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ABSTRACT
Our previous article has established the theory of molecular dynamics (MD) simulations for systems modeled with the polarizable Gaus-
sian multipole (pGM) electrostatics [Wei et al., J. Chem. Phys. 153(11), 114116 (2020)]. Specifically, we proposed the covalent basis vector
framework to define the permanent multipoles and derived closed-form energy and force expressions to facilitate an efficient implementation
of pGM electrostatics. In this study, we move forward to derive the pGM internal stress tensor for constant pressure MD simulations with
the pGM electrostatics. Three different formulations are presented for the flexible, rigid, and short-range screened systems, respectively. The
analytical formulations were implemented in the SANDER program in the Amber package and were first validated with the finite-difference
method for two different boxes of pGM water molecules. This is followed by a constant temperature and constant pressure MD simulation
for a box of 512 pGM water molecules. Our results show that the simulation system stabilized at a physically reasonable state and maintained
the balance with the externally applied pressure. In addition, several fundamental differences were observed between the pGM and classic
point charge models in terms of the simulation behaviors, indicating more extensive parameterization is necessary to utilize the pGM
electrostatics.
Published by AIP Publishing. https://doi.org/10.1063/5.0082548

I. INTRODUCTION

Atomistic simulations of biomolecules have been applied to
various biological systems.2 While additive nonpolarizable models
continue to play dominant roles,3–5 nonadditive polarizable mod-
els are emerging as a tool extending our capability of studying more
complex biomolecular systems and processes. The nonpolarizable
models typically use fixed atomic partial charges to model electro-
statics. As a result, they incorporate only the polarization response
to the environment (mostly in water) in a mean-field manner. Thus,
the nonpolarizable models with excellent descriptions of the homo-
geneous bulk phase can be poor models treating gas-phase clusters
or in cases where large scale conformational changes are accom-
panied by changes in dielectric environment.6 Another limitation
of the nonpolarizable models is the use of partial atomic charges.
This treatment often lacks the sufficient mathematical flexibility to

accurately describe the electrostatic potential of nearby molecules.
Williams showed that the optimal least-squares fitting of atom-
centered partial charges resulted in relative root-mean-square errors
of 3%–10% in reproducing the quantum electrostatic potentials at
the grid points in a shell outside the surface of a series of small
polar molecules.7 In summary, the importance of modeling polar-
ization effects and the limitation of point charge models have been
well documented.6,8

To address the aforementioned issues, extensive efforts have
been invested in the development of explicit polarizable models.9–11

Several methods have been proposed, including explicit polariza-
tion in the molecular mechanics potentials, such as the Drude
oscillator,12,13 fluctuating charges,14 and induced dipoles.6,15,16

Among these new models, the implementation of polarizable
point dipoles was originally proposed by Applequist et al.17

It is a classical approach with a long history in molecular
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simulation.18 However, this model suffers from the so-called
“polarization catastrophe,”19 which requires proper screenings for
short range electrostatics.

Recently, Elking et al. proposed the polarizable multipole
model with Gaussian charge densities.20 A key benefit of the polar-
izable Gaussian Multipole model (pGM) is its screening of all the
short-range electrostatic interactions in a physically consistent man-
ner, as we discussed previously.21 We have presented an analytical
formulation for the pGM model that is more suitable for molec-
ular dynamics (MD) simulation due to the lack of explicit torque
computation.1 In addition, we further exploited a new local frame,
the covalent basis vectors (CBVs), to preserve the physical symme-
try and to better accommodate the fact that the permanent dipoles
primarily resulted from the covalent bonds. Subsequent numerical
tests show that, with enough accuracy involving both the pGM and
the Particle Mesh Ewald (PME), the NVE simulation can be realized
with a similar energy drift as in classic point charge models.1

However, most of the real-world biological systems resemble
constant pressure ensembles, which require our pGM model to be
extended to NPT simulations. Andersen first proposed a new con-
stant pressure method in which the volume was allowed to fluctuate,
with its average value being determined by the balance between the
internal stress in a system and the externally set pressure.22 Follow-
ing his pioneering works, Nosé and Klein23 and Darden24 indicated
how to extend the formulation to include the case of the long
range charge–charge interactions. Toukmaji et al. introduced an effi-
cient approach to include induced dipolar interactions,25 and Sagui
et al. extended the formulation to multipolar situations.26 Recently,
these virials for point induced dipoles and multipoles have been
implemented for AMOEBA in Tinker-HP and Tinker9 [graphics
processing unit (GPU)].27 Additionally, there have been interest-
ing discussions about pressure calculation related to the Ewald
surface correction.28,29 However, how to rigorously treat internal
stress in a system with both permanent and induced dipoles is still
unclear.

In this work, we present an analytical formulation of the stress
tensor for both the flexible and rigid molecular systems mod-
eled with the pGM model. We performed a finite difference test
and confirmed that both are rigorously correct. Finally, we imple-
mented the proposed pGM formalism in the context of PME into
the SANDER program in Amber. Our NPT simulations of a 512-
water system showed that the algorithm is stable as indicated by the
time evolutions of pressure, temperature, density, and total system
energy.

