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Abstract

COVID-19 is a dynamic disease and may affect different tissues and organs as it

progresses. Therefore, the impact generated by the disease in all its stages and

organs requires a functional and versatile imaging technique able to detect particular-

ities or artifacts dynamically. Ultrasonography fulfills all these requirements and

exhibit several advantages relative to other imaging modalities, including portability,

lower cost and biosafety. Throughout the COVID-19 pandemic, ultrasonography dis-

played a crucial role in the triage, monitoring, indicating organ damages and enabling

individualized therapeutical decisions in COVID-19 patients. This review is dedicated

to highlight the main pathological effects correlated with ultrasound changes caused

by COVID-19 in the lungs, heart and liver.
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1 | INTRODUCTION

The coronaviruses are zoonotic viruses that belong to the Nidovirales

order and Coronaviridae family that account with three already identi-

fied species—the etiologic agents of the severe acute respiratory

syndromes (SARS).1 The first coronavirus outbreak, caused by SARS-

CoV-1, started in China in 2002 and caused more than 8.000 cases

and 774 deaths in 27 countries.2,3 After 10 years, a new outbreak,

caused by MERS-CoV resulted in 1.728 confirmed cases and

624 deaths in 27 countries.3,4 In 2019, the SARS-CoV-2 culminated in

the current “Corona Virus Disease 2019” (COVID-19) pandemic,

responsible for more than 200 million cases and more than 4 million

deaths worldwide.5,6

The coronaviruses carry single-stranded ribonucleic acid with

positive sense (+ssRNA), which express open-reading frames that

encode for at least 27 proteins including 15 non-structural,
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8 auxiliaries and 4 structural (e.g., S “spike,” M “membrane,” E “enve-
lope” and N “nucleocapsid” proteins).7 To gain access to the host, the

viral S protein interacts with the angiotensin II converting enzyme

receptor (ACE2) and depends on auxiliary proteins located at the cell

surface for successful invasion.8 Among these peptides, the trans-

membrane serine protease 2 (TMPRSS2) is highlighted for its role in

cleaving and activating the S protein of several classes of cor-

onaviruses.8 Furthermore, the furin protease mediates the binding of

the S protein with ACE2 receptor.8–10 After the viral particle's endo-

cytosis process, its genetic material is released into the cytosolic envi-

ronment for subsequent replication.11

The SARS-CoV-2 is transmitted via respiratory droplets and by

contact with infected surfaces or objects.12 Additionally, it might be

detected in several samples, including spittle, feces and blood that

may also contribute with the transmission.13 The SARS-CoV-2 inva-

sion occurs primarily along the respiratory tract and may be asymp-

tomatic or symptomatic, displaying several symptoms, such as fever,

cough, dyspnea, myalgia, fatigue, confusion, headache and sore

throat.14 In some cases, the infection might progress to severe symp-

toms and complications that include hypoxemia, respiratory or multi-

ple organ failure, acute cardiac injury and secondary infections.14–16

In the elderly and individuals with underlying comorbidities, such as

diabetes mellitus, hypertension or cardiovascular disease, the infec-

tion may result in fatal complications.14 The SARS-CoV-2 infection

might affect multiple organs and the lungs play a central role on the

symptomatology.17

The invasion process unbalances the renin-angiotensin pathway

caused by ACE2 function disruption and induces lung endothelial, epi-

thelial and alveolar damage mediated by immune cells that may lead

to hypoxemia and fibrosis.18,19 In addition, local endothelial nitric

oxide production might also cause inflammation.18,20 The effect of

viral invasion on other structures, such as the brain, mouth, heart, kid-

neys, pancreas and the gastrointestinal tract is discussed in

Reference 18.

