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Abstract

An organophosphorus (PIII/PV redox) catalyzed method for the three-component condensation 

of amines, carboxylic acids, and pyridine N-oxides to generate 2-amidopyridines via serial 

dehydration is reported. Whereas amide synthesis and functionalization usually occur under 

divergent reaction conditions, here a phosphetane catalyst—together with a mild bromenium 

oxidant and terminal hydrosilane reductant—is shown to drive both steps chemoselectively in an 

auto-tandem catalytic cascade. The ability to both prepare and functionalize amides under the 

action of a single organocatalytic reactive intermediate enables new possibilities for the efficient 

and modular preparation of medicinal targets.

Graphical Abstract

Amides are common targets in biological and medicinal chemistry,1,2 but challenging 

substrates for chemical derivatization.3 Resultantly, a diverse synthetic toolbox of mild 

reagents supports amide coupling,4 but amide activation5 generally employs strongly 

electrophilic reagents—chiefly Tf2O6 as exemplified in the work of Charette,7 Movassaghi,8 
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Huang,9 and Maulide10,11—to accomplish functionalization of the typically inert amide 

moiety.12–13,14 Notwithstanding the power of Tf2O-mediated amide activation, the highly 

electrophilic nature of this reagent necessitates sequencing of the amide preparation and 

functionalization operations, and generally precludes the use of substrates containing Lewis 

basic functionalities, including amines.15 This lack of cross-compatibility between amide 

coupling and activation enforces a practice whereby these two related reactions are taken as 

disparate synthetic tasks—performed in sequence (Figure 1A, top).

Recognizing that amide synthesis and electrophilic amide activation are both condensation 

processes, we considered whether a mild dehydrating electrophile—generated iteratively 

under catalytic conditions—would permit tandem dehydrative amidation/activation events 

in which the amide serves as a reactive intermediate. In line with Mukaiyama’s “oxidation-

reduction condensation” concept for irreversible dehydration,16 recent results from our lab 

have established that iterative generation of a mild halophosphonium species within the 

PIII/PV redox cycle17 permits recursive dehydration (Figure 1A, bottom).18 Under such a 

manifold, amides can be generated through condensation19 and utilized in situ as valuable 

synthetic intermediates for further activation20 and functionalization.21

Here, we report a PIII/PV=O catalyzed22 multicomponent cascade amide condensation and 

activation for intermolecular coupling, enabled by serial dehydration (Figure 1B). This 

approach provides rapid access to the valuable 2-amidopyridine pharmacophore,23 typified 

by the analgesic propiram, WHO essential medicine dabigatran, and anti-Alzheimer’s 

candidate lecozotan (Figure 1C). By expressing a net redox neutral reactivity in the PIII/

PV=O redox couple to drive serial condensation, a chemoselective assemblage of simple 

starting materials is achieved in a single reaction,24 establishing a perspective on amides as 

veritable synthetic intermediates in catalytic tandem cascades.

Inspired by amide functionalization methods25 from Abramovitch26 and Movassaghi,27 we 

envisioned a chemoselective tandem dehydrative three-component coupling28 of amines, 

carboxylic acids, and pyridine N-oxides,29 assembling 2-amidopyridines in a modular 

fashion. To probe this hypothesis, 1,2,2,3,4,4-hexamethyl phosphetane P-oxide 1·[O]30 was 

evaluated in the coupling of acetic acid (2), propylamine (3), and 4-phenylpyridine N-oxide 

(4) to 2-amidopyridine 5. In practice, 93% yield of 5 (86% isolated yield on 0.5 mmol scale) 

was obtained with 15 mol% 1·[O], along with 2.2 equiv. diethyl(methyl)bromomalonate 

(DEMBM)31 as oxidant, 3.0 equiv. diphenylsilane as reductant, and 1.0 equiv. of Hünig’s 

base at 40 °C in 1.0 M acetonitrile (Table 1, entry 1). The stoichiometry of oxidant 

and reductant required are in line with iterative PIII/PV redox cycling to formally strip 

two equivalents of H2O from the substrate molecules, whereas omitting any of 1·[O], 

