and state- scale cyanobacterial 

frequencies could be aggregating different time periods in their annual summaries.

The focus of this paper is cyanobacterial frequency computed by considering cyanobacterial 

presence and absence, but supplemental information also includes cyanobacterial frequency 

within each of the risk levels defined by the World Health Organization (WHO). The 

WHO states that cyanobacteria concentrations of up to 20,000 cells/mL correspond to a 

relatively low probability of adverse health effects in recreational waters, those of up to 

100,000 cells/mL correspond to a moderate probability, and those above 100,000 cells/mL 

correspond to a high probability (World Health Organization, 2003).

It should be noted that pixel-scale estimates primarily characterize the center of the lake, and 

narrow reaches are unobservable using 300-m satellite imagery. The relatively coarse spatial 

resolution of OLCI results in the loss of smaller lakes as well as more narrow portions 

of resolvable lakes. Lake-scale summaries exclude satellite pixels along the land-water 

interface and exclude a one-pixel buffer from the shoreline, an area where blooms tend 

to accumulate, particularly in windy conditions (Gons et al., 2005). State-scale summaries 
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consider only lakes of sufficient size and shape to accommodate the spatial resolution 

of OLCI. Thus, average state-scale bloom frequencies presented here could be biased 

compared to state-scale analyses that include a more complete representation of lakes 

throughout the state.

2.3. Analyzing seasonal effects on cyanobacterial frequency

Missing data occurs primarily due to cloud cover, Sun glint, or snow and ice. Across 

CONUS, northern latitude states are more affected by snow and ice cover, particularly in 

the winter months. Eliminating weekly composites containing snow and ice decreases the 

number of weekly composites considered in the annual bloom frequency calculation, thus 

potentially artificially inflating the resulting frequency value by weighting results more 

toward summer observations, a time when cyanobacterial blooms tend to occur. Thus, 

annual bloom frequency computed using weekly composites for each week in the year was 

compared to bloom frequency computed using a temporal subset of weekly composites 

representing only periods with no more than 10% snow and ice cover across CONUS. This 

analysis indicates whether annual bloom frequency was artificially inflated by the inclusion 

of the cold-season period due to a bias toward summer observations.

Relatively snow-free weekly composites were defined as those in which no more than 10% 

of the area of CONUS was covered in snow or ice. Shapefiles indicating daily snow and 

ice cover at a 4-km resolution were obtained from the National Snow and Ice Data Center 

(National Ice Center, 2008). This dataset provides maps of snow cover and sea ice for the 

Northern Hemisphere from February 1997 to the present and are derived from a variety of 

data products, including satellite imagery and in situ data. These shapefiles were formatted 

according to Urquhart and Schaeffer (2020): holes in the original shapefiles were filled 

before creating weekly composites preserving the maximum snow and ice extent for each 

week and rasterizing the shapefiles to match the spatial characteristics of OLCI imagery. 

Bloom frequency across CONUS was then computed as described in Section 2.2 for the 

subset of weekly composites. While these weekly composites do not represent a fully 

snow-free period, they will hereafter be referred to as the snow-free period.

Cyanobacterial frequency computed using the snow-free period could have a different result 

than cyanobacterial frequency computed using the entire annual time period. Therefore, the 

two populations were compared by looking at the differences between each pair of annual 

and snow-free results. The Wilcoxon signed-rank test is a nonparametric approach to test 

whether the corresponding data population distributions are identical, using each pair of 

observations and without assuming they follow a normal distribution (Wilcoxon, 1945). The 

Wilcoxon signed-rank test was applied to lake-scale results within each of the nine climate 

regions defined by the National Center for Environmental Information (Figure S3; Karl and 

Koss, 1984) using cyanobacterial frequency results from 2019 and the rstatix package in R 

Version 4.0.0 (Kassambara, 2020; R Core Team, 2020). These nine climate regions group 

climatically consistent states within CONUS and were used here to group together states 

more prone to missing data due to snow and ice cover in the winter months. Lake centroids 

were used to assign each lake to a climate region.
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Cohen’s d was used to quantify the difference between the two datasets in terms of effect 

size (Cohen, 1992). Cohen’s d was computed as the z-score divided by the square root of 

the sample size, where the z-score is the measure of how many standard deviations a raw 

score is below or above the population mean. Generally, an absolute value of Cohen’s d 

between 0.1 and 0.3 indicates a small effect, an absolute value between 0.3 and 0.5 indicates 

a moderate effect, and an absolute value above 0.5 indicates a large effect.