Currently, few therapies have been identified, including dexa-

methasone, remdesivir, lopinavir, ritonavir, recombinant ACE2,

interferon 1 and convalescent plasma.21 However, the multiple

organ tropism presented by SARS-CoV-2 requires an individualized

assessment to personalize and establish efficient therapies.22 To mon-

itor pathological condition, several imaging techniques are fundamen-

tal for determining the clinical management of patients with

COVID-19.23

1.1 | Ultrasonography applied to COVID-19

Medical imaging techniques present a fundamental role in the detec-

tion, monitoring and therapeutical choices regarding the multiple dam-

ages caused by SARS-CoV-2. Among them, ultrasonography (US),

computed tomography (CT), magnetic resonance imaging (MRI), X-ray

(XR) and positron emission tomography (PET) display crucial impor-

tance in COVID-19 assessment. All are capable of revealing abnormal-

ities in different organs as a result of the viral pathological process. In

particular, chest CT allows the identification of precocious affections

caused by COVID-19 and became an important tool for determining

the progress and classification of disease stages.24 However, the wide

use of CT in patients with COVID-19 is discouraged due to the risk of

cross-contamination associated with the need for prior hygiene for

each patient.25 Likewise, XR, MRI and PET techniques present the

same risk, and their use is severely limited for such patients, especially

for those allocated to the intensive care unit (ICU).25–27

Therefore, US has been increasingly employed as an imaging

alternative to CT. US differs from other techniques for its portability,

lower cost, easy transportation, sanitization and safety—a key factor

to avoid viral contamination and enable imaging of patients in

isolation—and, above all, US might provide images capable of indicat-

ing the nature of a wide variety of tissue damage in real-time over rel-

atively fast examinations, a factor that may be crucial in urgent

situations.28–31

Despite the several advantages of the technique, there are impor-

tant diagnostic limits that prevent its wider use in cases of COVID-19:

the number of qualified professionals to interpret the test is limited

during the pandemic; it is not possible to perform a “risk assessment”
of the patient; mechanically ventilated patients suffer from the “cur-
tain effect” caused by increased lung insufflation, which reduces the

echocardiographic windows; and, logistically, the demand for the

exam may be greater than the number of devices.32

In the particular case of the lungs, it was recently verified that

US has an accuracy similar to chest CT in pointing out elements sug-

gestive of COVID-19 (e.g., 100% sensitivity, 78% specificity and

positive and negative predictive value of 92% and 100%, respec-

tively).33 A good correlation between US and CT is also observed

for other organs, establishing US as an important tool in the evalua-

tion of COVID-19 patients.29,33 Finally, US is the imaging methodol-

ogy that best satisfies several requirements imposed by COVID-19

and enable monitoring of different tissues, determine the degree of

local lesion and enable the choice of therapies in an individualized

manner according to the particularities of the pathological mecha-

nism affecting different organs.24,28 This review is dedicated to

highlight the main US changes caused by COVID-19 in the lungs,

heart and liver.

2 | LUNGS

2.1 | Pulmonary pathophysiology

The lungs are the most affected organs by COVID-19.34 Recent stud-

ies indicate that the SARS-CoV-2 infection affects many cells along

the proximal (e.g., cilia and goblet cells) and distal (e.g., type I and II

pneumocytes) air tracts, especially on type 2 alveolar cells (AT2) that

exhibit a high expression rate of ACE2 (�83%)19 and TMPRSS2.35–37

The infection in AT2 cells is one of the main mechanisms that triggers

SARS in severe cases of COVID-19, characterized by the accumula-

tion of fluids in the alveolar sacs and consequent reduction in gas

exchange.38,39
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After the viral infection, pattern recognition receptors (PRRs)