II. METHOD
A. Electrostatic potential of a pGM system

The total electrostatic energy of the system, as shown in our
previous work,1 is defined as

UpGM =∑
N
i

1
2
(qi +

⇀
μ i ⋅ ∇i)ϕ0

i +∑
N
i

1
2
(
⇀
p i ⋅ ∇i)ϕ0

i . (1)

Here, qi,
⇀
μ i, and

⇀
p i are the charge, covalent dipole (i.e., permanent

dipole), and induced dipole on atom i, respectively, and ϕ0
i is the

electrostatic potential on atom i that is generated only by charges and

covalent dipoles in the system. Later in this paper, we will denote ϕi
as the electrostatic potential on atom i that is generated by charges,
covalent dipoles, and induced dipoles in the system.

Due to the periodic boundary condition, ϕ0
i has to be obtained

through a certain lattice summation technique, and here, the Ewald
summation technique is used.

According to the Ewald summation,

ϕ0
i =

1
πV∑

⇀

m≠0

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

exp(− π2⇀m2

β2
0
)

⇀
m2

∑
N
j [(qj + 2πi

⇀
m ⋅

⇀
μ j) exp(2πi

⇀
m ⋅

⇀
Rj)]

× exp(−2πi
⇀
m ⋅

⇀
Ri)

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

+∑
∞
j≠i(qj +

⇀
μ j ⋅ ∇j)

erf(βijRij) − erf(β0Rij)

Rij

− lim
⇀

R j→
⇀

R i

(qi +
⇀
μ i ⋅ ∇j)

erf(β0Rij)

Rij
. (2)

Here, V is the volume of the box,
⇀
m is the reciprocal lattice vector,

and
⇀
Ri and Rij = ∣

⇀
Rj −

⇀
Ri∣ are the coordinate of atom i and its dis-

tance to atom j, respectively. In addition, β0 is the Ewald coefficient,
whose value is usually between 1

5 – 1
2 Å−1 for typical biomolecular

applications, and βij equals to βiβj√
βi

2+βj
2
, where βi and βj are the

Gaussian parameters for atoms i and j, respectively.
Below, we will use the following notation convention: all gradi-

ents paired with a dipole (covalent or induced) only apply to atom
coordinates. For example, the gradient operator in

⇀
μ i ⋅ ∇i only acts

on the coordinates of atom i. On the other hand, all other gradient
operators (not paired with a dipole) follow the standard convention.

B. Stress tensor
From its definition, stress tensor (virial) is the derivative of sys-

tem Lagrangian with respect to the system size parameters, except
for a constant pre-factor. In a typical biomolecular simulation, the
simulating box can be described by the three column vectors that
represent the edges of the box, Ð⇀u 1, Ð⇀u 2, and Ð⇀u 3. Thus, a matrix h
can be constructed from these three unit cell vectors, defined as the
system shape parameters,

h = (Ð⇀u 1,Ð⇀u 2,Ð⇀u 3). (3)

Thus, stress tensor
Ð⇀Ð⇀
V can be expressed as

Ð⇀Ð⇀
V ⋅ (h−1

)
T
=
∂L
∂h
=
∂T
∂h
−
∂U
∂h

. (4)

Here, L represents the system Lagrangian, superscript “T” denotes
transpose of the matrix, and T and U are kinetic and potential
energies, respectively. The derivative with respect to matrix h is
equivalent to differentiating L against each component of h, with the
fractional coordinates of each atom held constant.

Because the kinetic energy expression is the same for a pGM
system and a classic point charge system, the related virial terms are
the same, so we omit their derivations here. There are many different
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components in the potential energy, but only the electrostatic part is
different from other force fields in the current pGM model. Thus, we
need to derive only the electrostatic components of the virial. This is
to say, we are deriving the following quantity in this work:

Ð⇀Ð⇀
V pGM = −

∂UpGM

∂h
⋅ (h)T . (5)

To do so, we first need to identify which quantities in Eq. (1) are
dependent on matrix h.

C. Stress tensor in a pGM system
Quantities that obviously depend on h are as follows:

1. Atomic coordinates,
⇀
Ri = si1

Ð⇀u 1 + si2
Ð⇀u 2 + si3

Ð⇀u 3. Here, s’s are
fractional coordinates and are constants when computing the
derivatives with respect to h.

2. Atomic covalent dipoles,
⇀
μ i = ∑

n
k uik

⇀

R ik

∣⇀R ik∣
= ∑

n
k uik

⇀

Rk−
⇀

R i

∣⇀R ik∣
. Here,

n refers to the number of atoms covalently connected to atom
i (this notation will be used thoroughly in the paper), and uik is

the dipole moment along the specific direction
⇀
Rk −

⇀
Ri, which

is a constant. Noted that the definition of
⇀
Rik ≡

⇀
Rk −

⇀
Ri is used

throughout this manuscript.
3. System volume, V = det(h).
4. Reciprocal lattice vector,

⇀
m = (k1, k2, k3) ⋅ h−1, where k1, k2, k3

are integer constants.

The derivatives of these quantities with respect to h are given in
Appendix A 1.

Moreover, the induced dipole,
⇀
p i, is clearly dependent on h.

However, there is no explicit expression of
⇀
p i, as

⇀
p i is computed

through a self-consistent iteration. In the following, we show how to
obtain its derivatives.