2.4. Assessing spatial patterns in cyanobacterial frequency

Spatial clusters of lakes with high cyanobacterial bloom frequencies and spatial clusters 

of lakes with low cyanobacterial bloom frequencies were identified across CONUS. This 

analysis may offer important information for management prioritization and can assist 

in understanding large-scale drivers of cyanobacterial blooms. Clusters of high and low 

cyanobacterial bloom frequencies were identified via the Getis-Ord Gi* statistic (Getis 

and Ord, 1992; Ord and Getis, 1995). A lake must itself have a high average annual 

bloom frequency and also be surrounded by other lakes with high average annual bloom 

frequencies to be considered part of a cluster of high bloom frequencies. If a local group 

of lakes has a higher Getis-Ord Gi* statistic than the global average, it is considered a 

cluster of lakes with a high cyanobacterial bloom frequency. The same reasoning is used 

to identify clusters of lakes with low cyanobacterial bloom frequencies. The Getis-Ord Gi* 

statistic does not quantify the number of clusters present nor does it specify which cluster a 

given lake falls within, but clusters can be visually discerned from the statistical results. This 

statistic was computed based on 2019 average annual lake-scale bloom frequencies using the 

Hot Spot Analysis (Getis- Ord Gi*) tool in ArcGIS 10.7.1 (ESRI, 2019).

Input parameters for the Getis-Ord Gi* statistic were optimized for the 2019 average annual 

lake-scale bloom frequency dataset. First, the Incremental Spatial Autocorrelation tool was 

used to measure spatial autocorrelation. The first distance with a declining z-score was 

selected as the neighborhood search value (Figure S4). This neighborhood search value 

was then used to create a spatial weights matrix using the Generate Spatial Weights Matrix 
tool; the number of nearest neighbors was set to the recommended value of 8 and row 

standardization was applied which standardizes each spatial weight by the row sum, an 

approach recommended when feature distribution is potentially biased. Spatial weights from 

the resulting spatial weights matrix were used in the Hot Spot Analysis (Getis-Ord Gi*) tool 

to conceptualize the spatial relationships. Given a large sample size of 2,196 data points, 

the false discovery rate correction was applied, which reduces resulting p-values to account 

for multiple testing and spatial dependence. Each Getis-Ord Gi* statistic has an associated 

z-score and p-value. A large, positive z-score and a small p- value for a feature indicate a 

spatial clustering of high values. A large, negative z-score and a small p-value indicate a 

spatial clustering of low values.

3. Results and discussion

3.1. Annual pixel-scale cyanobacterial frequency

Pixel-scale surface bloom frequencies ranged from 0% to 100% across all pixels for the 

years 2017, 2018, and 2019 (Fig. 2). The median of the distribution for 2017 was 2.7%, 
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which was lower compared to 2018 (median of 4.6%) and 2019 (median of 4.4%). These 

medians characterize, for all pixels, the percentage of valid weekly composites whose 

surface cyanobacterial abundance was above the detection limit of the sensor. A small (1% 

to 2%) proportion of pixels reached a frequency value of 100%, indicating a detectable 

cyanobacterial bloom was present for every valid weekly composite considered.

Cyanobacterial frequency was fairly stable across years, as each histogram exhibits a 

similar distribution. All years tended toward lower frequencies, with half of the distribution 

falling below a bloom frequency between approximately 3% and 5%. Generally, the 

distribution then continued to decline, reaching the lowest number of instances between 

bloom frequencies of 75% and bloom frequencies near 100%. A small peak is apparent for 

bloom frequencies of 100%, particularly for the years 2018 and 2019, which also exhibited 

the highest median values.

Annual pixel-scale frequencies can be used to assess relatively small-scale (300 m) 

variations in surface bloom dynamics, such as for a subset of lakes in North Dakota for 

the year 2019 (Fig. 3). This region of North Dakota was chosen given confirmation of 

bloom events for the year 2019 in Antelope Lake, Devils Lake, and Stump Lake (ND DEQ, 

2019). Annual pixel-scale frequencies may assist in resource management and help inform 

the prioritization of sampling efforts at the lake-scale. At Dry Lake, for example, pixel-scale 

results indicated that the northern portion of the lake is more prone to bloom events, while 

the southern segment of the lake is characterized by lower frequencies. Across other lakes in 

North Dakota, pixel-scale annual frequencies ranged from low values across Cranberry Lake 

to high values across Lake Alice and Rush Lake. Devils Lake, the largest natural lake in 

the state, had fairly consistent cyanobacterial blooms spatially, with pixel-scale frequencies 

nearly all around 50%.

