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ABSTRACT	 Objective: The hyperactivated neddylation pathway plays an important role in tumorigenesis and is emerging as a promising 

anticancer target. We aimed to study whether NEDD8 (neural precursor cell expressed, developmentally down-regulated 8) might 

serve as a therapeutic target in esophageal squamous cell carcinoma (ESCC).

Methods: The clinical relevance of NEDD8 expression was evaluated by using The Cancer Genome Atlas (TCGA) database and 

tissue arrays. NEDD8-knockdown ESCC cells generated with the CRISPR/Cas9 system were used to explore the anticancer effects 

and mechanisms. Quantitative proteomic analysis was used to examine the variations in NEDD8 knockdown-induced biological 

pathways. The cell cycle and apoptosis were assessed with fluorescence activated cell sorting. A subcutaneous-transplantation mouse 

tumor model was established to investigate the anticancer potential of NEDD8 silencing in vivo.

Results: NEDD8 was upregulated at both the mRNA and protein expression levels in ESCC, and NEDD8 overexpression was associated  

with poorer overall patient survival (mRNA level: P = 0.028, protein level: P = 0.026, log-rank test). Downregulation of NEDD8 

significantly suppressed tumor growth both in vitro and in vivo. Quantitative proteomic analysis revealed that downregulation 

of NEDD8 induced cell cycle arrest, DNA damage, and apoptosis in ESCC cells. Mechanistic studies demonstrated that NEDD8 

knockdown led to the accumulation of cullin-RING E3 ubiquitin ligases (CRLs) substrates through inactivation of CRLs, thus 

suppressing the malignant phenotype by inducing cell cycle arrest and apoptosis in ESCC. Rescue experiments demonstrated that 

the induction of apoptosis after NEDD8 silencing was attenuated by DR5 knockdown.

Conclusions: Our study elucidated the anti-ESCC effects and underlying mechanisms of NEDD8 knockdown, and validated NEDD8  

as a potential target for ESCC therapy.
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Introduction

Esophageal carcinoma is a highly malignant gastrointestinal 

cancer accounting for almost half a million deaths per year 

worldwide1. Esophageal squamous cell carcinoma (ESCC) is 

the most common esophageal carcinoma histological subtype, 

and its incidence and mortality rates are rising rapidly2. The 

first-line treatment for ESCC is currently surgery in combi-

nation with neoadjuvant chemotherapy and radiotherapy; 
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however, patients have poor prognosis, with a 5-year survival 

of 10%–15%2,3. Therefore, an effective therapeutic target for 

ESCC is urgently needed.

Neddylation is a protein posttranslational modification that 

covalently conjugates the ubiquitin-like molecule NEDD8 

(neural precursor cell-expressed developmentally down-

regulated) to substrate proteins through a series of enzymatic 

actions4. The cullin-RING E3 ubiquitin ligases (CRLs), the best 

characterized substrates of neddylation, affect many dynamic 

cellular processes, including the cell cycle, DNA damage, apop-

tosis, and tumorigenesis5-8. Moreover, members of the neddyl-

ation pathway, including NEDD8 and neddylation enzymes, 

are overexpressed in several types of cancers, and inhibition of 

the overexpressed neddylation pathway members may serve as 

a novel anticancer strategy9-12.

MLN4924 (Pevonedistat/TAK924) is a pharmaceutical 

inhibitor of NEDD8-activating enzyme E1 (NAE)13. Recently, 

a variety of phase II/III clinical trials of MLN4924 performed 

on human hematological malignancies and solid tumors have 

shown the efficacy of this treatment14. However, mutations in 

UBA3 (a subunit of NAE E1), the target of MLN4924, have 

been found to lead to drug resistance15,16. Additionally, Zhou 

et  al.17,18 have reported that MLN4924 stimulates tumor 

sphere formation, thus suggesting potential tumor promotion 

by MLN4924. The shortcomings of MLN4924 in cancer treat-

ment underscore the need to identify other potential thera-

peutic targets against the neddylation pathway for anticancer 

therapy.