DEMBM, or Ph2SiH2 resulted in no product formation, indicating that PIII/PV redox cycling 

is essential (see SI for expanded table).32 Critically, this reaction allows for evaluation 

of the chemoselectivity of the organophosphorus redox catalyst for the intended amide 

condensation/activation manifold, as phosphonium electrophiles, such as peptide-coupling 

reagent PyBroP,33 are known to activate pyridine N-oxides for reaction with nucleophiles.34 

Notably, 2-aminopyridine 8 is not observed, even at lower conversion to product 5 (vide 

infra). While precise tuning of Hünig’s base loading to effectively quench the acid generated 

under this redox condensation manifold was necessary for maximal efficiency (entries 2 
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and 3), lutidine could be used in place of Hünig’s base with minimal effect (entry 4). 

With respect to catalyst, the P- phenyl phosphetane 6·[O] could be used at the expense of 

some efficiency, while 7·[O]35 proved to be ineffective, presumably due to lability at the 

α-unsubstituted cyclic methylene centers (entries 5 and 6).

In order to probe more specifically the sequence of bond-forming events, the coupling 

of 2 and 4 with 4-fluoroaniline (9) to 10 was monitored by 19F NMR spectroscopy 

(Figure 2A).36 Over the course of the first six hours, depletion of 9 and formation of the 

corresponding amide intermediate 11 was observed, with no formation of 2-aminopyridine 

12. Subsequently, once 9 was completely consumed, formation of product 10 was observed 

as the acetanilide 11 was dehydrated. This reaction profile is consistent with sequential 

dehydrative activation via an amide intermediate as proposed.37 Independently, 11 and 

4 could be dehydratively coupled to 10 under identical conditions with adjustment of 

reagent stoichiometry (see SI). In contrast, in the isolated reaction of 4 with 9, no 

coupling to 2-aminopyridine 12 was observed by 19F NMR or LC-MS (see SI). Thus, 

catalytically-generated bromophosphonium 1·Br+ is not effective for activation of the N-

oxide, in contrast to N-oxide activation observed with PyBroP. This observed reactivity 

profile is in good agreement with stoichiometric reaction of [1·Br]Br with the reaction 

components.38 In concert, these data support a reaction pathway of amide condensation 

followed by amide activation to generate imidoyloxypyridinium 13 and rearrangement to 

yield 2-amidopyridine39 product 10 (Figure 2B), enabled by the catalytic generation of 

bromophosphonium ion 1·Br+ as a general, mild, and selective dehydrating species (see SI 

for full catalytic cycle).40

With an understanding of the reaction parameters and mechanism, scope of the reaction 

upon variation of the carboxylic acid coupling partner was evaluated (Figure 3). Straight-

chain alkyl carboxylic acids (14–18, 61–78% yield) bearing various functional groups, 

including aryl fluoride (15), alkyl bromide (16), ether (17), and sulfonamide (18)could be 

transformed under the standard reaction conditions. Carboxylic acids bearing branching 

α-carbon centers (19 and 20, 77 and 83% yield, respectively) demonstrated equivalent 

efficiency. Further, benzoic acids bearing a wide variety of substitutions were successfully 

utilized in this reaction (21–24, 60–71% yield). A benzoic acid bearing a pendant alkyl 

ethyl ester provided the desired coupled product 24 in 63% yield with no evidence of ester 

reactivity, highlighting the mild nature of this catalytic dehydrative platform. A variety 

of heterocycle-containing carboxylic acids could be incorporated into this reaction, as 

benzotriazole41 (25, 60% yield), unprotected N-H indole42 (26, 71% yield), thiophene (27, 

72% yield), N-Me benzimidazole43 (28, 63% yield), and benzothiazole (29, 62% yield) 

moieties evidenced no deleterious side effects from the inherent reactivity of the heterocycle. 

