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Role of Asymptomatic COVID-19 Cases in Viral
Transmission: Findings From a Hierarchical

Community Contact Network Model
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and Qingpeng Zhang , Senior Member, IEEE

Abstract— As part of ongoing efforts to contain the coron-
avirus disease (COVID-19) pandemic, understanding the role of
asymptomatic patients in the transmission system is essential for
infection control. However, the optimal approach to risk assess-
ment and management of asymptomatic cases remains unclear.
This study proposed a Susceptible, Exposed, Infectious, No symp-
toms, Hospitalized and reported, Recovered, Death (SEINRHD)
epidemic propagation model. The model was constructed based
on epidemiological characteristics of COVID-19 in China and
accounting for the heterogeneity of social contact networks. The
early community outbreaks in Wuhan were reconstructed and
fitted with the actual data. We used this model to assess epidemic
control measures for asymptomatic cases in three dimensions.
The impact of asymptomatic cases on epidemic propagation
was examined based on the effective reproduction number,
abnormally high transmission events, and type and structure
of transmission. Management of asymptomatic cases can help
flatten the infection curve. Tracing 75% of the asymptomatic
cases corresponds to a 32.5% overall reduction in new cases
(compared with tracing no asymptomatic cases). Regardless of
population-wide measures, household transmission is higher than
other types of transmission, accounting for an estimated 50% of
all cases. The magnitude of tracing of asymptomatic cases is
more important than the timing; when all symptomatic patients
were traced, tested, and isolated in a timely manner, the overall
epidemic was not sensitive to the time of implementing the
measures to trace asymptomatic patients. Disease control and
prevention within families should be emphasized during an
epidemic.
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Note to Practitioners—This article addresses the urgent need to
assess the risk of another COVID-19 outbreak caused by asymp-
tomatic cases and to find the optimal, most practical approach to
asymptomatic case management. Previous studies mostly focused
on the clinical and statistical characteristics of asymptomatic
cases; few have evaluated the impact of asymptomatic case mea-
sures using mathematical modeling at the community scale. This
study proposed a Susceptible, Exposed, Infectious, No symptoms,
Hospitalized and reported, Recovered, Death (SEINRHD) prop-
agation model based on local community structures and social
contact networks, according to the development characteristics
and trend of COVID-19 in a Chinese community. The conclusion
provides theoretical support for emergency work of relevant
departments in different periods of an epidemic. In the early
stages of the epidemic, timely detection and isolation of symp-
tomatic patients should be a priority. Where there are surplus
resources for epidemic prevention, the authorities should consider
increasing the proportion of asymptomatic patients being traced.
Epidemic prevention measures among family members should
be a primary focus of attention. This combination of strategies
can help reduce the rate of viral transmission and result in
extinguishing the epidemic.

Index Terms— Asymptomatic patients, COVID-19, epidemic
rebound, strategy evaluation, transmission model.

I. INTRODUCTION

SEVERE acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is a type of coronavirus that has caused the

pandemic known as coronavirus disease 2019 (COVID-19).
It remains a major global health threat at the time of writing.
By June 2021, there have been >171 million confirmed
cases worldwide. The outbreak in China was under control in
April 2020. However, over the next nine months, several large
clusters of outbreaks in many parts of the country involved
thousands of infections. In these outbreaks, a large proportion
of the infected people were asymptomatic, identified through
close contact tracing and screening [1], [2]. Empirical studies
have indicated that individuals may be most infectious during
the presymptomatic phase [3]. Undetected cases of asymp-
tomatic infection may be an important source of infection and
symptom-based screening was insufficient to detect a high pro-
portion of infectious cases [4]. Some experts [5] speculate that
59% of early cases in Wuhan remained undiagnosed, including
patients who remained asymptomatic or developed mild symp-
toms. All these reports show that an asymptomatic patient is
an element that cannot be ignored in the chain of infection.
Understanding how infections that are in the presymptomatic
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phase or are asymptomatic contribute to transmission will be
fundamental to the success of control strategies after the first
outbreak [6]. The effectiveness of symptom-based interven-
tions depends on the proportion of asymptomatic infections,
the infectiousness of asymptomatic patients, and the duration
and infectiousness of the presymptomatic phase. These have
caused significant social concerns, in particular, regarding the
risk of another outbreak caused by asymptomatic cases. These
worries are well-founded, as the role of asymptomatic cases
in the spread of COVID-19 remains unclear, as does the
optimal approach to asymptomatic case management. As a
result, these two questions have attracted significant research
interest.

Transmission of COVID-19 is driven by virus-containing
droplets released from the upper airways and aerosols that
can float, for a prolonged period in the environment [7]. The
incubation period refers to the time from when a person is
infected with the virus to the first symptoms. Clinical studies
of patients have shown that, at the onset of COVID-19, patients
frequently show symptoms associated with viral pneumonia.
The common symptoms include fever, cough, sore throat,
myalgia, and fatigue [8]–[10]. The case definition adopted
includes further stratification of cases as mild, severe, and
critical [11]. Cases that progress to a critical stage requiring
intensive care are at risk of death [12]. Some patients have the
ability to infect, but did not have obvious symptoms, known
as asymptomatic patients. WHO defines an asymptomatic
case as a laboratory-confirmed infected person without overt
symptoms [13]. Moreover, the distinction between asymp-
tomatic and presymptomatic individuals is often neglected in
COVID-19 case definitions [14].