MLN4924 suppresses ESCC cell growth by targeting NAE 

E119,20. However, whether other alternative targets against the 

neddylation pathway might be used in ESCC therapy warrants 

further exploration. In the present study, we demonstrate that 

overexpression of NEDD8 negatively correlates with overall 

survival in patients with ESCC. Furthermore, genetic down-

regulation of NEDD8 profoundly suppresses ESCC tumor 

growth by triggering cell cycle arrest, DNA damage, and apop-

tosis. Our study validates NEDD8 as an alternative therapeutic 

target against the neddylation pathway in ESCC therapy.

Materials and methods

Bioinformatics analysis of The Cancer Genome 
Atlas (TCGA) datasets

The mRNA expression level of NEDD8 and corresponding 

clinicopathological data for esophageal carcinoma patients 

in the TCGA esophageal carcinoma dataset were collected 

from the UCSC xena website (http://xena.ucsc.edu/welcome-

to-ucsc-xena/) and the web-portal UALCAN21. RNA-seq 

data for NAE and UBC12, as well as NEDD8 gene mutations 

and amplifications, were downloaded from the TCGA eso-

phageal carcinoma cohort. Survival was analyzed with the 

Kaplan-Meier method and compared with the log-rank test 

in Statistical Program for Social Sciences software (SPSS) 

Version 16.0. The association between copy number variation 

(CNV) frequencies and NEDD8 gene expression was calcu-

lated with standard ANOVA and Tukey’s honest significant 

difference (HSD) tests.

Immunohistochemistry and evaluation  
of human ESCC tissue arrays

Human ESCC tissue arrays, which purchased from Shanghai 

Outdo Biotech Co. Ltd. (Shanghai, China), were immunohis-

tochemically stained with antibody to NEDD8 (Cell Signaling, 

Boston, MA). The tissue array sections were dehydrated 

and subjected to peroxidase blocking, then incubated with 

anti-NEDD8 at room temperature. The tissue array sections 

were then stained with a GTVisionTM III Detection System/

Mo&Rb (Gene tech Company Limited) and counterstained 

with hematoxylin. The histologic evaluation was based on 

calculation of the percentage of positive tumor cells and the 

staining intensity, as described previously22. The detailed clin-

icopathologic characteristics of patients with ESCC are pre-

sented in Supplementary Table S1. This study was approved 

by the ethics committee of Huadong Hospital Affiliated to 

Fudan University (Approval No. 2016K007).

Cell culture and generation of NEDD8-
knockdown cells

The human esophageal epithelial cell line HET-1A and the 

human ESCC cell lines Kyse30, Kyse150, Kyse510, Kyse450 and 

EC1 were cultured in Dulbecco’s modified Eagle’s medium 

(Hyclone, Logan, UT, USA) containing 10% fetal bovine serum 

(Biochrom AG, Berlin, Germany) and 1% penicillin-strep-

tomycin solution (Gibco, USA) at 37 °C under 5% CO2. 

Negative control and NEDD8-knockdown cells were estab-

lished by infecting target cells with lentivirus particles pack-

aged by HEK293T cells, which were co-transfected with the 

vector lenti-guide-puro (4.0 μg), and the packaging plasmids 

AGP091 (3.0 μg) and AGP090 (1.2 μg), with PEI (Polyfectine) 

http://xena.ucsc.edu/welcome-to-ucsc-xena/
http://xena.ucsc.edu/welcome-to-ucsc-xena/
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reagent. Two different small guide RNA (sgRNA) oligonucle-

otides against NEDD8 were inserted into the lenti-guide-puro 

vector (4.0 μg). The human sgRNA sequences for NEDD8 

were as follows: 5′-ACCTGACTCACCTTGTCTGT-3′ and 

5′-GAAGATGCTAATTAAAGTGA-3′. Targeted cells were 

seeded 1 day before infection with lentiviral supernatant 

along with 10 µg/mL polybrene (Sigma-Aldrich, St. louis, 

MO). Infected cells were selected with 2 µg/mL puromycin 

(Invitrogen, Carlsbad, CA) for 3 days.