A variety of undesired side-reaction pathways are available to these heterocyclic substrates 

through reaction with strong electrophiles, highlighting the advantageous nature of catalytic 

generation of a mild, selectively-activating phosphonium ion for tandem dehydration 

sequences on functionality-rich substrates.

Variation of the amine coupling partner to demonstrate scope and generality is also 

shown in Figure 3. Various primary alkyl amines containing reactive functionalities were 
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incorporated into 2-amidopyridines with good to excellent efficiency (30–40, 55–98% 

yield). β-Phenethylamines are readily functionalized (30–32, 66–84% yield); notably, 3,4-

dimethoxyphenethylamine yielded the desired product 31 in 70% yield, with minimal (<5%) 

cyclodehydration onto the pendant electron-rich arene ring observed. Similarly, owing to the 

mild reaction temperature and inclusion of the bromenium oxidant, 4-nitrophenethylamine 

could be incorporated into this tandem dehydrative platform with no reaction at the 

nitroarene moiety (32, 66% yield).44 Benzylamine could also be functionalized as desired 

(33, 85% yield), despite potential degradation pathways available to a putative N-benzyl 

nitrilium cation.45 Further, amino acid esters of various chain lengths could be incorporated 

into the transformation directly from their commercial hydrochloride salts (34–36, 55–77% 

yield). Indazole-containing product 37 was delivered in 90% yield, demonstrating the ability 

of this system to incorporate pharmaceutically relevant heterocyclic motifs.46 Similarly, 

primary amines with tethered basic tertiary amines47 provided the desired products (38–

40, 84–98% yield) without the need for exogenous amine base, evidencing the mild, 

chemoselective conditions are highly tolerant of Brønsted and Lewis basic functionality.48 

α-Secondary amine 4-amino-1-methylpiperidine could deliver 40 in 92% yield, despite the 

possibility of retro-Ritter reaction occurring from a putative nitrilium cation.49

A wide variety of anilines of varying electronic natures were competent in the tandem 

dehydrative catalytic transformation, with lutidine serving as the ideal base (41–48, 66–86% 

yield). Tolerated functionality include ether (41, 85% yield), chloro (42, 70% yield), fluoro 

(12, 78% yield), ester (43, 66% yield), and trifluoromethyl (44, 67% yield) groups, as well 

as sterically-encumbering ortho-substitution (45 and 46, 81 and 70% yield, respectively). 

This lack of apparent deleterious steric effects highlights the utility of complementary C–

N bond-forming platforms. Bis-heteroaryl amide products containing benzodioxane50 (47, 

77% yield) and indazole46 (48, 86% yield) cores demonstrate the efficacy of this catalytic 

protocol for incorporating heterocyclic motifs common in pharmaceutical chemistry into 

complex molecular scaffolds. Further, when varying both amine and carboxylic acid 

components, it was observed that less electron-rich N-aryl benzamide intermediates do not 

undergo appreciable activation under the standard conditions. However, this can be mitigated 

upon heating the reaction slightly to 80 °C delivering the amide-activated, three-component 

coupled product (49 and 50, 43 and 50% yield, respectively).

Variation of the pyridine N-oxide coupling partner was also evaluated (Figure 4A).51 

Replacement of the 4-Ph substituent with 4-Me and 4-H had minimal effect on efficiency, 

as products 51 and 52 were both formed in excellent yield (82 and 84%, respectively). 

From a 10 mmol scale reaction, 52 was able to be isolated in equal yield, affording 

1.50 g of product, demonstrating the scalability of this transformation. 3-Methylpyridine 

N-oxide was functionalized to 53 in 71% yield, with 1.2:1 rr, indicating minimal steric 

or electronic influence on the C–N regioselectivity.52 Given the broad generality of the 

transformation with respect to the amine and acid coupling partners, the functionalization53 

of bioactive pyridine scaffolds54 via their N-oxides was undertaken to assess the utility 

of this new catalytic transformation in complex molecule derivatization (Figure 4B). 