detect the pathogen replication and act as “sentinels” that undergo

oligomerization due to the interaction with invasive RNA struc-

tures.40,41 This process generates transcription factors (e.g., NF-κB),

which induce the expression of types I and III interferons (IFN) that

interfere with the viral replication.42 The IFN activate the JAK–STAT

signaling pathway and induce the expression of antiviral genes, whose

products (i) restricts the viral replication within infected cells,

(ii) induces an “antiviral state” in the tissue by recruiting cells of the

innate immune system and (iii) prepare an adaptive immune response.43

However, the SARS-CoV-2 infection is effective in delaying or

preventing the production of immune responses associated with types

I and III IFN, thus enabling the viral replication to proceed

uncontested and delay the activation of the innate immune

system.44This effect is particularly associated with severe cases of the

disease with a high mortality risk.45

Nonetheless, the response to the viral infection is multifaceted and

a second defense strategy is mediated by the recruitment of specific

leukocyte subtypes capable of releasing a wide variety of pro-

inflammatory cytokines and chemokines.46 Therefore, the innate

immune system is activated via interaction with damage-associated

molecular patterns (DAMPs) or pathogen-associated molecular patterns

(PAMPs; e.g., SARS-CoV-2 orf8b).47 The exposure to PAMPs activates

NLRP3 receptors which, in turn, recruit the enzyme caspase-1, a pore-

forming protein that causes pyroptosis—cell death induced by the syn-

thesis and activation of IL-1β, IL-18, TNF-α and gasdermin-D—a phe-

nomenon observed in >82% of patients.10,48 Different mechanisms

linked to NLRP3 activation have been reported (e.g., induction of

inflammasomes and consequent initiation of an inflammatory response

correlated to cell death patients [49,50]), though only one has been so

far associated with the SarS-CoV-2 infection.51

The release of IL-1β and TNF-α activates Th17 cells, which

secrete pro-inflammatory cytokines that provoke an event defined as

“cytokine storm.”52 Among them, IL-17, IL-21, IL-22 and GM-CSF

stand out, as they are responsible for the induction of neutrophils and

other immune cells (e.g., CD68+ macrophages), blood-air barrier remo-

deling, fever, hypoxemia and edema.53 Recent studies suggest that

due to the imbalance of the immune response caused by SARS-CoV-

2—as it delays or prevents the preparation of an adaptive response—it

triggers an exacerbated expanding response in an attempt to control

the infection.44 This response, however, results in a broad pulmonary

immunopathology characterized by the elevation of neutrophils in the

lung tissue, particularly in the most severe cases.51

Although the molecular mechanisms of pulmonary pathophysiol-

ogy are still unclear, multiple factors are under consideration. Among

them, the functional loss and reduction of ACE2 expression upon its

binding with the S protein of SARS-CoV-2 stands out, as it disturbs

the renin-angiotensin-aldosterone system (RAAS) responsible for

maintaining the blood volume and electrolyte concentration.54 The

consequent ACE2 blockage significantly reduces the conversion of

angiotensin II—a potent vasoconstrictor and oxidizing action—into

angiotensin 1–7, which interacts with the Mas receptor and stimulates

vasodilation and antiproliferative effects.55

Since the lungs are the main location of angiotensin II synthesis, its

unregulated effects cause local vasoconstriction, which culminates in

edema, loss of lung function, diffuse alveolar damage, AT2

cell hyperplasia, fibrin deposition in the interalveolar space and

lymphocytic inflammation.56,57 Another pathological mechanism of

SARS-CoV-2 is the activation of coagulation pathways due to cellular

apoptosis resulting from the inflammation of viral replication: with the

loss of the air–blood barrier's integrity, the resulting exposure of

thrombogenic substrates (e.g., membrane and other components of

lysed cells) initiate coagulation and form microthrombi that occlude the

alveoli and blood vessels.57 This effect raises D-dimer values up to five

times and may cause disseminated intravascular coagulation.57 Addi-

tionally, respiratory tract infection affects the vascular endothelium and

smooth muscles of pulmonary arteries and arterioles, which may impact

pulmonary perfusion and obstruct gas exchange by inhibiting smooth

muscle contraction and reduce the concentration of nitric oxide.58,59

Therefore, the SARS-CoV-2 infection induces a pro-thrombotic

state at the pulmonary level—not usually observed in other airway

infections (Figure 1)—characterized by an increase in the levels of

fibrinogen, Von Willebrand factor and D-dimer.61 The local hyp-

ercoagulability response is a defense mechanism aimed at preventing

the entry and limit the spread of pathogens.62

2.2 | Pulmonary ultrasonography in patients with
COVID-19

The strategy of employing pulmonary ultrasonography (PUS) to moni-

tor the disease evolution over the lungs revealed itself as an effective

F IGURE 1 Representation of the airway and alveolar's

biochemistry during classic acute respiratory distress syndrome (ARDS)
and in COVID-19-induced ARDS. In both syndromes, the alveolar-
interstitial-capillary structure is similarly affected. There is an increase
in pro-inflammatory biomarkers, endothelial and capillary permeability,
in addition to an increase in inflammatory cells (neutrophils, monocytes
and macrophages) in vessels and alveoli. However, the increased
biomarkers in the two syndromes are distinct. Image adapted from60
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alternative for generating clinically useful images and minimize the risk

of infection for the patient and/or health professional.63 Despite the

preference of CT for pulmonary diagnosis, PUS has the potential to

accurately distinguish varied ultrasonic signs and patterns associated

with COVID-19,64,65 as well as perform functional assessment of the

tissue and the capacity for gas exchange.66

The ultrasonographic examination of patients with COVID-19 is

characterized by the following patterns: (i) the effusion, thickening and

fragmentation of the pleural and subpleural lines; (ii) the disappearance

of the A lines (suggesting air content reduction); (iii) the appearance of

B lines (indicating air volume reduction and local density increment),

which may be separated or coalescent; (iv) consolidations in different

areas and locations at different stages of the disease, which is associ-

ated with air bronchograms and whitish pulmonary pattern; (v) a “light
beam signal,” which is a vertical band-shaped artifact that moves with