As shown in our previous work,1 the induced dipole can be
expressed in the periodic system as

⇀
p i = αi(

⇀
E0

i +
⇀
E induced

i ) = αi(
⇀
E0

i −∑
N
j

⇀
T ij ⋅

⇀
p j),

⇀
E0

i = −∇iϕ0
i ,

(6)

Tαβ
ij = ∂

α
i ∂

β
j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
πV∑

⇀

m≠0

exp(− π2⇀m2

β2
0
)

⇀
m2

exp(2πi
⇀
m ⋅

⇀
Rj) exp(−2πi

⇀
m ⋅

⇀
Ri) +

erf(βijRij) − erf(β0Rij)

Rij
if i ≠ j,

1
πV∑

⇀

m≠0

exp(− π2⇀m2

β2
0
)

⇀
m2

exp(2πi
⇀
m ⋅

⇀
Rj) exp(−2πi

⇀
m ⋅

⇀
Ri) − lim

⇀

R j→
⇀

R i

erf(β0Rij)

Rij
if i = j.

Here α, β = 1, 2, 3 refer to x, y, z directions, respectively.
The expression of Tαβ

ij comes from the Ewald summation of

∂α
i ∂

β
j

erf(βijRij)
Rij

. Thus, the summation for i ≠ j includes all the images
in the periodic system. The introduction of

Aαβ
ij =

1
αi
(δαβ

ij + αi ⋅ T
αβ
ij ) (7)

leads to the following short-hand expression for the induced dipole:1

⇀
p i =∑

N
j

⇀
A−1

ij ⋅
⇀
E0

j . (8)

In Eq. (8), we have transferred the dependence of
⇀
p i on h to the

dependence of
⇀
A−1

ij and
⇀
E0

j on h, and the dependence of
⇀
E0

j = −∇jϕ0
j

is already known. Thus, what is needed is to derive the dependence

of
⇀
A−1

ij on h.
Given A ⋅ A−1

= 1, we have

∂(A−1
)

αβ
ij

∂h
= −(A−1

)
αα′

ii′

∂Aα′β′

i′j ′

∂h
(A−1

)
β′β
j ′j

= −(A−1
)

αα′

ii′

∂Tα′β′

i′j ′

∂h
(A−1

)
β′β
j ′j

, (9)

where the Einstein’s index notation is employed for i′, j′, α′, and β′.
We can now proceed to compute the derivatives for the energy term
related to

⇀
p i in Eq. (1) as follows:

∂ −∑
N
i

1
2
⇀
p i ⋅

⇀
E0

i

∂h
=

1
2

E0α
i (A

−1
)

αα′

ii′

∂Tα′β′

i′j ′

∂h
(A−1

)
β′β
j ′j

E0β
j −∑

N
i

⇀
p i ⋅

∂
⇀
E0

i

∂h

=
1
2

pα′
i′
∂Tα′β′

i′j ′

∂h
pβ′

j ′ −∑
N
i

⇀
p i ⋅

∂
⇀
E0

i

∂h
. (10)

Again, the Einstein’s index notation is employed here for i, j, α, β i′,
j′, α′, are β′.

With the above preparations, we can calculate the electrostatic
energy part of the virial from its definition,

Ð⇀Ð⇀
V ⋅ (h−1

)
T
= −

∂U
∂hμν

= −(
∂Urec

∂hμν
+
∂Udir

∂hμν
+
∂Uself

∂hμν
), (11)
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∂Urec

∂hμν
=

∂∑
N
i

1
2(qi +

⇀
μ i ⋅ ∇i)

1
πV∑⇀m≠0

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

exp(− π2⇀m 2

β2
0
)

⇀

m2
∑

N
j [(qj + 2πi

⇀
m ⋅

⇀
μ j) exp(2πi

⇀
m ⋅

⇀
Rj)] exp(−2πi

⇀
m ⋅

⇀
Ri)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

∂hμν

+
1
2

pα′
i′

∂∂α′
i′ ∂

β′

j ′
1

πV∑⇀m≠0

exp(− π2⇀m 2

β2
0
)

⇀

m2
exp(2πi

⇀
m ⋅

⇀
Rj ′) exp(−2πi

⇀
m ⋅

⇀
Ri′)

∂hμν
pβ′

j ′

+∑
N
i

⇀
p i ⋅

∂∇i
1

πV∑⇀m≠0

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

exp(− π2⇀m 2

β2
0
)

⇀

m2
∑

N
j [(qj + 2πi

⇀
m ⋅

⇀
μ j) exp(2πi

⇀
m ⋅

⇀
Rj)] exp(−2πi

⇀
m ⋅

⇀
Ri)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

∂hμν
, (12)

∂Udir

∂hμν
=
∂∑

N
i

1
2(qi +

⇀
μ i ⋅ ∇i)∑

∞
j≠i(qj +

⇀
μ j ⋅ ∇j)

erf(βijRij)−erf(β0Rij)
Rij

∂hμν
+

1
2

pα′
i′
∂∂α′

i′ ∂
β′

j ′
erf(βi′ j ′Ri′ j ′)−erf(β0Ri′ j ′)

Ri′ j ′

∂hμν
pβ′

j ′

+∑
N
i

⇀
p i ⋅

∂∇i∑
∞
j≠i(qj +

⇀
μ j ⋅ ∇j)

erf(βijRij)−erf(β0Rij)
Rij

∂hμν
, (13)

∂Uself

∂hμν
=

∂∑
N
i

1
2(qi +

⇀
μ i ⋅ ∇i)