Commonly-used pesticide pyriproxyfen, containing multiple ether linkages, was derivatized 

to yield 54 in 66% yield. Further, basal cell carcinoma drug vismodegib was functionalized 
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to product 55 in 63% yield. Notably, the N-aryl benzamide moiety, a competent substrate 

for activation under the catalytic system, was untouched in the reaction carried out at 

40 °C. In addition, the oxidized sulfone was not observed to undergo any reductive 

reaction. In combination with earlier results, these examples demonstrate the utility of 

this organophosphorus-catalyzed transformation in the derivatization of complex molecules 

bearing sensitive functionality frequently present in biologically active compounds.

In conclusion, we have demonstrated that organophosphorus-catalyzed serial dehydration 

serves as an effective platform for both amide coupling and activation, enabling a convergent 

synthesis of 2-amidopyridines by three-component coupling of amines, carboxylic acids, 

and pyridine N-oxides. The ability to both access and functionalize an amide in situ 

establishes organophosphorus redox catalysis as a distinct, valuable modality within 

the expanding amide activation toolbox. The evident chemoselectivity and functional 

interplay of the catalyst, reagents and substrates in the title transformation portends further 

development of cascade condensation reactions driven by this catalytic manifold.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Amide condensation and activation utilize different reagents due to reactivity differences 

– can they be chemoselectively carried out in tandem via a unified phosphacatalytic 

platform? (B) Organophosphorus-catalyzed condensation of amines, carboxylic acids, and 

pyridine N-oxides to 2-amidopyridines via serial dehydration. (C) Pharmaceutical agents 

containing 2-amidopyridine core.
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Figure 2. 
(A) Time-stacked 19F NMR spectra (in CDCl3) of the coupling of 9 with 2 and 4 at the 

indicated time points, showing aniline 9 (δ −127.3 ppm), acetanilide 11 (δ −118.8 ppm), 

and 2-amidopyridine 10 (δ −113.9 ppm), with 4,4’-difluorobenzophenone internal standard 

(δ −105.8 ppm). (B) Proposed reaction mechanism proceeding through amide condensation 

and activation, not pyridine N-oxide activation.
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Figure 3. 
Synthetic scope of three-component serial dehydrative coupling of amines, carboxylic acids, 

and pyridine N-oxides. All yields isolated on 0.5 mmol scale. a 2,6-Lutidine in place of 

EtNiPr2. b Amine hydrochloride salt, 2,6-lutidine (2.0 equiv.) in place of EtNiPr2. c No 

EtNiPr2. d 60 °C. e 80 °C.
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Figure 4. 
(A) Variation of pyridine N-oxide in tandem dehydration coupling. (B) Derivatization 

of pharmaceuticals by phosphacatalytic serial dehydrative amide condensation and amide 

activation. See SI for full synthetic details. All yields isolated. i mCPBA (1.05 equiv., 77%), 

CH2Cl2, 18 h. ii 2 (1.05 equiv.), 3 (1.0 equiv.), pyridine N-oxide (1.25 equiv.), 1·[O] (15 

mol%), DEMBM (2.2 equiv.), EtNiPr2 (1.0 equiv.), Ph2SiH2 (3.0 equiv.) MeCN (1.0 M), 40 

°C, 16 h. aConditions as in Figure 3. bYield in parentheses on 10.0 mmol scale; 1.50 g 52 
isolated. c20 h. mCPBA = meta-chloroperoxybenzoic acid.
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Table 1.

Optimized conditions and variations.

Entry deviation from standard Yield of 5 (%)
a

1 none
93 (86)

b

2 2.0 equiv. EtNiPr2 71

3 0 equiv. EtNiPr2 78

4 2,6-lutidine in place of EtNiPr2 88

5 6·[O] in place of 1·[O] 85

6 7·[O] in place of 1·[O] 0

a
Yield determined by 1H NMR against internal standard on 0.125 mmol scale reaction.

b
Isolated yield on 0.5 mmol scale reaction. DEMBM = diethyl(methyl)bromomalonate, 1,2-DCE = 1,2-dichloroethane.
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