Clark et al. (2017) assessed pixel-scale bloom frequencies in Florida and Ohio using the 

same methods presented here, but for the entire 2008 through 2011 period collectively. 

Additionally, a threshold of 100,000 cells/mL was used as a demonstration to correspond 

to the WHO high-risk value rather than a threshold reflecting the detection limit of the 

sensor, which is presented here. In Florida, Clark et al. (2017) found pixel-scale bloom 

frequencies to average 30% for 2008 through 2011 whereas in Ohio, Clark et al. (2017) 

found the average to be 5%. That study also found the highest pixel-scale frequency 

observed for the state of Florida to be 99%, which occurred in Lake Apopka, and the 

highest pixel-scale frequency observed for the state of Ohio to be 83%, which occurred in 

Grand Lake (commonly referred to as Grand Lake St. Marys). The fact that these values are 

all lower than comparable ones reported here is consistent with expectations given the more 

restrictive bloom threshold used in Clark et al. (2017).

3.2. Average annual lake-scale cyanobacterial frequency

Average annual lake-scale frequencies varied drastically across CONUS for the year 2019 

(Fig. 4). Over 68% of all resolvable lakes had an average annual bloom frequency falling 

in the first quartile (ranging between a frequency of 0% and 25%). The state of Maine 

had a particularly large number of resolvable lakes falling in this range. Across CONUS, 

approximately 20% of resolvable lakes had an average annual bloom frequency falling in 
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the second quartile and 9% of resolvable lakes fell in the third quartile. Just under 5% of 

resolvable lakes had an average annual bloom frequency exceeding 75%, with most of these 

lakes falling in Florida, the Texas Gulf Coast, and the Dakotas.

The National Lakes Assessment (NLA) uses field monitoring to assess the conditions of 

lakes, ponds, and reservoirs across the United States. The 2012 NLA included sampling for 

cyanobacteria and microcystins at over 1,000 lakes selected via stratified random sampling 

(U.S. EPA, 2016). Lakes were characterized as either least, moderately, or most disturbed 

based on deviations from the distribution of all studied lakes contained within a region. That 

study categorized 23% of studied lakes as moderately disturbed and 15% of studied lakes 

as most disturbed. The remaining 61% of studied lakes were categorized as least disturbed. 

While the categorization used by the 2012 NLA differed from the bloom frequency metric 

presented here, results from the two approaches are similar. Here, 68% of lakes fell in 

the lowest quartile of cyanobacterial bloom frequency compared to the 61% of NLA lakes 

categorized as lea in the st disturbed.

Average annual lake-scale frequencies for the years 2017 through 2019 indicated stability 

within this time period, with bloom frequencies between 0% and 25% for most lakes across 

CONUS in 2017 and 2018 (Figures S5-S6). A notable difference, however, occurred in lakes 

throughout the central United States and those along the Mississippi River. For the years 

2017 and 2018, many of these lakes had higher average annual lake-scale bloom frequencies 

than for the year 2019. The National Oceanic and Atmospheric Administration (NOAA) 

National Climate Data Center (NCDC) produces annual climate reports to analyze national 

temperature and precipitation and place the data into a historical perspective (NCDC, 2019). 

In 2019, several states in the Upper Midwest and Northwest Rockies and Plains climate 

regions experienced their wettest years on record, which included 125 years of observations 

as of 2019. This heavy precipitation upstream led to record flooding, resulting in damages 

of $20 billion across the Mississippi, Arkansas, and Missouri Rivers (NOAA NCEI, 2021). 

Consequently, lakes can become diluted from a large influx of freshwater which can reduce 

cyanobacterial blooms (Berger et al., 2008). Increased precipitation can also reduce water 

stratification which can lead to underrepresentation of cyanobacteria as the bloom becomes 

vertically distributed within the water column (Reynolds, 2006) while the satellite measures 

only the upper layer of the water column.