⎡
⎢
⎢
⎢
⎢
⎣

− lim
⇀

R j→
⇀

R i

(qi +
⇀
μ i ⋅ ∇j)

erf(β0Rij)
Rij

⎤
⎥
⎥
⎥
⎥
⎦

∂hμν
+

1
2

pα′
i′

∂∂α′
i′ ∂

β′

j ′

⎡
⎢
⎢
⎢
⎢
⎣

− lim
⇀

R j→
⇀

R i

erf(β0Rij)
Rij

⎤
⎥
⎥
⎥
⎥
⎦

∂hμν
pβ′

j ′ +∑
N
i

⇀
p i ⋅

∂∇i

⎡
⎢
⎢
⎢
⎢
⎣

− lim
⇀

R j→
⇀

R i

(qi +
⇀
μ i ⋅ ∇j)

erf(β0Rij)
Rij

⎤
⎥
⎥
⎥
⎥
⎦

∂hμν
.

(14)

After careful derivation (see Appendix A 2 for details), the following results can be obtained:

∂Urec

∂hμν
= −

1
2πV
(h−1
)

T

μν∑⇀

m≠0

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

exp(− π2⇀m2

β2
0
)

⇀
m2

∑
N
j [qj + 2πi

⇀
m ⋅ (

⇀
μ j +

⇀
p j)] exp(2πi

⇀
m ⋅

⇀
Rj)∑

N
i [qi − 2πi

⇀
m ⋅ (

⇀
μ i +

⇀
p i)] exp(−2πi

⇀
m ⋅

⇀
Ri)

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

+
1

πV∑
⇀

m≠0

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

exp(− π2⇀m2

β2
0
)

⇀
m2

⎛
⎜
⎝
−

1 + π2⇀m2

β2
0

⇀
m2

⎞
⎟
⎠
(−
⇀
mμh−1

νγ
⇀
mγ
)∑

N
j [qj + 2πi

⇀
m ⋅ (

⇀
μ j +

⇀
p j)] exp(2πi

⇀
m ⋅

⇀
Rj)∑

N
i [qi − 2πi

⇀
m ⋅ (

⇀
μ i +

⇀
p i)]

× exp(−2πi
⇀
m ⋅

⇀
Ri)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

+
1

πV∑
⇀

m≠0

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

exp(− π2⇀m2

β2
0
)

⇀
m2

∑
N
j [qj + 2πi

⇀
m ⋅ (

⇀
μ j +

⇀
p j)] exp(2πi

⇀
m ⋅

⇀
Rj)∑

N
i ∑

n
k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(−2πi
⇀
m ⋅

⇀
Rikμik)

⎛
⎜
⎜
⎜
⎝

−

⇀
Rμ

ik

⇀
S ν

ik

∣
⇀
Rik∣

3

⎞
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

× exp(−2πi
⇀
m ⋅

⇀
Ri)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

+
1

πV∑
⇀

m≠0

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

exp(− π2⇀m2

β2
0
)

⇀
m2

∑
N
j [qj+2πi

⇀
m ⋅ (

⇀
μ j +

⇀
p j)] exp(2πi

⇀
m ⋅

⇀
Rj)∑

N
i [(−2πi)(−

⇀
mμh−1

νγ pγ
i )] exp(−2πi

⇀
m ⋅

⇀
Ri)

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

= −
1
2
(h−1
)

T

μν ⋅∑
N
i [qi(ϕrec)i − (

⇀
μ i +

⇀
p i) ⋅ (

⇀
Erec)

i
] +

1
πV∑

⇀

m≠0

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

exp(− π2⇀m2

β2
0
)

⇀
m2

⎛
⎜
⎝
−

1 + π2⇀m2

β2
0

⇀
m2

⎞
⎟
⎠
(−
⇀
mμh−1
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where S(
⇀
m) is the structure factor, defined as∑N

j [qj + 2πi
⇀
m ⋅ (

⇀
μ j +

⇀
p j)] exp(2πi

⇀
m ⋅

⇀
Rj), and
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Here
⇀
Erec,

⇀
Edir , and

⇀
Eself refer to the electrostatic fields resulting

from the reciprocal part, direct part, or self-part of an Ewald summa-

tion, respectively. The notation for ϕ and
⇀
E is similar. Furthermore,

the following expressions for electric field and its derivatives are
used:

(
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.

(18)

Adding up all the three terms above and removing the common
factor −(h−1

)
T

, the final expression of the electrostatic energy
contribution to the virial is as follows:
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D. Stress tensor of rigid molecules
Molecular dynamics simulations of bio-molecular systems are

often conducted under certain constraints. The most common are
distance constraints,

(
⇀
Ri −

⇀
Rj)

2
− d2

ij = 0. (20)

When molecules are under this kind of constraints, a molecule-
based scaling in NPT simulations is often used to vary the box
dimensions instead of atom-based scaling. In doing so, the atomic

coordinate can be expressed as

⇀
Ri =

⇀
Ri0 +

⇀
d i = si0,1

Ð⇀u 1 + si0,2
Ð⇀u 2 + si0,3

Ð⇀u 3 +
⇀
d i, (21)

where
⇀
Ri0 is the molecular center to which atom i belongs (usually

the mass center of the molecule),
⇀
s i0’s are the fractional coordinates

of the center, and
⇀
d i is the relative displacement of atom i from the

center. Obviously,
⇀
d i is a constant vector during the box dimension

scaling.
Thus, the virial tensor of a pGM system under this rigid body

condition with distance constraints is
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Here, index γ follows the Einstein’s summation notation. The
derivation of the above expression is similar to what was described
before for flexible molecules, so it is omitted here. The detail can be
found in Appendix A 3.