RNA extraction and real-time PCR

Cells were harvested, and total RNA was extracted with an 

Ultrapure RNA Kit from CWbiotech. Purified RNA (1.0 mg)  

was reverse transcribed with PrimeScript RT Master 

(Takara) according to the manufacturer’s instructions. 

Real-time polymerase chain reaction (PCR) was performed 

with SYBR Green Real-time PCR Master Mix (Applied 

Biosystems) on an ABI 7900 thermocycler (Thermo Fisher 

Scientific) according to the manufacturer’s instructions. 

For each sample, the mRNA abundance was normalized 

to that of β-actin. Sequences of primers were as follows: 

β-actin: forward, 5′-CCGTTGCCCTGAGGCTCTTT-3′, 
reverse, 5′-CCTTCTGCATCCTGTCAGCAA-3′; NEDD8: 

forward, 5′-AGACGCTGACCGGAAAGGA-3′, reverse, 

5′-TCATCATTCATCTGCTTGCCAC-3′.

Western blot and cycloheximide (CHX)-chase 
analysis

For Western blot, cell lysates (30 mg) were loaded on SDS-

PAGE gels and transferred onto nitrocellulose membranes 

(Millipore), which were then incubated with the indicated 

primary antibodies overnight. Corresponding secondary anti-

bodies were incubated with the membranes for 1 h, and the 

membranes were then photographed with a Tanon 5200 visu-

alizer (Shanghai, China). Primary antibodies to the following 

proteins were used: UBC12, UBA3, cullin1, cullin2, cullin5, 

p21, NOXA (Abcam), NAE, cullin3, NEDD8, cullin4A, p27, 

Wee1, p-H3, ORC1, CDT1, p-H2AX, t-H2AX, ATF4, CHOP, 

DR5, cleaved-PARP, cleaved-caspase 8, and cleaved-caspase 

3 (Cell Signaling, Boston, MA); cullin4B (Protein Tech); and 

β-actin (Protein Tech). For CHX-chase assays, cells were 

treated with 50 µg/mL CHX (Sigma) for the indicated times, 

and the band density in Western blot was quantified in Image 

J software.

ATP-Lite cell viability assays

Cells were seeded in 96-well plates at a density of 1.5 × 103 cells 

per well in triplicate and cultured for 72 h. Cell viability was 

determined with ATP-Lite luminescence assays (PerkinElmer, 

Norwalk, CT, USA) according to the manufacturer’s protocol.

Colony formation assays

Cells were seeded into 6-well plates (300 cells/well) in tripli-

cate, then incubated at 37 °C for 14 days. The 6-well plates were 

washed with cold phosphate-buffered saline 3 times and fixed 

with 4% paraformaldehyde at room temperature for 15 min. 

Colonies on the plates were stained with 0.1% crystal violet at 

room temperature for 30 min and then photographed under 

an inverted microscope (Olympus, Tokyo, Japan). Colonies 

with more than 50 cells were counted.

Cell migration and invasion assays 

Cells were prewashed twice and seeded at a density of 5 × 104 

cells per well in a 24-well Transwell polycarbonate filter plate 

(8 μm pore size; Corning, Lowell, MA). The upper Transwell 

chambers contained 200 µL serum-free medium, and the lower 

chambers contained 600 µL medium with 10% fetal bovine 

serum. In the invasion assays, a Matrigel polycarbonate mem-

brane (Corning) was placed in the upper Transwell chamber. 

After 24 h incubation at 37 °C, the upper Transwell chambers 

were fixed in 4% paraformaldehyde for 20 min and stained 

with 0.1% crystal violet for 30 min. Cells on the outside of 

the top chambers were photographed and counted under an 

inverted microscope (Olympus, Tokyo, Japan).