Since April 2020, the Chinese authorities have been
publishing daily figures on asymptomatic coronavirus cases,
as the suspicion at that time was that asymptomatic cases
were driving epidemic spread. To date, there have been many
case studies and epidemiological characteristic studies based
on asymptomatic cases [15], [16]. Empirical studies [17],
[18] indicate that asymptomatic infections account for
17.9%–30.8% of all infections. Determining the true
transmission capacity of asymptomatic people is complex,
and debate continues to arise about this [1]. Some studies
found that asymptomatic cases were 42% less likely to spread
the virus, whereas other researchers have noted that there
is similar transmissibility for those with asymptomatic or
presymptomatic COVID-19 in the first days of infection
[19]. Measuring the true impact of asymptomatic infections
on spread can be extremely confounding, but knowledge
gaps should not detract from acknowledging their role in the
spread of COVID-19 [1]. To date, some studies [20]–[24] have
considered asymptomatic patients in the process of epidemic
spread modeling, Gevertz et al. [23], Huang et al. [24], Biggs
and Littlejohn [25], and Kassa et al. [26] used mathematical
models to analyze the interaction between social distancing
and asymptomatic transmission during a pandemic. Barreiro
et al. [27] and Lee et al. [28] detected infected asymptomatic
cases in the stochastic model. However, only a few studies
have focused on the evaluation of interventions for asymp-
tomatic patients and the impact of asymptomatic patients
on the second outbreaks [29], [30]. Therefore, the role of
asymptomatic cases in the transmission chain remains unclear.

Understanding the role of asymptomatic cases in infection
spread is critical to prevention and effective management of
future outbreaks and can aid in formulating public health poli-
cies in the transition to long-term management of COVID-19.
In order to quantify the effect of interventions on asymp-
tomatic patients in community prevention and control, based
on the characteristics of COVID-19 development in China and
early corresponding measures, this article proposed a Suscep-
tible, Exposed, Infectious, No symptoms, Hospitalized and
reported, Recovered, Death (SEINRHD) epidemic propagation
model. Using data from large-scale studies, we parameterized
the propagation model that matched the early epidemiological
characteristics of COVID-19. We combine the propagation
model with data-driven transmission networks that explicitly
consider the heterogeneity of social contact networks, which
reflects the differences of contact patterns within the family,
outside the family, and the interactions between individuals
at different community levels. The accuracy of the model was
verified by using the actual infection data of the early outbreak
in Wuhan. Then, this model was used to conduct computa-
tional experiments that evaluated the impact of asymptomatic
case management on infection curves in three dimensions.
We explored the impact of the asymptomatic case tracing
ratio, diagnosis delay time, and strategy implementation timing
on epidemic progression. Finally, we examined propagation
characteristics of a benchmark and two alternative scenarios,
including the impact of asymptomatic case tracing on the
effective reproduction number, type of transmission link, and
abnormally high transmission events. Our results highlight the
need for timely implementation of strategies for asymptomatic
patients (such as contact tracing), isolation of symptomatic
patients, and need for family isolation. The examined inter-
ventions can help flatten the new infection curve.

II. METHODS

A. Data Collection and Processing
This section introduces data collection in terms of commu-

nity population and the number of confirmed cases.
The community population: The community popula-

tion was obtained from the China Community Network
(http://www.cncn.org.cn/map/). Nevertheless, the population
data are incomplete here. For the missing community data,
we obtained the total number of households in the com-
munity on Fang.com (https://wuhan.esf.fang.com/) and then
calculated the total population of the community accord-
ing to the average population per household based on
Hubei Province in the 2020 China Statistical Yearbook
(http://www.stats.gov.cn/tjsj/ndsj/2020/indexch.htm).

The number of confirmed cases: these data are collected at
the epidemic period when the community issued the epidemic
announcement through: 1) the WeChat public account (Wuhan
microneighborhood small program); 2) WeChat group chat;
and 3) questionnaire data. All confirmed data are officially
released by the community.

The number of confirmed cases with the corresponding
dates information in the community can be obtained from the
announcements. We collected a total of 821 such datasets. The
advantage of these data is that they are real-time, while the
disadvantage is that there are no recording platforms to save
these data. For example, we have no access to the original
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Fig. 1. (a) Schematic of a household-based social network, whereby all family members are connected. (b) Schematic of a small community social contact
network, where different colored nodes represent different households, showing many connections within each household, and fewer connections between
households. (c) Schematic of a hierarchical network, where a big community is divided into smaller communities, represented by different color nodes. Some
edges exist in each small community, with fewer edges connecting small communities. The red nodes represent community workers, which is a special group
within the big community.

Fig. 2. SEINRHD model of epidemic progress.

announcements online after a year. The limitation of the data is
that these announcements are published on different platforms
irregularly, which is time-consuming to collect.

The cumulative confirmed cases in the residence commu-
nities in Wuhan as of February 24, 2020, were collected
for analysis. We collected and saved a total of 821 such
datasets. For most communities, we have only collected one
announcement of outbreaks. In our model validation, each set
of data needs to be confirmed at least at two time points. After
screening, only 300 sets of data were available.

The complete 300 sets of real data are presented in
Table 2 of the Supplementary Material.

B. Transmission Model

We extended the classic SEIR compartmental epidemiolog-
ical model to describe the early dynamics of COVID-19 infec-
tion in China. The SEIR model classifies individuals as
susceptible (S), exposed (E), clinically ill and infectious (I),
and recovered (R). Considering the spread and treatment
strategies of COVID-19 in the Chinese environment, the
SEINRHD model has added no symptoms status (N), hospital-
ized and reported (H), and death (D) status, and classified the
symptomatic status according to the severity of the disease
(Fig. 2). Infectious individuals are divided into either no

symptomatic or different symptomatic groups: mild, severe,
or critical symptoms. The default parameters of this model
are determined by the early epidemiological characteristics of
COVID-19 in China. More detailed model parameter settings
will be explained in Section II-D.

Transmission occurs through social interactions.
A schematic of the SEINRHD propagation model is
shown in Fig. 2. The model comprises the following steps.

1) Within the network, a seed node is randomly selected,
designated as E, and the remaining nodes become S.

2) Node E becomes I, following an incubation period of Te.
The node is considered infectious during state I and on
the last day of state E.

3) Throughout the process, the infectious node infects
its susceptible neighbors with a probability expressed
as θ · β.

4) There are four types of patients with I status. Among
them, asymptomatic patients become recovered after an
average period of μ1 days. The rest of the infected nodes
are hospitalized and diagnosed within an average delay
of μ2 days.