E. Virial correction of screened system
In the current pGM setup, the electrostatic interactions are not

screened, meaning all 1–2, 1–3, and 1–4 electrostatic interactions
are considered at their full strength. This choice is based on the
consideration of polarizability anisotropy.21 However, if electrostatic
interactions between certain atoms are screened, the electrostatic
virial correction can be defined as follows:

(1) For flexible molecules,
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(−
⇀
Escreen)

μ

i

⇀
Rν

ik

∣
⇀
Rik∣

− (−
⇀
Escreen)

i
⋅
⇀
Rik

⇀
Rμ

ik

⇀
Rν

ik

∣
⇀
Rik∣

3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
1
2∑

N
i ∑

∗(i)
j≠i {qi(−

⇀
Escreen)

μ

j→i
(
⇀
Rν

i −
⇀
Rν

j )

+ [(
Ð⇀u i +

⇀
p i) ⋅ (−

⇀
Escreen)

j→i
]

μ

(
⇀
Rν

i −
⇀
Rν

j )}. (23)

(2) For rigid molecules,

(Vμν)correction =
1
2∑

N
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∗(i)
j≠i {qi(−
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(
⇀
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j0)}. (24)

Here,
⇀
Escreen and

⇀
Escreen are the electric field and its derivative gener-

ated by the screened interactions, and ∗(i) represents the screened
atom pairs of atom i.

Derivation of the above equations is given in Appendix A 4,
which is similar to what was presented in our previous develop-
ment.1 However, it is important to point out that the screening has to
be consistent throughout the model. In other words, we must screen
the same interactions when computing both induced dipoles and
forces. This is to ensure that the energy and corresponding forces
are consistent under the same screening scheme.

III. RESULTS AND DISCUSSION
A. Finite difference validation

As we presented above, Eqs. (19) and (22) are the electro-
static virial expressions of flexible and rigid pGM molecular systems,
respectively. To confirm the theoretical derivation, we performed a
finite difference test, starting from the virial definition of Eq. (4),
to assess whether the derivation is correct. Here, a cubic box with
512 water molecules, as in our previous study, was used,1,21 and the
dimension of the box is 33 Å. To guarantee high-precision energy
calculation, the PME setup uses the following parameters: coeffi-
cient β0 = 0.3 Å−1, B-spline interpolation order = 9, FFT grid spacing
= 0.33 Å, and direct space cutoff = 14.4 Å. The induced dipole

convergence was also set to a very tight criterion of 10−12. The
setup leads to an energy accuracy level of ∼10−12, so that the finite
difference test can be carried successfully.

It is clear from Fig. 1 that both finite-difference virial values
approach their respective analytical values in roughly linear fash-
ions as the finite difference step sizes decrease, demonstrating that
the numerical values converge to the analytical values. This finding
confirms that the analytical virial expressions Eqs. (19) and (22) are
correct when used to compute virials of the tested molecular system.
Note also that the finite-difference steps in the rigid body system
[Fig. 1(b)] are 10-time larger than the ones used in the flexible sys-
tem [Fig. 1(a)]. This is because the virials of the rigid body system are
much smaller (∼1/50) than those of the flexible system due to large
intramolecular contributions that are sensitive to the distance vari-
ations in the finite difference calculations. Hence, rather small finite
difference step sizes were needed. Such large intramolecular contri-
butions were absent in the rigid-body system and a somewhat larger
step sizes were used for numerical accuracy. The linear convergence
trends illustrated in both the flexible and rigid body systems confirm
the correctness of Eq. (22).

B. NPT simulation of water box
To illustrate that the analytical formulation can achieve stable

NPT simulations, we performed a test run for 1 ns of the water
box containing 512 pGM water molecules.1,21 The rigid-body for-
mula, Eq. (22), was used in this test, and the water models were
simply created from the standard TIP3P geometry by adding per-
manent and induced dipole moments and by setting the van der
Waals parameters to be 9% of those in the standard TIP3P waters,
to give a relatively reasonable density. We note that this pGM water
model is yet to be optimized to reproduce any physical water proper-
ties. Here, a setup of lower energy accuracy was used for reasonable
simulation throughput, with the Ewald coefficient β0 = 0.4 Å−1, B-
spline interpolation order = 8, FFT grid spacing = 0.5 Å, and direct
space cutoff = 9 Å. The induced dipole convergence criterion was
also raised to 10−6. The simulation time step was chosen to be 1 fs.
The temperature was set to 300 K and the pressure 1.0 bar. The
Berendsen thermostat and barostat were used and all other dynamics
simulation parameters were set as default from the Amber SANDER
program. The job was run on a single core of an INTEL Xeon
E5-4620 central processing unit (CPU) with a wall-clock time of
6.9 days.

Figure 2 shows that the pGM/PME runs well under the
NPT condition. Both density and pressure fluctuate around the
equilibrium values, and the fluctuation ranges were similar to
those observed for the classical point-charge models. The simula-
tion was stable, no “polarization catastrophe” event was observed
even if all interactions, including 1–2 and 1–3 interactions, were
included.