Presenting the distribution of average annual lake-scale bloom frequencies can assist in the 

identification of lakes within a state that are more prone to cyanobacterial blooms, as shown 

in Fig. 5 for a single state in each of the nine climate regions defined by Karl and Koss 

(1984): Oregon (OR) in the Northwest, Vermont (VT) in the Northeast, Nebraska (NE) in 

the Northwest Rockies and Plains, Utah (UT) in the Southwest, Iowa (IA) in the Upper 

Midwest, Texas (TX) in the South, Florida (FL) in the Southeast, Ohio (OH) in the Ohio 

Valley, and California (CA) in the West. For each state, several lakes and their associated 

cyanobacterial frequencies are labeled. These labeled lakes were chosen as a demonstration 

of the frequency metric as they have water quality information, including cyanobacterial 

detections, for either 2019 or previous years.
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Several of the lakes labeled in Fig. 5 had relatively low average annual lake-scale 

cyanobacterial frequency for 2019, including Detroit Lake in Oregon, Lake Meredith and 

Grapevine Lake in Texas, and Lake Tahoe in California. Detroit Lake, which experienced 

a cyanobacterial bloom in 2018 upstream from a drinking water intake leading to the 

issuance of a “Do Not Drink” advisory (The Novak Consulting Group, 2018), had an annual 

frequency of 6%. Field observations support the presence of cyanobacteria in Lake Meredith 

and Grapevine Lake (Trevino and Petersen, 2020). Lake Tahoe, a highly studied ultra- 

oligotrophic lake in California known for its water clarity (e.g., Beutel and Horne, 2018; 

Coats et al., 2016), had no detectable cyanobacteria in any resolvable weekly composites 

across the lake as demonstrated through an average annual lake-scale bloom frequency of 

0%.

Lakes labeled in Fig. 5 with high average annual bloom frequencies included Lakes Jesup 

and Apopka in Florida, Grand Lake in Ohio, and Lake Elsinore in California. This study 

found Lake Apopka and Grand Lake to both average the highest potential bloom frequency 

value of 100%. Using the same bloom frequency metric presented here, Clark et al. (2017) 

found bloom frequency in Lake Apopka to be the highest in the state of Florida, reaching 

a maximum value of 99% from 2008 through 2011. Similarly, Mishra et al. (2019) found 

Lake Apopka to be the highest in cyanobacterial bloom magnitude for the state of Florida 

from 2003 through 2011. Grand Lake is a heavily studied reservoir in western Ohio and 

was once ranked nationally in the 99th percentile for microcystins by the NLA (U.S. EPA, 

2009). Grand Lake was also ranked first in the state of Ohio for cyanobacterial bloom 

magnitude from 2003 through 2011 (Mishra et al., 2019). At Lake Jesup, where blooms have 

been noted throughout the year via satellite imagery (Coffer et al., 2020), average annual 

lake-scale bloom frequency reached 98% for 2019. Lake Elsinore, which reached an average 

annual lake-scale bloom frequency of 100%, had several documented lake-wide bloom 

events in 2019 with high levels of microcystins detected, exceeding 20 μg/L (California 

State Water Resources Control Board, 2020).

Previous studies or reports also support cyanobacterial blooms at Odell Lake (Oregon Health 

Authority, 2019a) and Upper Klamath Lake (Oregon Health Authority, 2019b) in Oregon, 

Lake Carmi in Vermont (Vermont, 2020), Island Lake in Nebraska (Efting et al., 2011), Utah 

Lake in Utah (Utah Department of Environmental Quality, 2019), Silver Lake in Iowa (Iqbal 

et al., 2006), Lake O’ the Pines and Lake Palestine in Texas (Trevino and Petersen, 2020), 

Lakes Okeechobee (Rosen et al., 2017) and George (Srifa et al., 2016) in Florida, and Clear 

Lake in California (California State Water Resources Control Board, 2020; Kurobe et al., 

2013).

3.3. Average annual state-scale cyanobacterial frequency

Average annual state-scale bloom frequencies for the year 2019 ranged from just over 1% in 

Georgia to nearly 65% in Oregon (Fig. 6). Just as pixel- and lake-scale bloom frequencies 

were weighted toward lower values, average state-scale bloom frequencies tended to be as 

well, with several states averaging relatively low frequency values. Of the 46 states with at 

least one resolvable lake, 21 states had an average annual bloom frequency below 10% for 

the year 2019, while Ohio and Oregon had average annual bloom frequencies above 50%.
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Similar to average annual lake-scale frequencies, average annual state-scale frequencies 

suggested stability from 2017 through 2019 (Figures S7-S8). For each year, Oregon and 

Ohio consistently had the highest average annual bloom frequencies, while Wisconsin, 

North Carolina, Maryland, and Florida also exhibited a high average value relative to 

other states. Several states had low average annual bloom frequencies across years, and 

most resolvable pixels in the states of Vermont and Georgia even experienced close to no 

detectable blooms for the year 2018, with average annual state-scale bloom frequencies 

of 2% and 1%, respectively. As a note, Lake Champlain, which is monitored by the 

Vermont Department of Environmental Conservation and experiences cyanobacterial blooms 

(Shambaugh et al., 2019), is considered in state-scale summaries for New York rather than 

Vermont because of where its lake centroid falls. Results are also presented for the WHO 

risk levels (Figures S9-S11). Across nearly all states and years, the majority of detected 

blooms were above the WHO high-risk threshold (above 100,000 cells/mL), with lower 

proportions falling in the WHO moderate-risk level (between 20,000 and 10,000 cells/mL) 

and the WHO low-risk level (below 20,000 cells/mL). WHO risk level results are consistent 

with those presented in Clark et al. (2017).