5) The mortality rate among infected nodes is δ; the
remaining patients recover after a period of treatment.

6) The process ends once there is no node exposed or
infectious.
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We defined θ as the probability of contact between indi-
viduals, and β as the probability of infection after contact.
θ · β represented disease transmission rate between nodes.

C. Generation of the Hierarchical Community Contact
Network

To capture human contact patterns with higher accuracy
we constructed a community hierarchical network to describe
the differences of connections within the family, outside the
family, and between individuals at different community levels.

All network nodes belonged to a big community, which
was divided into several small communities. Nodes within
each community represented the individuals who lived in geo-
graphical proximity and shared characteristics such as age or
interests. A small community comprised multiple households
and constituted a fully connected network at the bottom of
the hierarchical community network. Social contacts within
this network had a hierarchical community structure. One of
the contacts was associated with the highest risk of infection
acquired from a family member, with a moderate risk of
infection acquired from a member of another household within
the same community, and a low risk of infection acquired
from members of small diverse communities. In addition,
the network included community workers that had frequent
contact with all small communities. All ties within a network
were defined as undirected. The number of individuals in
the network was denoted by n. A schematic of the network
structure is presented in Fig. 1. The network was created with
the following process.

First, the number of small groups was determined.
In our simulation, the number of big community nodes
was set to n = 10 000, 3.53% of which were community
workers [31]. According to the population distribution of
Wuhan communities, the remaining nodes were divided into
five small communities, and the number of people within these
five communities was subject to truncated normal distribution
(please see the Supplementary Material for a more detailed
explanation). Each small community consisted of families.
Household size distributions were taken from the 2019 China
National Population Sampling Survey (full distribution shown
in the Supplementary Material).

Second, between-node connections were determined. Within
a household, all nodes were connected to each other. A house-
hold constituted a fully connected network. The distribution of
the number of external connections was taken from detailed
contact surveys. The average number of connections between
nodes of different families in the same small community
is 4.2 [32]. The average number of connections between nodes
in different small communities is 0.12 [33]. (More detail in the
Supplementary Material.)

D. Experimental Parameters

To make the initial value of the model parameters conform
to the epidemiological characteristics of COVID-19, we per-
formed a literature review of 36 related studies, summarizing
dynamic and symptomatic characteristics of COVID-19. First,
we estimated the average number of mild, severe, and criti-
cal symptomatic cases [12], [34], [35] (http://wjw.sz.gov.cn/).
At the early stages of the epidemic, when understanding of

TABLE I

MODEL PARAMETERS

asymptomatic cases was limited, most studies only reported
cases that progressed to mild, severe, and critical symptoms.
Second, we estimated the proportion of asymptomatic cases as
27.3% [5], [17], [36], [37]. We used these two sets of values to
estimate the proportion of four types of patients in the model.
Table I presents model parameters in a benchmark scenario
(model parameters consistent with COVID-19 characteristics
reported early in the pandemic and prior to any interventions).
The incubation period is a characteristic of infectious disease.
Our literature review of studies on the COVID-19 incubation
period included 17 articles (see Table I in the Supplementary
Material), yielding an estimated value of 5.11 days, with
the upper bound of 72% <10.2. The incubation period in
our model followed a truncated normal distribution with a
mean of 5.11 and a variance of 2.5. Symptomatic infection
period μ2, asymptomatic infection period (days) μ1, and
mortality rate δ were estimated based on findings from early
studies of COVID-19 [12], [34], [35], [38]–[40]. Note that
the mortality rate here is relative to the entire diagnosed
population. The study [12] published by the Chinese Center
for Disease Control and Prevention shows that only patients
who eventually develop critical symptoms are likely to die.
After grouping patients by severity of symptoms, the mortality
rate of the patients with critical symptoms δc was 53.4%
and the mortality rate of remaining patients is 0% [12].
θ · β represented the disease’s ability to spread within a
population. We used the basic reproduction number R0 = 3.11,
which is based on early analysis of Wuhan COVID-19
data [41], to estimate the propagation rate in our model. The
reproduction number R0 is defined as the average number of
new infections generated by one infected individual during the
entire infectious period in a fully susceptible population. For
the method of calculating R0 in our model, see the Supple-
mentary Material. We used the number of actual community
confirmed cases collected for model fitting and validation.

In the strategy evaluation experiment, measures taken for
asymptomatic patients included increasing the tracing range
and accelerating the detection time. Since traced individuals
are strictly quarantined, we assume that tracing means that
can no longer infect others. In all experiments, the same
measures were taken for symptomatic patients: when the diag-
nosed (reported) case number was ten, the delay in diagnosis
of symptomatic patients reduced from seven to three days.
Experiment parameters are presented in Table II, including ρ,
which represented the tracing proportion of asymptomatic
patients. Ti represented the time interval from the start of the
epidemic to the implementation of the strategy, in units of
days.
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TABLE II

MODEL PARAMETERS PER EXPERIMENT

Experiment 1 examined the effect on disease spread of
tracing rate of asymptomatic cases. Experiment 2 investigated
the effect of delayed diagnosis time on asymptomatic patients
on the epidemic. Experiment 3 studied the impact of the time
to implement the strategy of tracing asymptomatic patients on
the epidemic. The results of each group of experiments are the
statistical results after 1000 simulations under this parameter
setting. The total duration of all experiments is 210 days.
In the first four sections of results, the starting point of the
abscissa time is when the number of confirmed reports is
ten (day 30).

E. Characteristics of the Transmission

To better study the changes of various propagation charac-
teristics after taking measures, in addition to the above three
strategy evaluation experiments, we focused on the analysis of
the transmission characteristics in the following two situations:
only taking measures for symptomatic patients (ρ = 0,
μ1 = 3, μ2 = 3, Ti = 30) and taking measures for
symptomatic and asymptomatic patients at the same time
(ρ = 75%, μ1 = 3, μ2 = 3, Ti = 30) and conducted the
comparative analysis with the benchmark scenario.