It is interesting to point out that the electrostatic component
of the pGM water model is much smaller (∼1/10) than the TIP3P
water model, even though the atomic charges are usually higher in
polarizable models. This in part explains why we need to reduce the
van der Waals parameters to 9% of the original TIP3P values, to
match the much smaller electrostatic virial component so that the
system would eventually equilibrate to a reasonable state. Indeed, the
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FIG. 1. The finite-difference validation of the analytical virial expressions in the xx
direction. (a) is for the flexible case and (b) is for the rigid body case. x axis refers to
the proportional changes of simulation box dimension in the x direction. The star on
the y axis is the analytical virial value given by Eqs. (19) and (22), respectively. The
finite-difference values were obtained using Eq. (4). Testing along the yy and zz
directions are available in the supplementary material. An additional set of testing
was also conducted for a 4096-water box, available in the supplementary material.

FIG. 2. Time evolutions of density and pressure of the NPT simulation for the
512-water box. The red lines are the running averages of every 10 ps. The time
evolutions of total energy and temperature are available in the supplementary
material. The time evolutions of density, total energy, and temperature of the
Monte Carlo pressure-regulated simulation are also available in the supplementary
material.
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average density and pressure values are 0.99 g/cm3 and 1.0 bar dur-
ing the 1 ns run, respectively. As a supporting evidence for the
correct NPT implementation for the pGM model, we also imple-
mented a Monte Carlo pressure regulation scheme for the pGM
model, as no virial (pressure) calculation is needed in this regula-
tion scheme.30 The simulation followed the exact same setup and
was found to stabilize at the same state, with the averaged density
values of 0.99 g/cm3. The related plot of time evolutions of density,
total energy, and temperature of Monte Carlo pressure regulation
are available in the supplementary material.

The much-reduced electrostatic virial component is worth not-
ing but a reasonable behavior. The induced dipoles in the pGM
model are actively playing the role of electrostatic screening. As
a result, the electrostatic interactions between water molecules are
largely reduced, leading to much lower electrostatic virial compo-
nent. This phenomenon shows that the polarizable pGM model is
fundamentally different from classical point-charge models. Thus,
its parameterization shall require extensive development and valida-
tion. Nevertheless, we reiterate that the goal of this development is
not to develop a pGM water model, but to establish a constant pres-
sure simulation protocol for polarizable methods, such as the pGM
model.

Another interesting observation upon inspecting Fig. 2 is that
the pGM water model exhibits a longer correlation time in density
than the TIP3P water model, with pGM water’s density correla-
tion time as long as 200–300 ps, rather than tens of picoseconds
as is usually observed for point-charge water models. This effect
could either result from the imperfect calibration of the pGM water
tested here, the use of a barostat coupling constant that is too weak
for the pGM model, or the inclusion of the explicit polarization in
the pGM model, which requires longer time to equilibrate. Obvi-
ously, the point charge models also have certain level of polarization
effect from reorientation of the molecules, but they certainly do not
acquire any electronic polarization that is explicitly modeled with
the induced dipoles. All these phenomena strongly suggest that the
parameterization of pGM models requires extra care and extensive
validations.

IV. CONCLUSION
In this work, we presented the derivation and implementation

of an analytical method for achieving constant pressure simula-
tion for the pGM model. Specifically, we derived the stress tensor
expression for both the flexible and rigid body molecular system in
the pGM electrostatic model, the trace of which gives the expres-
sion for internal stress. In addition, we showed how to correct the
stress tensor if a short-range screening strategy is used in the force
field development. Once the internal stress is obtained, by balanc-
ing it with the externally applied pressure through a certain type of
barostat, a constant pressure simulation is readily realized.

Since the formulation of the stress tensor in pGM model is
rather complex, we first performed a finite difference test to validate
its correctness. We showed that for both the flexible and rigid-body
systems, the finite-difference virial approaches the analytical val-
ues when decreasing the differentiation step size, confirming the
accuracy of the derived expressions.

The tensor expression was implemented into the
Amber/SANDER program and tested with a small box of 512

pGM water molecules. In the calculations, the revised TIP3P water
geometry was applied, and the TIP3P van der Waals parameters
were scaled down to 9% of the original values after imposing the
pGM electrostatic interactions. After equilibration, the system was
found to reach a reasonable density of 0.99 g/cm3 and pressure of
1.0 bar under the room temperature during the production run of
1 ns. A constant pressure simulation of the system with Monte Carlo
pressure regulation scheme stabilized at the same state. This shows
that the analytical stress tensor formula and its implementation are
successful.

Several interesting differences were observed between the pGM
water model and the TIP3P water model from which the pGM
model was currently derived. Notably, the electrostatic virial was
much smaller, requiring much smaller van der Waals parameters
to reach reasonable water density. The density correlation time was
also much longer. The observation strongly suggests that the pGM
model, as a polarizable model, is fundamentally different compared
to classic point charge models. Thus, the parameterization of the
pGM model requires extra care and extensive validation, which is
a major focus of the next step of our research.