LC-MS/MS analysis and MS quantification

LC-MS/MS analysis and label-free based MS quantification 

of proteins in Kyse450 cells were performed as previously 

described23. A Firmiana proteomics workstation was used to 

process the raw MS data. Kyse450 lysates were digested into 

peptides with trypsin, then subjected to MS analysis on a 

Fusion Lumos instrument (Thermo Fisher Scientific). Raw 

MS data were used to interrogate the NCBI human Refseq 

protein database (released on 04-07-2013, 32,015 entries) with 

the Mascot search engine (version 2.3, Matrix Science Inc.) 

with a false discovery rate < 1% at the peptide and protein 

level. The intensity-based label-free quantification (iBAQ) 
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algorithm was used for protein quantification. The iBAQ value 

was transferred into a fraction of total protein iBAQ amount 

per experiment (FOT). Then the FOT values were multiplied 

by 106 and log10 transformed to obtain the FOT values for low 

abundance proteins.

Flow cytometric analysis of the cell cycle and 
apoptosis

Cells were harvested with 0.25% trypsin without EDTA, then 

washed twice with cold phosphate-buffered saline. Cells used 

for cell cycle analysis were fixed in pre-cooled 70% ethanol at 

−20 °C overnight. Afterward, cells were stained with propid-

ium iodide (PI, 36 µg/mL; Sigma, St. Louis, MO, USA) con-

taining RNase A (10 µg/mL; Sigma, St. Louis, MO, USA) in the 

dark at 37 °C for 15 min, and detected with flow cytometry 

(BD FACSVerse™). Cells used in apoptosis assays were stained 

with Annexin V-fluorescein isothiocyanate (FITC) and PI 

with an Annexin V-FITC Apoptosis Detection Kit (Beckman 

Coulter) according to the manufacturer’s protocol, then 

subjected to flow cytometric analysis. Data were analyzed in 

FlowJo 7.6 software.

Gene silencing with siRNA

Kyse450 cells with NEDD8 knockdown were transfected 

with the following siRNA oligonucleotides (synthesized by 

GenePharma, Shanghai, China) and Lipofectamine 2000  

(Invitrogen, Carlsbad, CA, USA) reagent: DR5-1: 5′-AAGACC 

CUUGUGCUCGUUGUC-3′; DR5-2: 5′-CAGCCGUAGUCU 

UGAUUGUTT-3′; NOXA-1: 5′-GGUGCACGUUUCAUCAA 

UUUGTT-3′; NOXA-2: 5′-CCGGCAGAAACUUCUGAAUTT-3′;  
control: 5′-UUCUCCGAACGUGUCACGUTT-3′.

Subcutaneous-transplantation tumor model

NC (negative control) or NEDD8-knockdown cells (5 × 106 

cells per mouse) were subcutaneously injected into 5-week-

old BAL b/c female nude mice purchased from the Shanghai 

Lingchang Biotechnology Co., Ltd (Shanghai, China). Tumor 

size was measured with calipers at the indicated time points 

and calculated as (length × width2)/2. Mice were sacrificed 

at the end of the study, and tumor tissues were harvested, 

photographed, and weighed. Protein expression levels of the 

tumor tissues were evaluated with immunoblotting analysis 

with the indicated specific antibodies. Animal experiments 

were performed in accordance with the National Guidelines 

for Experimental Animal Welfare, with approval from the 

Institutional Animal Care and Use Committee of Fudan 

University (approval No. 202011008Z).

Statistical analysis

The numerical results are presented as means ± standard 

deviations. Statistical significance for the comparison of para-

meters between 2 groups was evaluated with Student’s t test 

in GraphPad Prism5 software (GraphPad Software, Inc., San 

Diego, CA, USA). P < 0.05 was considered statistically signifi-

cant, and n.s. denotes not significant. For all tests, 3 levels of 

significance (*P < 0.05, **P < 0.01, and ***P < 0.001) were 

used.

Results

NEDD8 overexpression is predictive of poor 
overall survival in patients with ESCC

To evaluate the clinical relevance of NEDD8 expression in 

esophageal carcinoma, we used the TCGA database to deter-

mine the levels of NEDD8 transcripts in esophageal carcinoma. 