The following are some terms and their definitions involved
in describing transmission characteristics.

1) Effective Reproduction Number Re: The basic reproduc-
tion number R0 is defined as the average number of sec-
ondary infections caused by a typical primary infection
in a fully susceptible population. R0 is one of the most
important epidemiological parameters when monitoring
an epidemic because it is fundamental to assess the
potential spread of the virus. Its value changes during
an epidemic and is termed the effective reproduction
number, Re. Re can be used to observe the control of
infectious diseases, especially whether the government
can reduce Re to below 1, or even to a very low level
through prevention and control measures.

2) Degree: In the graph of transmission, the degree of a
node indicates the number of connections of the node.
The complete transmission chain can be represented as a
tree structure graph. In this tree structure graph, if node
A has infected nodes B and C, node A is called the
parent node of B and C, nodes B and C are called the
child nodes of A.

3) Complementary Cumulative Distribution Function
(CCDF): CCDF can completely describe the probability
distribution of a variable a. CCDF represents the sum
of the occurrence probability of all values greater than
a for a continuous function

F(a) = P(x > a). (1)

Fig. 3. To verify the accuracy of the initial model, we fit the reported cases
data with the model. The light blue lines represent the results of 1000 sim-
ulations, and the blue star represents the average value. Based on the model
results of the 20–80 days, the trend line (orange line) was calculated using
linear regression. The green dots represent the actual reported data.

III. RESULTS

Fig. 3 shows the fitting results of the reported data and the
model. The abscissa of Fig. 3 shows the infection predicted
by the model at day 20–80 (the first case of infection was
defined as day 0). In reality, each community in Wuhan on the
same date corresponds to different stages of epidemic in the
model. For example, the community close to the source of the
outbreak had multiple cases of infection on February 3, while
the community far away may have its first case on February 10.
To match the model with reality, we collected reports on two
dates for each community. The infection rate of the earlier date
was substituted into the regression line to figure out the relative
stage of the community in the model, and then the model
days corresponding to the later date and the actual incidence
rate were plotted according to the time interval (green dots).
As can be seen from the results, our initial model accurately
fitted the daily cumulative infection rate reported in the Wuhan
community from February 3 to February 24, 2020 (Fig. 3).
This model can well describe the outbreak of early COVID-19
in the Wuhan community.

A. Impact of Asymptomatic Case Tracing on Disease Spread

In experiment 1, with fixed parameters ((μ1 = 3, μ2 = 3,
Ti = 30), the tracing rate of asymptomatic cases was 0, 25%,
50%, 75%, and 100%, respectively. Fig. 4 presents epidemic
progression under different scenarios.

Relative to the benchmark, control measures had a signif-
icant impact on disease spread, resulting in infection density
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Fig. 4. Infection status under experiment 1 (asymptomatic patients at different tracing rates). (a) Changes in density of infection. The lines represent the
mean density of infection per 10 000 people, while the shaded areas represent the 95% reference range. (b) Number of daily newly infected individuals per
10 000 people. (c) Proportion of confirmed asymptomatic patients in total asymptomatic patients under different schemes. Boxplots represent percentiles 2.5%,
25%, 50%, 75%, and 97.5% of the distribution.

Fig. 5. Infection status under experiment 2 (different delayed diagnosis time on asymptomatic patients). (a) Changes in density of infection. The lines represent
the mean density of infection per 10 000 people while the shaded areas represent the 95% reference range. (b) Number of daily newly infected individuals per
10 000 people. (c) Proportion of confirmed asymptomatic patients in the total asymptomatic patients under different schemes. Boxplots represent percentiles
2.5%, 25%, 50%, 75%, and 97.5% of the distribution.

reduction inversely proportional to the number of asymp-
tomatic cases identified. At day 100, relative to benchmark,
infection density was reduced by 64.9% (ρ = 0), 69.1%
(ρ = 25%), 75.7% (ρ = 50%), 80.2% (ρ = 75%), and
87.7% (ρ = 100%) [Fig. 4(a)]. On the 150th day, the
outbreak was nearly extinguished; at that stage, compared with
benchmark, infection density was reduced by 3347 (ρ = 0),
3454 (ρ = 25%), 3824 (ρ = 50%), 4016 (ρ = 75%), and
4493 (ρ = 100%) per 10 000 people [Fig. 4(a)]. Overall,
tracing 75% of asymptomatic cases corresponded to outbreak
reduction of 32.5%, compared to no tracing.

Compared with the benchmark scenario, slowing disease
spread associated with a 25-day delay in infection peak was
associated with a reduction to the peak number of infections
of 80.4% in scheme 3 (ρ = 50%). Compared with scheme 1
(ρ = 0), slowing disease spread associated with an 11-day
delay in infection peak was associated with a reduction
to the peak number of infections of 29.9% in scheme 3
(ρ = 50%) [Fig. 4(b)]. The proportion of asymptomatic
patients (median) detected is slightly lower than the proportion
set in our strategic plan [Fig. 4(c)].

B. Impact of Delayed Asymptomatic Patient Diagnosis on
Epidemic Progression

In experiment 2, at fixed parameters (ρ = 75%, μ2 = 3,
Ti = 30), the delay in asymptomatic patient diagnosis was
three to seven days, respectively (Fig. 5).

At increased speed of diagnosis, the epidemic appeared to
come under control more quickly [Fig. 5(a)]. At day 100,
compared with scheme 5 (μ1 = 7), infection density was
reduced by 19.7% (μ1 = 3), 14.0% (μ1 = 4), 11.8% (μ1 = 5),
and 2.9% (μ1 = 6) [Fig. 5(a)]. Compared with scheme 5
(μ1 = 7), the average infection curve peak delay was five days,
which corresponded to a decrease in peak height of 16.7% in
scheme 1 (μ1 = 3) [Fig. 5(b)]. The peak count of daily new
cases was 20 (μ1 = 3), 21 (μ1 = 4), 19 (μ1 = 5), 24 (μ1 = 6),
and 24 (μ1 = 7) [Fig. 5(b)]. The proportion of asymptomatic
cases (median) detected at the end of the simulation was 66.2%
(μ1 = 3), 55.2% (μ1 = 4), 49.8% (μ1 = 5), 46.7% (μ1 = 6),
and 42.4% (μ1 = 7) [Fig. 5(c)].