SUPPLEMENTARY MATERIAL

The supplementary material includes finite-difference tests
along the yy and zz directions of the 512-water box (Fig. S1), finite-
difference tests along the xx directions of a 4096-water box (Fig. S2),
time evolutions of total energy and temperature of the NPT simula-
tion for the 512-water box (Fig. S3), time evolutions of density, total
energy, and temperature of the Monte Carlo pressure-regulated NPT
simulation (Fig. S4).
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APPENDIX: MATHEMATICAL DETAILS
1. Several useful derivatives against h
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⎥
⎥
⎥
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∑
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⇀
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⇀
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⇀
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⇀
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Similarly, for the self-part,
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∂hμν
= −

N

∑
i

n

∑
k

uik

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⇀
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⇀
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⎥
⎥
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∑
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⇀
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⇀
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⇀
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⇀
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⎢
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⎢
⎢
⎢
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⇀
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.

However, the above approach cannot be applied for the reciprocal part of the virial. Thus, we must resort to a brute force calculation,
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∂Urec

∂hμν
= (1) + (2) + (3),

(1) =

∂∑
N
i

1
2(qi +

⇀
μ i ⋅ ∇i)
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⎧⎪⎪⎪
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⇀
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⇀
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⇀
m ⋅

⇀
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⇀
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⇀
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⎪⎪⎪⎭
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,
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1
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i′ ∂

β′

j ′
1

πV∑⇀m≠0
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m ⋅
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⎪⎪⎪⎭

∂hμν
.

For each part, we derive the following expressions:
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⎪⎪⎪⎪⎩
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⎫⎪⎪⎪⎪
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⎪⎪⎪⎪⎭
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⎢
⎢
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⎜
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⇀
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⎪⎪⎪⎪⎪⎭

,
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.

By adding together expressions for (1), (2), and (3), we arrive at
the final result for ∂Urec

∂hμν
, which is shown in Sec. II.

3. Virial of rigid body systems
As in the derivation presented in Appendix A 2, for the

direct part and the self-part, the only variable that depends on

h is the atom coordinate
⇀
R. However, a major difference is

that, for the rigid molecules, the covalent dipole Ð⇀u is a con-
stant vector now. Thus, the derivation complexity is greatly
reduced,
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⇀
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As for the reciprocal part, we follow the procedure presented in
Appendix A 2,
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exp(− π2⇀m2

β2
0
)

⇀
m2

N

∑
j
(qj + 2πi

⇀
m ⋅

⇀
μ j) exp(2πi

⇀
m ⋅

⇀
Rj)

N

∑
i
(−2πi

⇀
m ⋅

⇀
p i)(2πi

⇀
mμh−1

νγ
⇀
dγ

i ) exp(−2πi
⇀
m ⋅

⇀
Ri)

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

.

By adding final expressions for (1), (2), and (3), we arrive at the result for ∂Urec
∂hμν

,

∂Urec

∂hμν
= −

1
2
(h−1
)

T

μν ⋅
N

∑
i
[qi(ϕrec)i − (

⇀
μ i +

⇀
p i) ⋅ (

⇀
Erec)

i
] +

1
πV ∑⇀

m≠0

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

exp(− π2⇀m2

β2
0
)

⇀
m2

⎛
⎜
⎝
−

1 + π2⇀m2

β2
0

⇀
m2

⎞
⎟
⎠

× (−
⇀
mμh−1

νγ
⇀
mγ
)S(

⇀
m)S(−

⇀
m)
⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

+
N

∑
i
(
⇀
Erec)

μ

i
h−1

νγ (
⇀
μγ

i +
⇀
pγ

i + qi
⇀
dγ

i ) +
N

∑
i
(
⇀
μγ

i +
⇀
pγ

i )(
⇀
Erec)

γμ

i
h−1

νξ

⇀
d ξ

i .
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Finally, adding up all the above terms and removing the com-
mon factor −(h−1

)
T

, the final expression is the one shown in
Sec. II.

4. Screening correction
If certain short-range electrostatic interactions are screened, the

pGM system energy can be expressed as

U =
N

∑
i

1
2
(qi +

⇀
μ i ⋅ ∇i)ϕ0∗

i +
N

∑
i

1
2
(
⇀
p∗i ⋅ ∇i)ϕ0∗

i .

Here, ϕ0∗
i represents the electrostatic potential on atom i that is cre-

ated by only charges and covalent dipoles that are not screened in the
system, and

⇀
p∗i means the induced dipole on atom i that is created

under the screening condition. Specifically,

ϕ0∗
i =

1
πV ∑⇀

m≠0

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

exp(− π2⇀m2

β2
0
)

⇀
m2

N

∑
j
[(qj + 2πi

⇀
m ⋅

⇀
μ j) exp(2πi

⇀
m ⋅

⇀
Rj)] exp(−2πi

⇀
m ⋅

⇀
Ri)

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

+
∞
∑

j∉∗(i)
j≠i

(qj +
⇀
μ j ⋅ ∇j)

×
erf(βijRij) − erf(β0Rij)

Rij
− lim
⇀

R j→
⇀

R i

(qi +
⇀
μ i ⋅ ∇j)

erf(β0Rij)

Rij
− ∑

j∈∗(i)
(qj +

⇀
μ j ⋅ ∇j)

erf(β0Rij)

Rij
,

⇀
p∗i = αi(

⇀
E0∗

i −
N

∑
j

⇀
T∗ij ⋅

⇀
p∗j ),

⇀
E0∗

i = −∇iϕ0∗
i ,

T∗αβ
ij = ∂α

i ∂
β
j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
πV ∑⇀

m≠0

exp(− π2⇀m2

β2
0
)