the pulmonary sliding during breathing—a result of the onset of intersti-

tial involvement.67 The observation of these patterns with bilateral pul-

monary involvement was verified in >75% of COVID-19 cases.68

Both the A and the B lines are unique lung artifacts that are not

exclusively related to COVID-19 and may also suggest lung impair-

ment by distinct pathologies. The A lines indicate the amount of air in

the alveolar spaces and are hyperechoic horizontal arcs formed at

identical intervals and parallel to the pleura and skin line, due to the

repeated reflection of the transducer/skin and pleura interface

(Figure 2A,B).68,69 The B lines are hyperechoic and vertical to the

pleura (also called “comet tails”) that move along with the pulmonary

sliding. The B lines extend from the pleural line to the edge of the

ultrasound image and eliminate the A lines as a result of the reverber-

ation of the PUS bundles with edema in the alveoli (Figure 2B,C).68–70

The B lines indicate the degree of pulmonary impairment: the

presence of up to 2 B lines per intercostal space suggests non-severe

alveolar damage; the presence of three or more lines with greater

thickness point indicate compromised pulmonary aeration and a mod-

erate reduction in compliance, as a result of interlobular septa thick-

ening and alteration of the pulmonary interstitium71 Another usual

finding employed to indicate the evolution of the pathology are the

pleural irregularities, which are associated with interstitial thickening

resulting from edematous alveolar damage.72 Subpleural consolidation

indicate loss of local aeration, characterized by edema resulting from

the inflammatory process.28,73 In PUS, their texture is similar to the

liver tissue.73 Furthermore, large consolidations are identified by an

important reduction in lung aeration.28

As previously mentioned, PUS has excellent correlation with CT

and other chest imaging techniques.33 The evolution of the pulmonary

status of patients affected by COVID-19 monitored by PUS and CT is

shown in Figure 3.28 The following continuous monitoring shows the

progressive reduction in lung capacity, revealing coalescent B lines

(Figure 3B,C) compatible with ground-glass opacification in CT.28 The

evolution of pulmonary impairment (between 9 and 13 days) leads to

an increase in the area covered by the B lines and is usually followed

by consolidations—initially small and restricted to the subpleural space

(Figure 3D,E), but prone to evolve into other areas and locations

depending on the intensification of the pathological process.66

Thereby, by specifying the pulmonary disease of COVID-19 through

ultrasonographic images, it is possible to differentiate the disease

from other pathologies, such as bacterial pneumonia, cardiogenic pul-

monary edema, pulmonary fibrosis or respiratory distress syndrome.28

To obtain effective results via PUS examination in the manage-

ment of cases of infection, it is necessary to establish protocols to

visualize different lung regions (Figure 4).74 Lung division may be per-

formed into 12 or more zones, 6 for each lung.75 A careful analysis of

the back region is suggested, as the histopathology of COVID-19 is

prominently manifested in the posterior regions.76 It is recommended

that the patient remains seated with their back to the operator.77

However, in more severe cases, in which the patients are lied at the

supine position and presents no mobility, the back areas of the lung

are not visible and, therefore, the viewing should be directed close to

the posterior axillary line.74 Other ultrasound protocols include the

evaluation from 10 to 14 different lung areas.78

In conclusion, the advantages of PUS in the examination of

COVID-19 patients are the following: portability, possibility of bed-

side assessments, biosafety and availability to repeat the examination

during follow-ups with no exposure to radiation.65,74 In addition, this

imaging method allows for the assessment of tissue damage and the

degree of pulmonary impairment caused by COVID-19.28,72,78 Finally,

PUS offers the physician a practical and safe method to obtain infor-

mation during case monitoring, therapeutic response and even adap-

tations to mechanical ventilation.64,65,74,79

F IGURE 2 Longitudinal section of chest B-mode ultrasound imaging. The association of ribs and pleural line generate a solid landmark called
the “bat sign” (A). The A lines (blue arrow), ribs (orange arrows) and their respective acoustic shadows (asterisks) are represented in image B. The
B lines (asterisks) eliminate the A lines (yellow arrow) when they cross (x) (C). Adapted from66
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3 | HEART