3.4. Effect of time period used to compute cyanobacterial frequency

For the years 2017 through 2019, the beginning of each snow-free period representing no 

more than 10% snow and ice cover across CONUS ranged from 16 April to 21 April, and 

the end of each snow-free period ranged from 13 October to 26 November (Table S1). 

The longest snow-free period occurred in 2017 when 32 weekly composites were included, 

while the snow-free periods for 2018 and 2019 included the fewest at 26 and 25 weekly 

composites, respectively. The long snow-free period in 2017 is consistent with climatology, 

as 2017 was the third warmest year on record for the United States behind only 2012 and 

2016, averaging 12.53 °C (NOAA, 2020). This study only used results for 2019 to compare 

annual frequencies to snow-free frequencies, but data are available from additional years to 

explore the stability of temporal biases presented here.

Average lake-scale bloom frequency was affected by the time period of choice (i.e., full-year 

versus a snow-free period) at three climate regions and not affected by the time period of 

choice at the remaining six climate regions (Table 1). In the Northwest Rockies and Plains, 

the difference between annual results and those computed for just the snow-free period 

was large (Wilcoxon signed-rank test effect size of 0.53). For this climate region, annual 

frequencies were lower than snow-free frequencies; however, this effect size is close to the 

recommended cut off between a moderate effect and a large effect, which is 0.5. In the Ohio 

Valley and the Southeast, the difference between annual results and those computed for just 

the snow-free period was moderate (Wilcoxon signed-rank test effect size of 0.39 and 0.42, 

respectively). In the Ohio Valley, annual frequencies were slightly lower than snow-free 

frequencies. In the Southeast, however, annual frequencies were higher than snow-free 

frequencies. The remaining six climate regions indicated only a small difference in annual 

and snow-free frequencies (Wilcoxon signed-rank test effect sizes below 0.13), indicating 

the two sets of average lake-scale bloom frequencies had similar distributions.
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Overall, these results indicate complex effects of removing cold-season data from 

calculations of annual bloom frequency, and do not unequivocally support the hypothesis 

of higher frequencies in summer months, as is commonly assumed. In fact, the difference 

between medians of the two average lake-scale frequencies was the largest for the Southeast; 

the median of annual frequencies was over 13% but dropped to less than 4% when 

considering the subset of snow-free weekly composites, indicative of cyanobacterial blooms 

throughout the winter months, a finding supported by Coffer et al. (2020). Southern states 

are also characterized by milder conditions than northern states throughout the year, and 

similar air temperatures are typically observed during southern latitude winters and northern 

latitude summers.

Caution should be taken in interpreting average annual cyano-bacterial blooms frequencies 

between regions due to differing effects of snow and ice on the number of available 

observations, in addition to normal caveats such as Sun glint and cloud cover in these 

regions. Comparing average annual bloom frequencies to those derived using a snow-free 

period can help stakeholders understand potential biases introduced by the inclusion of 

cold-season data. Cold-season data are particularly affected by missing observations due 

to snow and ice cover, and blooms tend to be less prevalent in the cold-season across the 

United States, with blooms peaking in late summer and early fall across most of CONUS 

(Coffer et al., 2020). These findings indicate that, at a broad scale, bloom frequency results 

are only mildly affected by the choice of either full-year observations or a subset of data 

to exclude cold-season observations. Exceptions include the Northwest Rockies and Plains 

and the Ohio Valley, where annual observations tended toward lower values than snow-free 

observations, and the Southeast, where annual observations tended toward higher values than 

snow-free observations, indicative of cyanobacterial blooms throughout the winter months.