C. Impact of Measure Implementation Timing on Epidemic
Progression

Timing of measure implementation was expressed as Ti .
In experiment 3, with fixed parameters (ρ = 75%, μ1 = 3,
μ2 = 3), simulation interventions were implemented on day
30, 50, 70, 90 (Fig. 6). Under constant intervention intensity,
the timing of intervention implementation did not affect epi-
demic progression [Fig. 6(a) and (b)], with the average number
of new cases peaked around day 83 in all scenarios [Fig. 6(b)].

The proportion of asymptomatic cases (median) con-
firmed at the end of simulation was 66.7% (Ti = 30),
66.7% (Ti = 50), 66.7% (Ti = 70), and 61.7% (Ti = 90)
[Fig. 6(c)]. The mean proportion of asymptomatic cases
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Fig. 6. Infection status under experiment 3 (take measures for asymptomatic patients at different times). (a) Changes in density of infection. The lines
represent the mean density of infection per 10 000 people while the shaded areas represent the 95% reference range. (b) Number of daily newly infected
individuals per 10 000 people. (c) Proportion of confirmed asymptomatic patients in the total asymptomatic patients under different schemes. Boxplots represent
percentiles 2.5%, 25%, 50%, 75%, and 97.5% of the distribution.

Fig. 7. Effective reproduction number Re (mean) over time. Taking only the
control strategies for symptomatic patients (orange line), taking the control
strategies for both symptomatic patients and symptomatic patients (green line),
benchmark scenario (blue line).

(median) confirmed at the end of the simulation was 73.1%
(Ti = 30), 75.1% (Ti = 50), 75.3% (Ti = 70), and 72.9%
(Ti = 90) [Fig. 6(c)].

D. Effective Reproduction Number

Fig. 7 shows changes to Re throughout the disease propaga-
tion period. Under the benchmark scenario, Re was < 1 after
day 45. On days 0–29, Re exceeded 2. Re peaked at 3.74.
Following the introduction of interventions, Re was smaller
than that estimated under the benchmark scenario. In the case
of the implementation of the measures, Re did not fall below 1
until after 74 days. Compared with the implementation of
measures only for symptomatic patients, Re is significantly
reduced before the 38th day after adding the tracing strategy
for asymptomatic patients.

E. Characteristics of Infected Individuals

Fig. 8 shows time-dependent changes to the number of
new cases within the network. As shown in Fig. 8(a), in the
benchmark scenario, the virus preferentially infects nodes with
larger degrees in the network, and then gradually infects the
nodes with fewer degrees. Note that the abscissa of this figure

corresponds to the time of the first case confirmation. Fol-
lowing the implementation of interventions, viral transmission
within the network slowed down significantly. Interventions
suppressed the infection of the virus to the nodes to the larger
degree. As the virus spread, the degree distribution of newly
infected nodes was relatively uniform. In addition, in the early
stages of disease spread, the average degree of newly infected
nodes showed strong oscillations. Tracing asymptomatic cases
resulted in a decrease of the average degree of newly added
nodes after day 46, compared to tracing only symptomatic
patients.

Fig. 8(b) shows CCDF of the number of secondary infec-
tions per individual. Before and after interventions, approx-
imately 77% of cases infected one or two people. In the
benchmark scenario, the maximum number of secondary infec-
tions caused by a single case reached 25; approximately 3.5%
of primary cases corresponded to over 20 secondary cases.
When tracing and accelerated testing were applied only to
symptomatic patients, the maximum number of secondary
infections per single primary case was 21. When interven-
tions were applied to both symptomatic and asymptomatic
patients, the maximum number of secondary infections per
single primary case was reduced to 18. The results show that
tracing of asymptomatic cases can reduce the abnormally high
transmission events.

F. Characteristics of the Transmission Tree

Fig. 8(c) shows the proportion of transmission types.
Fig. 8(d) presents an example of a transmission tree in
a simulation experiment. Under all intervention scenarios,
approximately half of all new cases were infected by family
members [Fig. 8(c)], suggesting a necessity to reduce social
contacts in small communities and strengthen the protection
of community workers. Our model captured the back-and-
forth patterns of transmission between households, small com-
munities, and community workers in Fig. 8(d). Furthermore,
asymptomatic cases seem to play a role in the transmission
chain.

IV. DISCUSSION

In the absence of universal access to the vaccine against
COVID-19, governments and organizations face economic and
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Fig. 8. (a) Changes to the proportion of newly infected nodes within a network over time. (b) CCDF of the number of secondary infections per infected
individual. Taking only the control strategies for symptomatic patients (orange line), taking the control strategies for both symptomatic patients and symptomatic
patients (green line), benchmark scenario (blue line). (c) Proportion of transmission types (infected by household, small community, big community or
community workers). (d) Example of a transmission tree in a simulation experiment. (Color of the nodes: yellow, first case; red, asymptomatic infection; blue,
symptomatic infection; color of the lines for the type of transmission, black, among household members; green, in the small community; orange, in the big
community; purple, infected by community workers.)

social pressures to gradually and safely lift social distancing
measures. To prevent epidemic rebound during long-term
epidemic management, it is vital to understand the role of
asymptomatic cases in disease transmission. The present study
examined epidemiological characteristics of COVID-19 and
hierarchical characteristics of a Chinese community contact
network to assess the impact of the asymptomatic cases on
three dimensions of disease transmission, aiming to provide
evidence for future decision making.