3.1 | Cardiac pathophysiology

The heart is heavily affected by COVID-19.75 The SARS-CoV-2 infec-

tion might damage the cardiac tissue in multiple ways and may cause

a myriad of pathological events, such as myocardial damage, myocar-

ditis, sudden cardiac arrest, heart failure and varying stages of

shock.80 According to epidemiological data, the following heart

diseases were observed in patients with COVID-19: myocarditis (7–

17%), heart failure (24%), arrhythmias (17%) and thrombotic events

(31%).75,81 Such findings are associated with higher mortality rates

and several complications, which include malignant arrhythmias, acute

kidney injury and coagulation disorders.80,82,83

Furthermore, the viral infection is aggravated for those patients

with previous cardiovascular disease (estimated 85% more risk of

fatality and a mortality rate of 10.5%, compared to 2.3% for individ-

uals without heart disease), which is the third most prevalent comor-

bidity in patients hospitalized with COVID-19.84 As demonstrated by

Zhou et al., patients with cardiac complications (pre-existing or due to

infection) exhibit higher risk of rapidly changing from a stable to an

unstable condition.85

Although still not fully understood, the pathogenesis of cardiac

damage caused by SARS-CoV-2 is multifaceted and may be caused by

direct viral infection or via indirect events. The myocardial damage

caused by direct virus infection is indicated by the release of troponin

T/I and detection of the viral genome in the heart.86 Recently, Mitrani

et al. revealed that almost a third of the patients exhibit some cardiac

complications and the high mortality rate is associated with previous

cardiovascular disease.87 Moreover, a study by Maccio et al. showed

that the endothelial cells of cardiac capillaries and epicardial nerves

are the main targets of the virus due to increased ACE2 expression.88

As a result, the infection might cause cardiac damage through several

mechanisms, such as induction of cell death, inflammatory response

and impairment of electromechanical functions.89

The viral infection may provoke microvasculature impairment,

particularly at the small epicardial capillaries (that display elevated

ACE2 expression), which may cause vasculitis along the capillaries,

arterioles and cardiac venules.88 Therefore, patients infected by

SARS-CoV-2 are more likely to develop thromboembolic conditions.90

As previously discussed, the downregulation of ACE2 resulting from

viral infection causes an increase in angiotensin-II levels and a reduc-

tion in angiotensin 1–7 and 1–9 levels, which display cardioprotective

effects.75 Elevated levels of angiotensin-II are responsible for the gen-

esis of a cascade of cytokines via NF-kB, IL-6, TGF-β and vascular

endothelial growth factor (VEGF), which promote inflammation and

fibrosis of the pericardial serous layer.91,92 COVID-19, as well as dia-

betes and atherosclerosis are ACE2 inhibitory factors, thus all these

pathologies are correlated with the occurrence of myocardial ischemia

and ventricular dysfunction.91

The most frequent arrhythmia in patients with COVID-19 is sinus

tachycardia—a homeostatic response to any infection or inflammatory

response whose mechanism is, however, not fully understood—

though atrial fibrillation and ventricular tachycardia are also

observed.93–95 Among the mechanisms causing this condition, elec-

trolyte imbalance, lung damage, drug side effects and cell signaling

cascades after viral infection stands out.75 In addition, hypoxia due to

ARDS is correlated with an increased risk of arrhythmia.96 Medicines

such as azithromycin and lopinavir/ritonavir may also contribute to

trigger arrhythmias by prolonging the QT interval.97

The indirect effects of COVID-19 might induce myocardial injury

via systemic inflammatory response generated by the “cytokine

F IGURE 3 PUS and CT images of the lungs of individuals affected
by COVID-19 at different stages, from normal aeration (A),
progressive deaeration states (B and C) small and peripheral
consolidation (D) and large consolidation (E). Adapted from28
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storm,” characterized by high levels of IL-1, IL-6, IL-1β, IFNγ, MCP-1