3.5. Spatial patterns in cyanobacterial frequency

In the United States, several lakes have been known to have persistent cyanobacterial 

blooms, including Grand Lake in Ohio (Jacquemin et al., 2018; Mishra et al., 2019), Lake 

Apopka in Florida (Clark et al., 2017; Mishra et al., 2019), and Lake Champlain along 

the border of Vermont and New York (Isles et al., 2015); however, no national scale 

analyses have been conducted to identify clusters of lakes with high or low frequencies 

of cyanobacterial blooms. The results of this cluster analysis provide quantitative evidence 

for spatial patterns that may be visually discerned based on the average annual lake-scale 

cyanobacterial frequencies presented in Fig. 4, and act as the first national analysis of spatial 

clustering for cyanobacterial frequency in large lakes. The Getis-Ord Gi* statistic does not 

quantify the number of clusters present or specify which cluster a given lake falls within. 

Nevertheless, based on average annual lake-scale cyanobacterial bloom frequencies for the 

year 2019, results indicate several spatial clusters of both high and low cyanobacterial bloom 

frequency across CONUS (Fig. 7). Perhaps more importantly, spatial patterns presented here 

clearly indicate that clusters transcend state, watershed, and eco-regional boundaries.

A lake was characterized as part of a cluster of high cyanobacterial bloom frequencies if 

it had a large, positive z-score and a small p-value; 568 lakes met these criteria with 99% 

confidence and an additional 193 lakes met these criteria with 95% confidence. A lake was 
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characterized as part of a cluster of low cyanobacterial bloom frequencies if it had a large, 

negative z-score and a small p-value; 491 lakes met these criteria with 99% confidence and 

an additional 97 lakes met these criteria with 95% confidence. The 847 remaining lakes did 

not correspond to a spatial cluster of cyanobacterial frequency with a confidence of at least 

95%. As a reminder, 300-m satellite imagery can only resolve relatively large lakes across 

CONUS, so spatial clusters may exist among lakes not observable with OLCI imagery due 

to pixel size limitations. Additionally, limitations of the bloom frequency metric, including 

missing data due to Sun glint, cloud cover, and snow and ice, can affect the average 

annual lake-scale summaries used in this analysis which can thus affect the resulting cluster 

analysis.

A high frequency cluster can be found spanning North Dakota, South Dakota, southern 

Minnesota, and Wisconsin. The Gulf Coast in Texas and Louisiana contained a high 

frequency cluster that covers a smaller spatial extent. Nearly all lakes in Florida were 

included in a high frequency cluster with 99% confidence. Lakes throughout much of 

New England including Maine, Vermont, New Hampshire, Massachusetts, Rhode Island, 

Connecticut, and New York constituted a low frequency cluster. Low frequency clusters also 

existed in the following areas: the Pacific Northwest including Washington, northern Idaho, 

and western Montana; central California; northern Minnesota; Michigan; the Central Plains; 

and parts of the mid-Atlantic including Tennessee, western North Carolina, South Carolina, 

northern Georgia, and northern Alabama.

Spatial clustering algorithms have been used in previous studies to indicate areas of 

increased cyanobacterial presence, but on a much smaller spatial scale within specific 

waterbodies. For example, Yunus et al. (2015) identified groups of pixels with high 

chlorophyll-a occurrence using data collected from Landsat-8 in Tokyo Bay in Japan. 

Gaskill and Woller-Skar (2018) used field measurements at Little Traverse Lake in Michigan 

to identify spatial clusters of microcystis blooms. In Chile, spatial statistics have been used 

to identify spatial clustering of cyanobacterial communities (Warren-Rhodes et al., 2007). 

The results of the clustering algorithm presented here are intended for a broader application 

with the potential to identify state- or regional-scale areas in which cyanobacterial blooms 

persist. Additionally, while out of the scope of this study, results from this cluster analysis 

can be used in combination with additional data products to understand large-scale drivers of 

cyanobacterial blooms that have been previously reported at the regional level (e.g., Myer et 

al., 2020).

3.6. Limitations

Several limitations exist in the quantification of pixel-scale bloom frequencies and both 

lake- and state-scale summaries. Retrievals from a passive satellite sensor can only consider 

contributions from aquatic constituents present to a depth of about 2 m in clear waters 

in the red region of the electromagnetic spectrum used for characterizing cyanobacteria 

(Mishra et al., 2005) and much less than 2 m in more turbid waters (Wynne et al., 

2010). Cyanobacterial blooms, however, can exist at many depths throughout the water 

column and have the ability to regulate their buoyancy in an effort to find more ideal 

environmental conditions (Bartram and Chorus, 1999); thus, in situ observation networks 