⇀
m2

exp(2πi
⇀
m ⋅

⇀
Rj) exp(−2πi

⇀
m ⋅

⇀
Ri) +

erf(βijRij) − erf(β0Rij)

Rij
if i ≠ j, j ∉∗ (i),

1
πV ∑⇀

m≠0

exp(− π2⇀m2

β2
0
)

⇀
m2

exp(2πi
⇀
m ⋅

⇀
Rj) exp(−2πi

⇀
m ⋅

⇀
Ri) − lim

⇀

R j→
⇀

R i

erf(β0Rij)

Rij
if i = j,

1
πV ∑⇀

m≠0

exp(− π2⇀m2

β2
0
)

⇀
m2

exp(2πi
⇀
m ⋅

⇀
Rj) exp(−2πi

⇀
m ⋅

⇀
Ri) −

erf(β0Rij)

Rij
if j ∈∗ (i).

Here, ∗(i) represent the screened atom pairs of atom i.
Before we calculate the correction term under screening conditions for virial, we want to first show the electrostatic force expression

under screening. Following our previous paper, it can be easily shown that

⇀
F covalent−covalent∗

i =
n

∑
j
∇i(
Ð⇀u j) ⋅

⇀
Ecovalent∗

j + qi
⇀
Ecovalent∗

i +
Ð⇀u i ⋅

⇀
Ecovalent∗

i .

The asterisk here means that the quantities are calculated under the screening condition.
The induced part, however, requires some extra attention:

⇀
F induced

i =
⇀
p∗i ⋅

⇀
E induced∗

i +
N

∑
j
∇i(

⇀
Ecovalent∗

j ) ⋅
⇀
p∗j .

Here,

N

∑
j
∇i(

⇀
Ecovalent∗

j ) ⋅
⇀
p∗j =

N

∑
j≠i

n

∑
k≠j

k∉∗(j)

(−∇i(
Ð⇀u k)) ⋅ ∇k(

⇀
p∗j ⋅ ∇j)

erf(βjkRjk)

βjkRjk
−

N

∑
j≠i

j∉∗(i)

(qi +
⇀
μ i ⋅ ∇i)∇i(

⇀
p∗j ⋅ ∇j)

erf(βijRij)

βijRij

−
n

∑
k≠i

k∉∗(i)

∇i(
Ð⇀u k) ⋅ ∇k(

⇀
p∗i ⋅ ∇i)

erf(βikRik)

βikRik
−

N

∑
k≠i

k∉∗(i)

(qk +
⇀
μk ⋅ ∇k)∇i(

⇀
p∗i ⋅ ∇i)

erf(βikRik)

βikRik
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=
N

∑
j

n

∑
k≠j

k∉∗(j)

(−∇i(
Ð⇀u k)) ⋅ ∇k(

⇀
p∗j ⋅ ∇j)

erf(βjkRjk)

βjkRjk
−

N

∑
j≠i

j∉∗(i)

(qi +
⇀
μ i ⋅ ∇i)∇i(

⇀
p∗j ⋅ ∇j)

erf(βijRij)

βijRij

−
N

∑
k≠i

k∉∗(i)

(qk +
⇀
μk ⋅ ∇k)∇i(

⇀
p∗i ⋅ ∇i)

erf(βikRik)

βikRik

=
n

∑
k

N

∑
j≠k

j∉∗(k)

(−∇i(
Ð⇀u k)) ⋅ ∇k(

⇀
p∗j ⋅ ∇j)

erf(βjkRjk)

βjkRjk
+ qi

⇀
E induced∗

i +
Ð⇀u i ⋅

⇀
Einduced∗

i +
⇀
p∗i ⋅

⇀
Ecovalent∗

i

=
n

∑
k
∇i(
Ð⇀u k) ⋅

⇀
E induced∗

k + qi
⇀
E induced∗

i +
Ð⇀u i ⋅

⇀
Einduced∗

i +
⇀
p∗i ⋅

⇀
Ecovalent∗

i .

In the derivation here, we have used the fact that if j ∈∗ (i) then i ∈∗ (j) for any i and j.

So, the result for the force under the screening condition is

⇀
F∗i =

n

∑
j
∇i(
Ð⇀u j) ⋅

⇀
E∗j + qi

⇀
E∗i + (

Ð⇀u i +
⇀
p∗i ) ⋅

⇀
E∗i .

The asterisk here means that the quantities are calculated under the
screening condition.

To derive the correction of screening for virial, we notice that
the only variable in the correction term that depends on h is the atom

coordinate
⇀
R, so, the virial correction is

∂Ucorrection

∂hμν
=
∂∑

N
i

1
2(qi +

⇀
μ i ⋅ ∇i)∑

∞
j≠i(qj +

⇀
μ j ⋅ ∇j)

−erf(βijRij)
Rij

∂hμν

+
1
2

p∗α′
i′

∂∂α′
i′ ∂

β′

j ′
−erf(βi′ j ′Ri′ j ′)

Ri′ j ′

∂hμν
p∗β′

j ′

+
N

∑
i

⇀
p∗i ⋅

∂∇i∑
∞
j≠i(qj +

⇀
μ j ⋅ ∇j)

−erf(βijRij)
Rij

∂hμν
.

Following a similar derivation as in Appendix A 2, we can easily
obtain the correction term for the virial expression under screening,
as shown in Sec. II.
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