and IP-10.98,99 The cytokines contribute to cardiomyopathy by facili-

tating the release of radical oxygen species (ROS), nitric oxide and

superoxide anions.100 Additionally, damage-associated molecular pro-

teins (DAMPs; e.g., heat shock proteins, oxidized lipoproteins and

nuclear proteins HMGB1 proteins) are released from the damaged

myocardium and induces inflammation and cardiomyopathy, esta-

blishing a continuous inflammatory cycle, resulting in septic cardiomy-

opathy due to COVID-19 and hemodynamic instability.75,100

The proinflammatory cytokine response mediates atherosclerosis

and contribute to plaque disruption by provoking local inflamma-

tion.101 Thereby, the exaggerated release of these inflammatory

agents causes important hemodynamic changes, increasing the proba-

bility of ischemia, thrombosis, pulmonary embolism and may induce

multiple organ dysfunction or disseminated intravascular coagula-

tion.91,102 Patients with more severe cases of COVID-19 exhibit

higher levels of inflammatory markers, such as C-reactive protein, fer-

ritin, interleukin 6, TNF-α and thrombotic markers such as D-

dimer.103,104 In addition, elevated cardiac troponin is indicative of

myocardial damage, which is recurrent in COVID-19 patients and

associated with worse outcomes.104 The increase in the level of brain

natriuretic peptide (BNP) is correlated to the presence of diastolic

abnormalities, right ventricular enlargement and a more severe

prognosis.104,105

The hypoxemia in the cardiac tissue, a condition resulting from

pulmonary obstruction and consequent reduction in gas exchange is

an aggravating prognosis.106 The cellular damage caused by anaerobi-

osis, acidosis and ROS are also associated with an increased risk of

acute myocardial infarction (AMI).89,107,108 Moreover, patients with

previous heart diseases are more susceptible to cardiac tissue

damage—probably due to the inflammation caused by COVID-19—

and pre-existing target organ damage due to cardiovascular risk fac-

tors also weakens the hearts resistance against the disease.109–111

According to Capotosto et al., cardiac complications may also be

related to acute pulmonary damage, causing right ventricular failure,

pulmonary hypertension (with high mortality rate, up to 46%) or acute

pulmonary embolism after disturbances in the coagulation and venous

thromboembolism.32 Additionally, a higher risk of death for patients

with COVID-19 who had previous coronary artery disease is

observed, as the viral infection might trigger AMI.112–114

3.2 | Echocardiography in patients with COVID-19

Echocardiography is widely recommended and has become part of

the routine for the diagnosis and monitoring of cardiac complications

caused by SARS-CoV-2. It is useful to indicate a wide variety of car-

diac alterations caused by the infection (Figure 5) and may also sug-

gest degeneration or necrosis of parenchymal cells as well as the

formation of hyaline thrombi.85 Thereby, the technique has a crucial

role in the assessment of patients severely affected by the virus and

with pre-existing cardiovascular diseases (e.g., heart failure, card-

iomegaly, and arrhythmias).116

Echocardiography evaluation is fundamental to set individualized

therapeutic interventions, such as protective ventilation to the right

ventricle, therapy with anticoagulants, pulmonary vasodilation or

extracorporeal oxygenation.117 Therefore, echocardiography enables

adequate management of a patient with heart failure and other

complications.118–120 Several findings from the clinical practice sug-

gest this imaging modality when the patient display symptoms com-

patible with heart failure, high levels of BNP and pneumonia.120,121 In

fact, the echocardiography exam led to therapeutical modifications of

45% of COVID-19 patients due to significant alterations.122

As already discussed, US alterations may suggest particularities of

COVID-19, such as the extension or evolution of the pulmonary dam-

age caused by the SARS-CoV-2 infection. For example, modest and

F IGURE 4 Detailing of the lung zones
for the recommended PUS scan in
patients with COVID-19. Adapted from74
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severe viral infections cause local edematous foci in the interstitial

pulmonary pleura, seen as “ground glass lesions” on CT and coales-

cent B lines on PUS.118 In these situations, echocardiographic findings

indicate ventricular interdependence, septal displacement ventricular

diastolic, left ventricular hypodiastole and reduced cardiac output—

caused by greater respiratory effort and higher ventilation rate per

minute.118,123 Moreover, the necessity of mechanical ventilation cau-

ses several functional changes that require close monitoring, such as

dilation, tricuspid valve insufficiency, reduced right heart systolic

capacity and left heart compression as represented in Figure 6A.124

To illustrate the relevance of echocardiography, Zhang et al.

reported the use of the technique in several cases throughout 2020.

