Skip to main content
. 2022 Apr 15;7(16):13704–13720. doi: 10.1021/acsomega.1c07361

Table 6. Second-Order Perturbation Theory Analysis of the Most Interacting NBOs of the Studied Compounds at the M06-2X/6-311++G(d,p) Level of Theory.

donor (i) occupancy acceptor (j) occupancy E(2)a [kcal/mol] E(j)–E(i)b [au] F(ij)c [au] hybrid AO (%)
CHP
σC3–H16 1.97829 σ*C1–C2 0.01685 4.10 0.88 0.054 sp33.51 s(22.16%)p(77.80%)d(0.04%)
σC7–H21 1.98058 σ*C5–H11 0.01699 3.09 0.89 0.047 sp2.59 s(27.84%)p(71.97%)d(0.20%)
FCH
LP3(F21) 1.97535 σ*C1–C4 0.02694 3.95 0.78 0.049 sp99.99 s(0.10%)p(99.85%)d(0.05%)
σC3–H10 1.97814 σC5–H11 0.01667 3.31 0.89 0.048 sp3.53 s(22.11%)p(77.84%)d(0.04%)
σC2–H14 1.97572 σ*C1–C4 0.02694 3.35 0.88 0.049 sp3.42 s(22.61%)p(77.34%)d(0.05%)
BrCHP
σC3–H15 1.97560 σ*C1–C2 0.02326 4.34 0.87 0.055 sp3.52 s(22.11%)p(77.85%)d(0.04%)
σC4–C6 1.97371 σ*C1–Br21 0.04348 3.28 0.64 0.041 sp2.62 s(27.58%)p(72.23%)d(0.19%)
σC6–H13 1.97756 σ*C1–C4 0.02395 4.00 0.86 0.053 sp3.53 s(22.06%)p(77.90%)d(0.05%)
ClCHP
σC2–H14 1.97672 σ*C3–C5 0.01659 4.03 0.88 0.053 sp3.42 s(22.59%)p(77.36%)d(0.05%)
σC2–H9 1.97755 σ*C1–H8 0.02578 3.61 0.88 .050 sp3.47 s(22.38%)p(77.57%)d(0.05%)
Oxepane
σC6–H17 1.97481 σ*C4–O19 0.02542 4.50 0.79 0.053 sp3.48 s(22.32%)p(77.64%)d(0.04%)
σC4–H15 1.98146 σ*C2–O19 0.02544 3.12 0.81 0.045 sp3.14 s(24.12%)p(75.82%)d(0.06%)
Azepane
σC4–H16 1.97645 σC6–N19 0.01912 4.82 0.85 0.057 sp3.47 s(22.38%)p(77.57%)d(0.04%)
LP(1)N19 1.91097 σC3–C5 0.02909 7.11 0.66 0.062 sp7.15 s(12.26%)p(87.63%)d(0.10%)
Thiepane
σC1–H13 1.97863 *σC2–C3 0.01734 4.01 0.88 0.053 sp3.53 s(22.04%)p(77.91%)d(0.05%)
LP(2)S19 1.94015 σ*C3–C5 0.02631 4.75 0.61 0.049 sp99.99 s(0.47%)p(99.50%)d(0.02%)
a

E2 represents the energy of hyperconjugative interactions (stabilization energy).

b

Energy difference between the donor and acceptor E(i) and E(j) NBO orbitals.

c

F(i, j) is the Fock matrix element between I and j NBO, and LP (n)a is a valence lone pair orbital (n) on atom (A).