1) The experimental results show that increasing the pro-
portion of asymptomatic cases tracing, increasing the
degree of detection of asymptomatic cases, and advanc-
ing the timing of asymptomatic case tracing could
reduce the cumulative number of disease cases. The
examined interventions can help flatten the new infection
curve. Increasing the proportion of asymptomatic cases
being traced can have the most significant impact on
disease spread. The magnitude of asymptomatic cases
tracing is more important than its timing. In particular,
the overall outbreak is not sensitive to the timing of the
implementation of measures when symptomatic patients
are isolated in a timely manner and the proportion
of asymptomatic patients tracing is adequate. With the

same intensity of other interventions, the implementation
two months later has little effect on the density of
infection.

2) From the perspective of transmission characteristics,
after taking measures for symptomatic patients at the
same time, the effective number of viruses regenerating
rapidly decreased, and the ability to spread significantly
weakened. Concurrently, primary cases associated with
the highest number of secondary cases can be effec-
tively contained. This combination of strategies can
help reduce the rate of viral transmission, resulting in
extinguishing the epidemic. These measures can also
reduce the risk of occurrence of super-spreaders.

3) This study also examined characteristics of a transmis-
sion link, showing that, in the absence of interventions,
within-family transmission accounts for nearly half of
new cases, while the transmission rate within large
communities remains within 3%.

The present study findings can inform public health policy
regarding asymptomatic cases of COVID-19 worldwide. First,
the most important aspect of a strategy involving asymp-
tomatic case control is the tracing ratio. Therefore, in actual
prevention and control, tracing and isolation of asymptomatic
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cases are very useful. Given human and economic resource
restrictions, reducing the number of traced cases will be
unavoidable, leading to small fluctuations in the number of
new confirmed cases; however, the epidemic can still be
effectively controlled. Second, in the early stages of a pan-
demic, quarantine of symptomatic patients should be a priority.
It is essential to achieve early detection, rapid isolation, and
first treatment. Given insufficient medical and socioeconomic
resources, interventions aimed at asymptomatic patients can
be introduced strictly in the second phase of epidemic control,
when the initial outbreak has been contained. Third, as house-
hold transmission accounts for half of the new cases, it should
be focused on by the general public and relevant departments.
Disease control and prevention within families should be
emphasized during an epidemic. Community workers play
a critical role in disease spread within large communities,
suggesting these teams should be equipped with personal
protective gear to curtail their role in the transmission chain.

To date, most studies examining the role of asymp-
tomatic cases on disease transmission involved small sample
sizes [18], [42], [43]. Combined with differences in defini-
tions of asymptomatic cases between countries, this led to
inconsistent. In particular, the number of asymptomatic cases
and the amount of time a person with COVID-19 remains
a carrier is still unclear. The true transmission capability of
asymptomatic and presymptomatic cases is inherently com-
plex. Transmission without symptoms critically contributes to
the spread of COVID-19 and presents a considerable infection
prevention challenge [1]. Our model can help to estimate the
risk of another COVID-19 wave and evaluate realistic control
and prevention strategies. At the start of the second wave in
Beijing, China, which occurred around June 11, rapid case
and contact tracing and isolation, combined with large-scale
testing, including among suspected but asymptomatic cases,
helped prevent a sizeable outbreak.

This study has several limitations. First, asymptomatic cases
considered in our model were cases that remained asymp-
tomatic throughout the infection period. An alternative defini-
tion of asymptomatic refers to remaining symptom-free during
the incubation period alone. To the best of our knowledge,
no studies have compared prevention strategies applicable to
these different categories of asymptomatic cases. Secondly, our
research has shortcomings in practical applications. In real-
ity, it is difficult to accurately control the proportion of
asymptomatic patients. However, this study mainly concentrat-
ing on quantitatively measuring the impact of asymptomatic
patients on the development trend of the epidemic. Thirdly,
the strategic assessment of this study was carried out under
the condition of adequate resources, without further research
on resource allocation and return of investment. In the future,
the problem of resource allocation during outbreaks and the
tradeoffs between tracing and cost will be further addressed.

In summary, our model provides individuals, governments,
and organizations with strategic insights for the management
of asymptomatic cases during a pandemic. This study pro-
vides suggestions on intervention implementation, including
priority, intensity, and target population. In particular, it has
important implications for alleviating the strict lockdown
measures and their associated social, medical, and economic
burdens.

APPENDIX

SUPPLEMENTARY MATERIAL

Please see the attachment for the Supplementary Material.

REFERENCES

[1] A. L. Rasmussen and S. V. Popescu, “SARS-CoV-2 transmission without
symptoms,” Science, vol. 371, no. 6535, pp. 1206–1207, Mar. 2021.

[2] Q. Shi et al., “Effective control of SARS-CoV-2 transmission in
Wanzhou, China,” Nature Med., vol. 27, no. 1, pp. 86–93, Jan. 2021.

[3] X. He et al., “Temporal dynamics in viral shedding and transmissibility
of COVID-19,” Nature Med., vol. 26, no. 5, pp. 672–675, 2020.

[4] M. Day, “COVID-19: Four fifths of cases are asymptomatic, China
figures indicate,” BMJ, vol. 369, p. m1375, Apr. 2020.

[5] J. Qiu, “Covert coronavirus infections could be seeding new outbreaks,”
Nature, Mar. 2020, doi: 10.1038/d41586-020-00822-x.

[6] S. M. Moghadas, M. C. Fitzpatrick, P. Sah, A. Pandey, and
A. P. Galvani, “The implications of silent transmission for the control
of COVID-19 outbreaks,” Proc. Nat. Acad. Sci. USA, vol. 117, no. 30,
pp. 17513–17515, 2020.

[7] M. Meselson, “Droplets and aerosols in the transmission of
SARS-CoV-2,” New England J. Med., vol. 382, no. 21, p. 2063, 2020.

[8] J. F. W. Chan et al., “A familial cluster of pneumonia associated with
the 2019 novel coronavirus indicating person-to-person transmission:
A study of a family cluster,” Lancet, vol. 395, no. 10223, pp. 514–523,
Feb. 2020.

[9] C. Huang et al., “Clinical features of patients infected with 2019
novel coronavirus in Wuhan, China,” Lancet, vol. 395, pp. 497–506,
May 2020.