In all their cases, the patients presented fever, pneumonia and high

levels of BNP.120 The cardiac alterations included left ventricular

enlargement, reduced ventricular ejection fraction and mitral valve

regurgitation (Figures 6B,C). In severe cases, they detected abnormali-

ties in the movement of the anterior walls, apical aneurysm with

thrombosis and AMI. These assessments reinforce the discussion of

Guarracino et al. that suggest a greater impairment of the right heart

during COVID-19 respiratory complications.118

In addition, COVID-19 patients with vein thrombosis exhibit

increased risk of thromboembolism and are more susceptible to dam-

age from this pathology.118,125 Pulmonary embolism might result in

pulmonary hypertension, right ventricular enlargement and tricuspid

valve regurgitation.126 According to Anile et al., around 18% of

patients who manifest thromboembolic events are referred to the

ICU, of which around 40% end up dying.127

Thereby, one of the main uses of echocardiography in patients

affected by COVID-19 (especially for intubated patients) is the detail-

ing of the right ventricular dimensions and function, usually over-

loaded due to pulmonary hypertension induced by (i) higher

pulmonary vascular resistance, (ii) pulmonary thromboembolism or

(iii) the introduction of high positive final expiratory pressures caused

by mechanical ventilation.128

F IGURE 5 Echocardiography images of a patient with COVID-19. The images display the thickening of the left ventricular wall (A), widening
of the right ventricle and thickening of the left ventricular wall (B), pericardial effusion (indicated by the white arrow) (C), M-mode graph of the
left ventricular base with marked dyskinesia (D), Color Doppler mode showing tricuspid valve regurgitation (E) and continuous Doppler mode of

the tricuspid regurgitation indicating pulmonary hypertension (E). Image adapted from115

F IGURE 6 Echocardiography of a patient infected with SARS-CoV-2 indicating right ventricular dilatation with minor secondary left
ventricular compression due to mechanical ventilation (A). Image adapted from.118 Echocardiography images highlighting moderate aortic
regurgitation (B), right ventricle and tricuspid valve regurgitation (C) and wall thickening with moderate impairment of systolic function and
movement abnormality of the anterior basal wall (D). Adapted from120
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This monitoring is essential to target the accurate therapy by dif-

ferentiating between cases of pneumonia with or without the pres-

ence of thrombi, cases of biventricular or isolated right ventricular

failure and cases with primary or secondary right ventricular dysfunc-

tion.117 Additionally, the assessment of left ventricular function and

other cardiac structures (e.g., diameter of the right heart chambers)