As shown in Figure 1A, the mRNA expression of NEDD8 was 

significantly elevated in esophageal carcinoma and correlated 

with nodal metastasis (normal vs. N0, P = 2.5627E-04; nor-

mal vs. N1, P = 8.0956E-07; normal vs. N2, P = 5.5654E-08; 

normal vs. N3, P = 1.5798E-03; N0 vs. N1, P = 9.8279E-04; 

N0 vs. N2, P = 9.1616E-04; N0 vs. N3, P = 5.7208E-01). The 

NEDD8 mRNA expression in 2 histologic subtypes of esoph-

ageal carcinoma was significantly higher than that in normal 

tissues (normal vs. EAC: P = 1.5926E-05; normal vs. ESCC: 

P = 3.3506E-09) (Figure 1B). We further determined the 

association between the CNV frequencies and NEDD8 gene 

expression by standard ANOVA and Tukey’s HSD tests. CNV 

gain was significantly associated with NEDD8 gene expression 

in ESCC (P = 8.647E-04; Supplementary Figures S1A and 

S1B). These results indicated that the upregulation of NEDD8 

mRNA expression in ESCC might be partially explained by the 

CNV gain. Furthermore, Kaplan-Meier analysis showed that 

patients with ESCC with higher NEDD8 expression had lower 

overall survival rates (P = 0.028, log-rank test; Figure 1C). 

Spearman tests indicated a statistically positive correlation 
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Figure 1  Overexpression of NEDD8 is predictive of poor overall survival in patients with ESCC. (A) The mRNA expression level of NEDD8 
was higher in esophageal carcinoma than in normal esophageal tissues. N0, N1, N2, and N3 denote nodal metastasis status. (B) The mRNA 
level of NEDD8 was higher in ESCC and EAC than in normal esophageal tissues. (C) Kaplan-Meier curve analysis was performed to determine 
overall survival in patients with ESCC according to the NEDD8 mRNA expression data in the TCGA RNA-Seq database. (D) The correlation 
between NEDD8 and neddylation enzymes (NAE and UBC12) was analyzed in ESCC with the Spearman test. (E, F) A human ESCC tissue array 
was immunohistochemically stained with antibody specific to NEDD8 (E), and the difference in expression of NEDD8 in the ESCC tissues was 
calculated according to the histologic evaluation of tumors and adjacent normal tissues (F). Scale bar for 10× images, 500 μm; Scale bar for 
200× images, 25 μm. (G) Kaplan-Meier curves based on NEDD8 protein expression in patients with ESCC. **P < 0.01, ***P < 0.001, n.s. = not 
significant.
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between NEDD8 and the neddylation enzymes NAE and 

UBC12 (P < 0.01; Figure 1D), thus suggesting that NEDD8 

expression and the neddylation pathway were positively cor-

related in ESCC.

In addition, we determined the NEDD8 protein expression 

in human ESCC tissue arrays through IHC. The NEDD8 pro-

tein expression was higher in ESCC tissues than in adjacent 

normal tissues (Figure 1E). Advanced histologic evaluation 

showed that the NEDD8 expression was significantly elevated 

in patient ESCC tissues (P < 0.001; Figure 1F). Furthermore, 

Kaplan-Meier analysis showed that patients with ESCC with 

high NEDD8 expression had poorer overall survival than 

those with low expression (P = 0.026, log-rank test; Figure 

1G and Supplementary Table S1). Moreover, we detected 

the mRNA and protein levels of NEDD8 in the human eso-

phageal epithelial cell line HET-1A and the 5 ESCC cell lines 

Kyse30, Kyse150, Kyse450, Kyse510 and EC1. The mRNA and 

protein levels of NEDD8 were higher in ESCC cell lines than 

in HET-1A (Supplementary Figure S2A and S2B). The above 

findings demonstrated that NEDD8 is overexpressed in ESCC 

and is associated with poorer overall survival, thus highlight-

ing NEDD8 as a potential anti-ESCC target.