Coffer et al. Page 14

Ecol Indic. Author manuscript; available in PMC 2022 September 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



at depth remain essential. Graham et al. (2008) described six potential water column 

distributions of cyanobacteria: (1) shoreline, near-shore, and open water accumulations and 

scums, (2) even distribution throughout the photic zone or epilimnion, (3) specific depth in 

the photic zone, (4) metalimnetic bloom, (5) even distribution throughout the entire water 

column, and (6) under ice bloom. Satellite remote sensing has the potential to characterize 

cyanobacterial blooms in four of these scenarios; ocean color satellites are unable to retrieve 

information about the water column in the presence of ice cover, and a metalimnetic bloom 

could be at a depth the satellite signal does not reach, but this scenario was noted as more 

of a concern for drinking water supplies. While cyanobacterial blooms can exist at many 

depths within the water column, recreational exposure, at least, is primarily limited to the 

surface. This study did not consider satellite-retrieved water transparency, which could be 

combined with satellite-retrieved cyanobacterial abundance to estimate the maximum depth 

of the satellite signal. Information quantifying the depth of the satellite signal would provide 

insight regarding the portion of the water column being characterized by the cyanobacterial 

frequency metric.

Results presented here are based on 300-m satellite imagery, which has limitations at the 

lake- and state-scales as both areas within each resolvable lake are excluded from analysis, 

including narrow reaches and pixels along the land/water interface, and lakes within each 

state are excluded from analysis if they cannot accommodate at least one, 300-m water-only 

pixel after applying the exclusion criteria described in Section 2.1. Schaeffer and Myer 

(2020) assessed the coverage of estuaries and sub-estuaries across the United States with 

various spatial resolutions. Satellite platforms with higher spatial resolution could improve 

both lake- and state-scale characterizations. One such satellite sensor is ESA’s Sentinel-2 

satellite platform. However, while chlorophyll-specific algorithms have been developed for 

Sentinel-2 imagery (Gilerson et al., 2010; Pahlevan et al., 2020), cyanobacteria- specific 

algorithms have not been demonstrated for large-scale assessments because of limitations 

in the spectral capabilities of the satellite instrumentation. We did not investigate if results 

presented here can be interpolated to smaller lakes, although satellite imagery offering a 

finer spatial resolution could help address this limitation. And while higher spatial resolution 

imagery can improve data coverage, additional limitations can emerge. For example, for 

large scale data processing, automated pixel flagging for non-water objects such as boats, 

bridges, marinas, and even migratory birds would be required as the average reflectance 

within a finer spatial resolution pixel can be dominated by such artifacts, a limitation less 

problematic in coarser, 300-m satellite imagery.

Potential biases resulting from missing data due to snow and ice extent in the winter 

months were explored, but other limitations in satellite data collection exist that could result 

in problematic comparisons when considering lakes or states in different regions. Cloud 

cover, for example, reduces temporal coverage, and comparisons across states with differing 

patterns in cloud cover could be biased. An analysis such as that presented here for snow and 

ice could be applied to cloud cover, but the assumptions are less straightforward because the 

spatial and temporal distribution of cloud cover can be more varied. An additional limitation 

of satellite image acquisition whose potential biases on annual cyanobacterial frequency 

metrics was not explored is Sun glint, which hinders data collection, particularly in the 

summer months and at lower latitudes due to changes in solar elevation.
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This study focuses on the temporal frequency of cyanobacterial blooms and does not 

characterize cyanobacterial spatial extent (Urquhart et al., 2017), occurrence (Coffer et 

al., 2020), nor magnitude (Mishra et al., 2019), which have been explored in previous 

studies. Data are quality flagged and discarded in the presence of Sun glint, cloud cover, 

or snow and ice. The snow and ice mask presented in Urquhart and Schaeffer (2020) is 

likely more conservative than is needed but currently offers the most comprehensive and 

consistent product available. This study demonstrated that eliminating pixels during the 

cold season because of snow and ice cover can create bias in certain climate regions. 

Additionally, cyanobacterial blooms have been noted under ice, including some blooms 

containing cyanotoxins (Bertilsson et al., 2013; Hampton et al., 2017; Üveges et al., 2012; 

Wejnerowski et al., 2018).

4. Applications

This study provides the first national scale application of a cyanobacterial frequency metric 

introduced at a regional scale in Clark et al. (2017). Source code, documentation, and 

results accompanying this manuscript can be found at doi:10.23719/1520731. The methods 

presented here can be adjusted to categorize different cyanobacterial concentrations (e.g., 

WHO risk thresholds), depending on stakeholder needs and requirements. Moreover, while 

annual frequencies were presented here, the same methods can be altered to compute 

seasonal or monthly frequencies as well. Lake- and state-scale frequency results may assist 

in the prioritization of sampling resources and mitigation efforts. Seasonal comparisons 

may provide guidance on the interpretation of average annual bloom frequencies, indicating 

regions in which annual results may be slightly biased by the inclusion of cold-season data.