via US is important for monitoring hemodynamic and thromboembolic

phenomena, especially due to recent correlations between progres-

sive tissue dysfunction and the worsening of the disease.129

Therefore, the echocardiographic modality displays a paramount

importance to evaluate and monitor COVID-19 patients. This tech-

nique is relevant for the diagnosis, prognosis and treatment of any

patient, as cardiac complications are not necessarily related to previ-

ous cardiovascular disease.115,128 By evaluating the right ventricle, it

is possible to avoid worse cardiac (e.g., regurgitation, dilation or

decreased ejection fraction) and pulmonary (e.g., hypertension or lung

damage) consequences.117,121

4 | LIVER

4.1 | Hepatic pathophysiology

The SARS-CoV-2 infection can also affect the liver tissue directly or

indirectly. The direct infection is characterized by the invasion and rep-

lication of the virus in the hepatocytes130 via ACE2 interaction, which

may progress to acute liver damage.131 However, the hepatocyte's

expression of ACE2 (�2.6%) is lower compared to cholangiocytes

(�59.7%).19 Therefore, the most probable infection process starts in

the bile duct and spreads to the liver by the breakage of intratissue

barriers—via reduction of tight junction proteins, an effect already dem-

onstrated in vitro for claudin 1.132–134 Furthermore, only 0.03% of

hepatocytes from healthy patients co-express ACE2 and TMPRSS,135

reinforcing the hypothesis of a higher probability of invasion via bile

duct. It is important, however, to highlight that this percentage still rep-

resents millions of cells susceptible to viral invasion.136

The SARS-CoV-2 infection causes several changes in hepatic

function tests (TFH; e.g., alanine aminotransferase (ALT), aspartate

aminotransferase (AST), alkaline phosphatase, gammaGT, albumin and

other laboratory and imaging exams).132,137,138 The number of

patients affected by COVID-19 that showed liver impairment ranges

between 15% and 78%.137 More severe cases exhibit liver damage

with higher incidence when compared to moderate cases.139

The associated liver damage potentializes and affect more

severely individuals that are already afflicted with liver disease

(e.g., non-alcoholic fatty liver disease [NAFLD] or associated metabolic

comorbidities).132,134,140 For example, the lipogenesis that character-

izes steatosis is increased by injury and dilation of the endoplasmic

reticulum of hepatocytes caused by SARS-CoV-2.132 According to

Medeiros et al., patients with COVID-19 are 4.7 times more likely to

develop hepatic steatosis.141 Consequently, patients with hepatic

steatosis display higher risk to undergo intubation, ICU hospitalization

or require dialysis.142

The indirect impact of COVID-19 in liver disease is identified by

systemic inflammation, thromboembolism, local hypoxia, and drug use

(e.g., azithromycin or remdesivir).132,143,144 Post-mortem histological

analyses of the liver revealed the presence of vascular abnormalities,

such as partial portal microthrombosis (present in 50% of cases), micro

and macrovesicular steatosis (45%), portal inflammation (�65%) and

portal fibrosis (60%).145 The reason for the predisposition of thrombo-

sis formation is the exacerbated production of pro-inflammatory cyto-

kines, which result in increased inflammation, platelet activation and

endothelial dysfunction as previously discussed.146

4.2 | Hepatic ultrasonography in patients with
COVID-19

US can detect anatomical and/or physiological changes in the liver tis-

sue (e.g., biliary tree obstructions, hepatic steatosis or portal fibrosis).

Therefore, it is an important alternative technique for the diagnosis

and monitoring of several hepatic comorbidities induced and/or

potentialized by COVID-19 since �37% of patients are affected by

viral infection at the abdominal level.147

The main findings in the liver US in COVID-19 patients include

hepatomegaly, changes in the liver echogenicity (suggesting hepatic

infarction or hepatic steatosis), heterogeneity of hepatic parenchyma,

signs of necrosis, increased gallbladder thickness and drastic reduction

in the Doppler signal imaging in the hepatic arteries and portal

vein.148 All such US alterations may be induced either by direct or

indirect SARS-CoV-2 infection.148

The increase in cases of portal vein thrombosis (PVT) is an

alarming complication observed in COVID-19 cases, which may trig-

ger intestinal infarction and ischemia.149 Even with prophylactic mea-

sures in the ICU, the frequency of thrombotic complications in

critically ill patients is around 30%.150 The cytokine storm associated

with patient immobilization and hypoxia is believed to be the cause of

PVT and its primary diagnosis is performed via US and Doppler or CT

due to initial complaints of abdominal pain.151

However, the utilization of liver US usually involves the identifica-

tion of consequences caused by COVID-19, such as hepatic steatosis

and fibrosis.152 The US B-mode is the most recommended method for

diagnosis and classification of hepatic steatosis,153 an important tool

to evaluate the consequences of COVID-19.138 US provides useful

images for the diagnosis and therapy of steatosis, especially for mod-

erate or severely affected liver.153 Its overall sensitivity and specificity

are of 85% and 93%, respectively.153 However, mild steatosis recogni-

tion is still poor, with 60% sensitivity.154 More precise identification

of steatosis may be performed by liver elastography that displays

reduced elastic modulus due to the pathological process.155 Inflamma-

tion and consequent elevation of transaminases is directly related to

the disease's progression (154,155).

Furthermore, a study by Abdelmohsen et al. showed that US diag-

nosis in COVID-19 patients of hepatomegaly and biliary disease was

found in 56% and 41% of imaging exams, respectively.156 US is fur-

ther used for the primary analysis of hepatobiliary alterations and,
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therefore, may be used in cases of damage associated with

cholangiocytes and cholestasis.148

5 | CONCLUSION AND PERSPECTIVES

The SARS-CoV-2 multiorgan tropism as well as its indirect effects

might be elucidated throughout or after the infection with high sensi-

tivity and specificity by ultrasound imaging. The ultrasonographic

analysis of the lungs, heart and liver of COVID-19 patients reveal spe-

cific artifacts that may determine the prognosis or therapy. Therefore,

ultrasound, previously regarded as a complementary technique in the

assessment of these patients, might be included as a key imaging

modality in COVID-19. The widespread use of ultrasound imaging,

however, still requires standardization to determine specific technical

settings (e.g., scanner, probes and ultrasound frequency) as well as to

improve accuracy, reproducibility, scoring systems and predictive

value in COVID-19 patients.
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