NEDD8 knockdown suppresses the malignant 
phenotype of ESCC cells

To investigate the inhibitory effects of NEDD8 knockdown on 

the malignant phenotype of ESCC, we silenced NEDD8 with 

the CRISPR/Cas9 system in the ESCC cell lines Kyse450 and 

EC1 (Figure 2A). NEDD8 knockdown significantly inhibited 

the proliferation of these 2 ESCC cell lines (Figure 2B and 

Supplementary Figure S3). The colony formation abilities 

of these 2 cell lines were significantly repressed after NEDD8 

knockdown (Figure 2C and 2D). Moreover, the Transwell 

migration and invasion abilities were significantly impaired 

in NEDD8-knockdown Kyse450 and EC1 cells (Figure 2E 

and 2F). These results demonstrated that downregulation of 

NEDD8 suppresses ESCC cell proliferation and survival, thus 

indicating that NEDD8 is necessary to maintain the malignant 

phenotype of ESCC cells.

NEDD8 knockdown triggers multiple tumor-
suppressive processes in ESCC cells

To explore the mechanisms underlying the NEDD8 knock-

down-induced cell malignant phenotype arrest, we performed 

quantitative proteomic analysis in NEDD8-knockdown 

Kyse450 cells. Gene ontology (GO) analysis indicated that 

several biological processes associated with cell survival—

including negative regulation of cell cycle process, regulation 

of cell cycle arrest, extrinsic apoptotic signaling pathway via 

death domain receptors, cellular response to DNA damage 

stimulus, and DNA damage checkpoint—were significantly 

elevated in NEDD8-knockdown ESCC cells (Figure 3A and 

3B). The regulation of G2/M transition in the mitotic cell 

cycle, protein neddylation, regulation of mitotic cell cycle 

phase transition, positive regulation of protein ubiquitin ligase 

activity and negative regulation of endothelial cell apoptotic 

process were significantly inhibited (Figure 3C and 3D). These 

findings were further supported by PI staining and fluores-

cence activated cell sorting (FACS) analysis, which showed 

that NEDD8 knockdown significantly increased the cell  

populations in the G2/M phase in both Kyse450 and EC1 cell 

lines (Figure 3E–3G). These results suggested that NEDD8 

knockdown triggers DNA damage, cell cycle arrest, and apop-

tosis, thereby suppressing ESCC cell growth.

NEDD8 knockdown triggers G2 phase cell 
cycle arrest due to the accumulation of CRL 
substrates in ESCC cells

Because CRL E3 ligases are the best characterized substrates 

of neddylation, we determined the neddylation levels of cull-

ins (the essential components of CRLs) after NEDD8 knock-

down7. Immunoblotting analysis showed that downregulation 

of NEDD8 significantly decreased the neddylation levels of  

cullin1, 2, 3, 4A, 4B, and 5 (Figure 4A). However, NEDD8 knock-

down had no effect on the expression levels of NAE1, UBA3, 

and UBC12 in both Kyse450 and EC1 cells (Supplementary 

Figure S4). Furthermore, the cell cycle inhibitors p21, p27, and 

Wee1, substrates of CRL E3 ligases, significantly accumulated 

after NEDD8 knockdown, whereas phosphorylated histone 

H3 (p-H3, ser10) was sharply downregulated (Figure 4B). 

These results were consistent with our above findings indicat-

ing that NEDD8-knockdown ESCC cells were arrested in G2 

phase and did not enter M phase (Figure 3E–3G). To explore 

whether NEDD8 knockdown prolonged the half-lives of these 

cell cycle inhibitors as a result of CRLs inactivation, we used 

CHX to analyze the protein half-lives of p21, p27, and Wee1 

after NEDD8 knockdown. As shown in Figure 4C and 4D, 

the half-lives of p21, p27, and Wee1 increased after NEDD8 

knockdown. These results indicated that NEDD8 knockdown 
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(E, F) NEDD8-knockdown Kyse450 and EC1 cells were used to determine the migration and invasion abilities, as described in the Materials and 
methods. Representative images are shown; scale bar = 200 µm. Average values with standard deviations of triplicate experiments are shown. 
NC, negative control; KD, NEDD8 knockdown; **P < 0.01, ***P < 0.001.
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induces G2 phase cell cycle arrest, owing to the accumulation 

of the CRLs substrates p21, p27, and Wee1.