Pixel-scale frequencies can assist in identifying segments of a lake that are more prone to 

cyanobacterial blooms, which can be of particular interest if the lake is used for recreational 

activities or if it contains a drinking water intake. A successful use case of cyanobacterial 

bloom frequency results presented here occurred in Salem, Oregon. In 2018, vulnerable 

residents in the city of Salem were under a “Do Not Drink” advisory for several weeks 

after elevated levels of cyanotoxins were detected in finished drinking water (The Novak 

Consulting Group, 2018). Preliminary bloom frequency results were presented to the city of 

Salem for Detroit Lake, upstream from the intake, to identify areas of high cyanobacterial 

frequency and prioritize sampling.

Moreover, many studies have claimed an increase in the frequency of cyanobacterial blooms 

(Anderson et al., 2002), but few studies have actually quantified such changes across the 

United States. While this study does not offer a trend analysis, it does present a consistent 

metric that can be used to assess changes in cyanobacterial frequency as a longer time series 

becomes available with ongoing satellite data collection within the limitations specified 

earlier. Assuming availability of the full constellation of Sentinel-3 satellites, at least 25 

years of imagery are expected to be available since the launch of Sentinel-3A in 2016 and 

can be used to improve our ability to quantify trends in cyanobacterial frequency.
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Fig. 1. 
Conceptual diagrams illustrating the computation of (A) annual pixel-scale frequency, 

(B) average annual lake-scale frequency, and (C) average annual state-scale frequency. 

Example pixel-scale frequency values and the resulting average annual lake- and state-scale 

frequencies are shown for (B) and (C), respectively.
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Fig. 2. 
Histogram of annual bloom frequency values for all satellite pixels across CONUS for the 

years 2017, 2018, and 2019. The median bloom frequency values for each year were 2.7%, 

4.6%, and 4.4%, respectively.
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Fig. 3. 
Annual pixel-scale cyanobacterial bloom frequency for the year 2019 at a subset of lakes in 

North Dakota (ND).
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Fig. 4. 
Average annual lake-scale cyanobacterial bloom frequencies for the year 2019. Each point 

represents a lake centroid.
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Fig. 5. 
Ranked distribution of average annual lake-scale cyanobacterial frequencies for the year 

2019 for resolvable lakes in the states of (A) Oregon, (B) Vermont, (C) Nebraska, (D) Utah, 

(E) Iowa, (F) Texas, (G) Florida, (H) Ohio, and (I) California. For each state, some lakes 

with documented cases of cyanobacterial blooms either for 2019 or in previous years are 

labeled. The x-axis is unitless with a range from 1 to the total number of observable lakes in 

the given state.
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Fig. 6. 
Average annual state-scale cyanobacterial bloom frequencies for the year 2019. Each state 

is represented as a hexagon labeled with each state’s two- letter state abbreviation. Each 

hexagon acts as a pie chart representing the proportion of pixels in the state whose annual 

frequency indicates a bloom is present above the detection limit of the sensor. West Virginia 

(WV) and Delaware (DE) do not have any lakes that are of sufficient size and shape to be 

resolvable at 300-m pixel resolution.
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Fig. 7. 
Results of the Getis-Ord Gi* statistic applied to average annual lake-scale cyanobacterial 

bloom frequencies for the year 2019. This spatial clustering al gorithm considers both spatial 

location and the corresponding data values
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Table 1

Results of the Wilcoxon signed-rank test comparing average annual lake-scale frequencies to average lake-

scale frequencies computed using a subset of weekly composite to represent the snow-free period (defined as 

no more than 10% of CONUS surface area covered in snow and ice). Climate regions were defined according 

to Karl and Koss (1984) and n represents sample size.

Climate region n Annual median Snow-free median Effect size Magnitude

Northeast 331 7.95% 7.87% 0.04 Small

Northwest 134 2.45% 1.43% 0.00 Small

Northwest Rockies and Plains 245 32.63% 36.01% 0.53 Large

Ohio Valley 91 11.62% 11.71% 0.39 Moderate

South 345 17.75% 16.11% 0.10 Small

Southeast 207 13.11% 3.98% 0.42 Moderate

Southwest 92 7.51% 5.32% 0.06 Small

Upper Midwest 655 11.35% 8.84% 0.08 Small

West 97 1.75% 0.83% 0.12 Small
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