[10] Q. Li et al., “Early transmission dynamics in Wuhan, China, of novel
coronavirus–infected pneumonia,” New England J. Med., vol. 382,
pp. 1199–1207, Jan. 2020.

[11] C. C. for Disease Control and Prevention, “The epidemiological charac-
teristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)
in China,” Chin. J. Epidemiol., vol. 41, no. 2, pp. 145–151, 2020.

[12] Z. Wu and J. M. McGoogan, “Characteristics of and important lessons
from the coronavirus disease 2019 (COVID-19) outbreak in China:
Summary of a report of 72 314 cases from the Chinese center for
disease control and prevention,” JAMA, vol. 323, no. 13, pp. 1239–1242,
Apr. 2020.

[13] Clinical Management of COVID-19: Interim Guidance, World Health
Org., Geneva, Switzerland, May 2020.

[14] L. A. Nikolai, C. G. Meyer, P. G. Kremsner, and T. P. Velavan,
“Asymptomatic SARS Coronavirus 2 infection: Invisible yet invincible,”
Int. J. Infectious Diseases, vol. 100, pp. 112–116, Nov. 2020.

[15] Y. Bai et al., “Presumed asymptomatic carrier transmission of
COVID-19,” JAMA, vol. 323, no. 14, p. 1406, Apr. 2020.

[16] Z. Hu et al., “Clinical characteristics of 24 asymptomatic infections
with COVID-19 screened among close contacts in Nanjing, China,” Sci.
China Life Sci., vol. 63, no. 5, pp. 706–711, May 2020.

[17] K. Mizumoto, K. Kagaya, A. Zarebski, and G. Chowell, “Estimating
the asymptomatic proportion of coronavirus disease 2019 (COVID-19)
cases on board the Diamond Princess cruise ship, Yokohama, Japan,
2020,” Eurosurveillance, vol. 25, no. 10, 2020, Art. no. 2000180.

[18] H. Nishiura et al., “Estimation of the asymptomatic ratio of novel
coronavirus infections (COVID-19),” Int. J. Infectious Diseases, vol. 94,
p. 154, 2020.

[19] M. Cevik, M. Tate, O. Lloyd, A. E. Maraolo, J. Schafers, and A. Ho,
“SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, dura-
tion of viral shedding, and infectiousness: A systematic review and meta-
analysis,” Lancet Microbe, vol. 2, no. 1, pp. e13–e22, Nov. 2020.

[20] C. Anastassopoulou, L. Russo, A. Tsakris, and C. Siettos, “Data-based
analysis, modelling and forecasting of the COVID-19 outbreak,” PLoS
ONE, vol. 15, no. 3, Mar. 2020, Art. no. e0230405.

[21] S. E. Eikenberry et al., “To mask or not to mask: Modeling the potential
for face mask use by the general public to curtail the COVID-19
pandemic,” Infectious Disease Model., vol. 5, pp. 293–308, Jan. 2020.

[22] J. Panovska-Griffiths et al., “Determining the optimal strategy for
reopening schools, the impact of test and trace interventions, and the
risk of occurrence of a second COVID-19 epidemic wave in the UK:
A modelling study,” Lancet Child Adolescent Health, vol. 4, no. 11,
pp. 817–827, Nov. 2020.

http://dx.doi.org/10.1038/d41586-020-00822-x


LUO et al.: ROLE OF ASYMPTOMATIC COVID-19 CASES IN VIRAL TRANSMISSION 585

[23] J. L. Gevertz, J. M. Greene, C. H. Sanchez-Tapia, and E. D. Sontag,
“A novel COVID-19 epidemiological model with explicit susceptible and
asymptomatic isolation compartments reveals unexpected consequences
of timing social distancing,” J. Theor. Biol., vol. 510, Feb. 2021,
Art. no. 110539.

[24] H. Huang, Y. Chen, and Z. Yan, “Impacts of social distancing on
the spread of infectious diseases with asymptomatic infection: A
mathematical model,” Appl. Math. Comput., vol. 398, Jun. 2021,
Art. no. 125983.

[25] A. T. Biggs and L. F. Littlejohn, “How asymptomatic transmission
influences mitigation and suppression strategies during a pandemic,”
Risk Anal., May 2021, doi: 10.1111/risa.13736.

[26] S. M. Kassa, J. B. H. Njagarah, and Y. A. Terefe, “Analysis of
the mitigation strategies for COVID-19: From mathematical mod-
elling perspective,” Chaos, Solitons Fractals, vol. 138, Sep. 2020,
Art. no. 109968.

[27] N. L. Barreiro, T. Govezensky, P. G. Bolcatto, and R. A. Barrio,
“Detecting infected asymptomatic cases in a stochastic model for spread
of COVID-19: The case of Argentina,” Sci. Rep., vol. 11, no. 1,
Dec. 2021, Art. no. 10024.

[28] C. Lee, C. Apio, and T. Park, “Estimation of undetected asymptomatic
COVID-19 cases in South Korea using a probabilistic model,” Int.
J. Environ. Res. Public Health, vol. 18, no. 9, p. 4946, May 2021.

[29] M. Ali, S. T. H. Shah, M. Imran, and A. Khan, “The role of
asymptomatic class, quarantine and isolation in the transmission of
COVID-19,” J. Biol. Dyn., vol. 14, no. 1, pp. 389–408, Jan. 2020.

[30] X. Wang, S. Wang, Y. Lan, X. Tao, and J. Xiao, “The impact of
asymptomatic individuals on the strength of public health interventions
to prevent the second outbreak of COVID-19,” Nonlinear Dyn., vol. 101,
no. 3, pp. 2003–2012, Aug. 2020.

[31] A. Nande, B. Adlam, J. Sheen, M. Z. Levy, and A. L. Hill, “Dynamics of
COVID-19 under social distancing measures are driven by transmission
network structure,” PLOS Comput. Biol., vol. 17, no. 2, Feb. 2021,
Art. no. e1008684.