NEDD8 knockdown induces DNA damage  
and activates DR5-dependent apoptosis  
in ESCC cells

Our aforementioned GO analysis suggested that DNA dam-

age effects and the apoptosis response were activated after 

NEDD8 knockdown (Figure 3A–3D). Therefore, we exam-

ined the DNA damage effects and apoptosis response in 

NEDD8-knockdown ESCC cells. As shown in Figure 5A, 

the DNA replication factor Cdt1 (CDT1), origin recognition 

complex subunit 1 (OCR1), and DNA damage marker phos-

phorylated H2AX accumulated after NEDD8 knockdown 

in both Kyse450 and EC1 cells. These results suggested that 

downregulation of NEDD8 induced DNA re-replication 

stress and subsequent DNA damage. NEDD8 knockdown also 

resulted in a shrunken morphology of apoptotic cells in both 

Kyse450 and EC1 cell lines (data not shown). Consistently, the 

Annexin V-positive cell populations significantly increased 

after NEDD8 knockdown in both cell lines, thus indicating 

that NEDD8 knockdown increased the apoptotic response of 

ESCC cells (Figure 5B). Further mechanistic studies showed 

that NEDD8 knockdown induced accumulation of the CRLs 

substrate activating transcription factor 4 (ATF4) and the 

important apoptosis mediator phorbol-12-myristate-13-ace-

tate-induced protein 1 (NOXA), as well as the classical apop-

totic hallmarks cleaved-caspase 3 and cleaved-PARP (Figure 

5C). After ATF4 accumulation, the transcription factor C/

EBP-homologous protein (CHOP), a classical downstream 

target of ATF4, was activated and further induced the expres-

sion of DR5, which in turn activated cleaved-caspase 8 and 

triggered extrinsic apoptosis (Figure 5C). To further explore 

the mechanisms underlying the apoptosis induced by NEDD8 

knockdown, we knocked down NOXA and DR5 with siRNA 

silencing. Only DR5 knockdown resulted in a partial rescue of 

apoptosis induced by NEDD8 knockdown (Figure 5D and 5F, 

Supplementary Figure S5). In contrast, NOXA knockdown 

did not rescue the apoptotic induction in NEDD8-knockdown 

Kyse450 cells (Figure 5E and 5G). These results indicated that 

NEDD8 deficiency induces DNA damage and triggers DR5-

dependent extrinsic apoptosis in ESCC cells.

NEDD8 knockdown suppresses ESCC tumor 
growth in vivo

To investigate the therapeutic potential of NEDD8 silencing 

in vivo, we established a subcutaneous-transplantation tumor 

model using NEDD8-knockdown EC1 cells. Downregulation 

of NEDD8 significantly inhibited tumor growth, according 

to the tumor growth curve (P < 0.001; Figure 6A). Moreover, 

compared with the control group mice, which developed 

100% (7/7) large tumors, only 71.4% (5/7) of the NEDD8-

knockdown group mice developed small tumors (Figure 6B); 

these results were further supported by tumor weight assess-

ment (P < 0.001; Figure 6C). We further addressed the poten-

tial mechanisms underlying the antitumor activity of NEDD8 

knockdown in vivo. Downregulation of NEDD8 profoundly 

inhibited cullin neddylation, thus indicating the inactivation 

of CRLs. Consequently, the CRLs substrates p27, p21, and 

Wee1 clearly accumulated in the NEDD8-knockdown group 

(Figure 6D). Collectively, our results indicated that knock-

down of NEDD8 leads to CRLs inactivation and the accumu-

lation of tumor-suppressive CRL substrates, thus inhibiting 

tumor growth in vivo.