[32] K. Sun et al., “Transmission heterogeneities, kinetics, and control-
lability of SARS-CoV-2,” Science, vol. 371, no. 6526, Jan. 2021,
Art. no. eabe2424.

[33] H. Salje et al., “How social structures, space, and behaviors shape the
spread of infectious diseases using chikungunya as a case study,” Proc.
Nat. Acad. Sci. USA, vol. 113, no. 47, pp. 13420–13425, 2016.

[34] C. Eastin and T. Eastin, “Clinical characteristics of coronavirus disease
2019 in China,” J. Emergency Med., vol. 58, no. 4, pp. 711–712,
Apr. 2020.

[35] D. Wang et al., “Clinical characteristics of 138 hospitalized patients with
2019 novel coronavirus–infected pneumonia in Wuhan, China,” JAMA,
vol. 323, no. 11, pp. 1061–1069, 2020.

[36] A. Kimball et al., “Asymptomatic and presymptomatic SARS-CoV-2
infections in residents of a long-term care skilled nursing facility—King
County, Washington, March 2020,” Morbidity Mortality Weekly Rep.,
vol. 69, no. 13, p. 377, 2020.

[37] Y. Chen et al., “Analysis of the epidemiological characteristics of
widespread contact with new coronavirus pneumonia in Ningbo city
in 2020,” Chin. J. Epidemiol., vol. 41, no. 5, pp. 667–671, 2020.

[38] T. Liu et al., “Transmission dynamics of 2019 novel coronavirus (2019-
nCoV),” bioRxiv, 2020.

[39] P. Sun, S. Qie, Z. Liu, J. Ren, and J. J. Xi, “Clinical characteristics of
50466 patients with 2019-nCoV infection,” MedRxiv, vol. 4, pp. 1–28,
Jan. 2020.

[40] K. Wang et al., “Clinical and laboratory predictors of in-hospital mortal-
ity in patients with coronavirus disease-2019: A cohort study in Wuhan,
China,” Clin. Infectious Diseases, vol. 71, no. 16, pp. 2079–2088,
Nov. 2020.

[41] J. M. Read, J. R. E. Bridgen, D. A. T. Cummings, A. Ho, and
C. P. Jewell, “Novel coronavirus 2019-nCoV (COVID-19): Early esti-
mation of epidemiological parameters and epidemic size estimates,”
Phil. Trans. Roy. Soc. B, Biol. Sci., vol. 376, no. 1829, Jul. 2021,
Art. no. 20200265.

[42] J. C. Emery et al., “The contribution of asymptomatic SARS-CoV-2
infections to transmission on the Diamond Princess cruise ship,” Elife,
vol. 9, Aug. 2020, Art. no. e58699.

[43] M. Alene et al., “Magnitude of asymptomatic COVID-19 cases through-
out the course of infection: A systematic review and meta-analysis,”
PLoS ONE, vol. 16, no. 3, Mar. 2021, Art. no. e0249090.

Tianyi Luo received the B.E. degree in automation
from Beijing University of Chemical Technology,
Beijing, China, in 2017. She is currently pursuing
the Ph.D. degree with the Institute of Automation,
Chinese Academy of Sciences, Beijing. She is also
with the University of Chinese Academy of Sci-
ences, Beijing.

Her research interests include information diffu-
sion modeling, complex networks, social computing,
and public health.

Zhidong Cao received the Ph.D. degree in geo-
graphic information science from the Institute
of Geographic Sciences and Nature Resources
Research, Chinese Academy of Sciences, Beijing,
China, in 2008.

He is currently an Associate Professor at the
Institute of Automation, Chinese Academy of Sci-
ences. His current research interests include social
computing, public health, emergency management,
and spatial analysis.

Yuejiao Wang received the B.E. degree in elec-
tronic information engineering from Harbin Insti-
tute of Technology, Weihai, China. She is currently
pursuing the master’s degree with the Institute of
Automation, Chinese Academy of Sciences, Beijing,
China. She is also the with University of Chinese
Academy of Sciences, Beijing.

Her research interests include time series predic-
tion, social computing, and public health.

Daniel Zeng (Fellow, IEEE) received the B.S.
degree in economics and operations research from
the University of Science and Technology of China,
Hefei, China, in 1990, and the M.S. and Ph.D.
degrees in industrial administration from Carnegie
Mellon University, Pittsburgh, PA, USA, in 1994 and
in 1998, respectively.

He is a Gentile Family Professor with the Depart-
ment of Management Information Systems, The Uni-
versity of Arizona, Tucson, AZ, USA. He also holds
a research fellow position at the Institute of Automa-

tion, Chinese Academy of Sciences, Beijing, China. He has published more
than 300 peer-reviewed articles. His research interests include intelligence
and security informatics, infectious disease informatics, social computing,
recommender systems, software agents, and applied operations’ research and
game theory.
Dr. Zeng currently serves as the Editor-in-Chief for the ACM Transactions on
Management Information Systems and the President of the IEEE Intelligent
Transportation Systems Society.

Qingpeng Zhang (Senior Member, IEEE) received
the B.S. degree in automation from the Huazhong
University of Science and Technology, Wuhan,
China, in 2009, and the Ph.D. degree in systems
and industrial engineering from The University of
Arizona, Tucson, AZ, USA, in 2012.

He was a Post-Doctoral Research Associate with
the Department of Computer Science, Tetherless
World Constellation, Rensselaer Polytechnic Insti-
tute, Troy, NY, USA. He is currently an Assistant
Professor with the School of Data Science, City

University of Hong Kong, Hong Kong. His current research interests include
social computing, complex networks, data mining, and semantic Web.

Dr. Zhang is an Associate Editor of the IEEE TRANSACTIONS ON COM-
PUTATIONAL SOCIAL SYSTEMS and the IEEE TRANSACTIONS ON INTEL-
LIGENT TRANSPORTATION SYSTEMS.

http://dx.doi.org/10.1111/risa.13736


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