Discussion

ESCC is one of the deadliest digestive system cancers world-

wide24. However, effective therapeutic strategies for ESCC are 

lacking25,26. Therefore, developing novel and effective anti-

ESCC therapeutic targets is urgently needed. The neddylation 

pathway is overactivated in multiple human cancers, and inhi-

bition of the neddylation pathway by MLN4924 has provided 

an attractive anticancer therapeutic strategy27. However, drug 

resistance and potential tumor promotion of MLN4924 have 

led to a demand for new neddylation pathway anticancer tar-

gets15,28. In the present study, we demonstrated that NEDD8 

was elevated in ESCC, and patients with high expression of 

into Kyse450 cells, which were subjected to Annexin V-FITC/PI double-staining analysis. The cartogram showed no significance between 
2 matching groups. (F) Kyse450 cells with siControl or siDR5 were subjected to immunoblotting for cleaved-caspase 8, cleaved-caspase 3, 
cleaved-PARP, and DR5, with β-actin as a loading control. (G) Kyse450 cells with siControl or siNOXA were subjected to immunoblotting of 
cleaved-PARP and NOXA, with β-actin as a loading control. Average values with standard deviations of triplicate experiments are shown.  
NC, negative control, KD, NEDD8 knockdown; *P < 0.05, ***P < 0.001, n.s. = not significant.
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NEDD8 had poorer overall survival. We determined the poten-

tial of NEDD8 as an alternative therapeutic target for ESCC 

therapy. Our results showed that downregulation of NEDD8 

activated a series of biological tumor-suppressive processes. 

Furthermore, NEDD8 silencing displayed anticancer effects  

in vitro and in vivo, thus confirming NEDD8 as a potential 

effective therapeutic target for ESCC (Figure 6E).

A previous study has reported that NEDD8 is upregulated 

in multiple cancers, and NEDD8 overexpression is associated 

with poor prognosis29. In the present study, we showed that 

the mRNA and protein expression levels of NEDD8 were sig-

nificantly elevated in ESCC, and overexpressed NEDD8 nega-

tively correlated with overall survival in patients with ESCC, 

thus indicating that NEDD8 may be a useful biomarker for 

ESCC. In addition, NEDD8 knockdown not only obviously 

suppressed ESCC cell proliferation but also profoundly inhib-

ited the migration and invasion abilities of ESCC cells. In vivo 

experiments further showed that downregulation of NEDD8 

significantly repressed ESCC tumor growth. Therefore, our 

study suggests that NEDD8 may be a promising therapeutic 

target and provides a scientific basis for the development of 

specific inhibitors targeting NEDD8.

Mass spectrometry analysis identified 1219 proteins up- 

regulated > 2-fold and 1108 proteins down-regulated < 2-fold 

in NEDD8-knockdown ESCC cells. On the basis of our quanti-

tative proteomic analysis results, we demonstrated that down-

regulation of NEDD8 affects the cell cycle. Mechanistically, we 

found that NEDD8 knockdown inactivates CRLs and induces 

the accumulation of cell cycle inhibitor proteins (p21, p27, 

and Wee1) in ESCC cells. Accordingly, cell cycle progression is 

blocked. Proteomic analysis also indicated that downregulation 

of NEDD8 induced extrinsic apoptosis in ESCC cells. Indeed, 

knockdown NEDD8 induced extrinsic apoptosis via the accu-

mulation of DR5, owing to the upregulation of ATF4, a sub-

strate of CRL1, and its downstream target transcription factor 

CHOP30. Further rescue experiments suggested that NEDD8 

deficiency induced extrinsic apoptosis in a manner dependent 

on DR5 in ESCC cells. Therefore, our results demonstrated 

that genetic downregulation of NEDD8 has anti-ESCC effects 

and mechanisms similar to those of MLN4924, and confirmed 

NEDD8 as a therapeutic target in ESCC.

Conclusions

Overall, our findings not only validate NEDD8 as a promising 

therapeutic target against ESCC but also provide a basis for 

NEDD8 inhibitor development. We believe that the develop-

ment of novel anti-ESCC strategies targeting NEDD8 would 

shed new light on ESCC treatment.
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