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Abstract

Attention-deficit/hyperactivity disorder (ADHD) is diagnosed subjectively based on an 

individual’s behaviour and performance. The clinical community has no objective biomarker 

to inform the diagnosis and subtyping of ADHD. This study aimed to explore the potential 

diagnostic biomarkers of ADHD among surface values, volumetric metrics, and radiomic features 

that were extracted from structural MRI images. Public data of New York University and Peking 

University were downloaded from the ADHD-200 consortium. MRI T1-weighted images were 

pre-processed using CAT12. We calculated surface values based on the Desikan-Killiany atlas. 

The volumetric metrics (mean grey matter volume and mean white matter volume) and radiomic 
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features within each AAL brain area were calculated using DPABI and IBEX, respectively. The 

differences among three groups of participants were tested using ANOVA or Kruskal-Wallis test 

depending on the normality of the data. We selected discriminative features and classified typically 

developing controls (TDCs) and ADHD patients as well as two ADHD subtypes using least 

absolute shrinkage and selection operator and support vector machine algorithms. Our results 

showed that the radiomics-based model outperformed the others in discriminating ADHD from 

TDC as well as classifying ADHD subtypes (area under curve [AUC]: 0.78 and 0.94 in training 

test; 0.79 and 0.85 in testing set). Combining grey matter volumes, surface values, and clinical 

factors with radiomic features can improve the performance for classifying ADHD patients and 

TDCs with training and testing AUCs of 0.82 and 0.83, respectively. This study demonstrates that 

MRI T1-weighted features, especially radiomic features, are potential diagnostic biomarkers of 

ADHD.

Graphical Abstract

Structural MRI T1-weighted image-extracted features can distinguish patients with attention-

deficit/hyperactivity disorder (ADHD) from typically developing controls as well as between the 

inattentive and combined subtypes. Radiomic features showed better performance than surface 

values, grey matter volume, white matter volume, and clinical factors. Combining other categories 

of features with radiomic features to build a hybrid model can improve the performance for the 

diagnosis of ADHD.
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Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a disabling neurodevelopmental disease 

that can cause inattention and aberrant hyperactive/impulsive behaviours in children 

and adults (Polanczyk & Rohde, 2007). ADHD can be diagnosed as three types: 

inattentive (ADHD-I), hyperactive/impulsive (ADHD-H/I), and combined (ADHD-C) 

(NIMH). Symptoms of ADHD-I include being disorganized, a lack of persistence, and 

difficulties in sustaining focus/attention, while ADHD-H/I exhibits as fidgeting and 

squirming in seats, moving about, or talking constantly even in inappropriate situations, 

and making hasty actions (NIMH). ADHD affects 5–10% of school-age children, but 

its symptoms can be misinterpreted as emotional or disciplinary problems, thus bringing 
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serious lifelong impairments such as failing relationships and impaired academic and work 

performance. Clinical and basic research on ADHD has been ongoing for more than a 

century, focusing on the biological causes of hyperactivity, impulsivity, and attention deficit 

(Berger & Posner, 2000; Overmeyer et al., 2001; Visser et al., 2014). However, ADHD 

diagnosis was still assessed subjectively based on individual behaviour and performance. 

There remains no objective biomarker to inform the diagnosis of ADHD in the clinical 

community.

Since the introduction of magnetic resonance imaging (MRI) that allows in vivo 

measurement of brain structures (R. A. Yotter, Nenadic, Ziegler, Thompson, & Gaser, 

2011), using magnetic resonance brain imaging to diagnose disease makes the results more 

objective. Some structural MRI-based studies have shown developmental changes in the 

volume of the cortical and subcortical areas in those with ADHD (C. U. Greven et al., 

2015; Hoogman et al., 2017; Tomohiro, Joaquim, Katya, & David, 2011; Valera, Faraone, 

Murray, & Seidman, 2007; Vilgis, Sun, Chen, Silk, & Vance, 2016). A simultaneous delay 

in the development of cortical thickness and surface area suggests that there may be a 

global perturbation of cortical maturation in ADHD, as reported by the National Institute of 

Mental Health (NIMH) (P Shaw et al., 2007; Philip Shaw et al., 2012). Some studies used 

region-of-interest (ROI)-based measurements or voxel-based methods (VBM) to identify 

the specific brain structures and potential markers (such as grey matter (GM) volume, 

surface area, and thickness) that are capable of diagnosing ADHD using statistical analysis 

(Brinson, 2014; Chi-Hua et al., 2013; Frodl & Skokauskas, 2012; Lu et al., 2019; Zhao 

et al., 2020). However, the findings in these studies were inconsistent. Alterations in GM 

volume, surface area, and inward deformation in different regions (such as the left frontal 

eye field, the left middle cingulum, and left cuneus) were reported in patients with ADHD 

compared to typically developing controls (TDCs) by some groups (Lu et al., 2019; Tang et 

al., 2019; Zhao et al., 2020), while no difference was found in the local distribution of GM 

by other studies (Ulke et al., 2019).

Several new methods have been proposed to find potentially subtle structural differences on 

structural MRI images. Radiomics is a new technique that has emerged from the medical 

field of oncology and has recently been used to analyse structural and functional MRI 

(fMRI) images in the field of neurology (Aerts et al., 2014; Yupeng Li et al., 2019; Y. 

Li, Jiang, Shen, Wu, & Zuo, 2018; Port, 2018; Sun et al., 2018). Radiomic features are 

statistical descriptors that can quantify the spatial relationship in the grey level of voxels in 

images. In a previous study, a single-institutional model combining GM- and white matter 

(WM)-based radiomic features could diagnose ADHD and classify the subtypes, but the 

classification accuracy was limited (73.7% and 80.1%) (Sun et al., 2018). It is still unknown 

whether radiomic features extracted directly from brain structural MRI images that do not 

separate GM and WM can provide more diagnostic information for ADHD.

Surface-based morphometry allows the measurement of four surface values that describe 

cortical folding patterns in detail (Gutman, Wang, Morra, Toga, & Thompson, 2009), 

including cortical thickness (Draper, Jackson, Morgan, & Jackson, 2016), gyrification 

(Luders et al., 2006), fractal dimension (Corbit & Garbary, 1995), and sqrtsulc (Gaser & 

Dahnke, 2016). Cortical thickness is the average local orthogonal distance between the 

Shi et al. Page 3

Eur J Neurosci. Author manuscript; available in PMC 2022 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



voxels of the grey/white boundary and the grey/cerebrospinal fluid boundary (Dahnke, 

Yotter, & Gaser, 2013). Gyrification measures the surface complexity based on absolute 

mean curvature (Luders et al., 2006; R. A Yotter, Nenadic, Ziegler, Thompson, & Gaser, 

2011b). The fractal dimension represents cortical complexity (R. A Yotter et al., 2011b). 

The sqrtsulc is defined as the square root-transformed sulcus depth based on the Euclidean 

distance between the central surface and its convex hull (Gaser & Dahnke, 2016). A 

previous study reported that the top discriminative features for ADHD were in cortical 

areas (Sun et al., 2018), and the surface values were associated with multiple brain diseases 

(Al-Radaideh, Athamneh, Alabadi, & Hbahbih, 2019; Madeira et al., 2020; Wolf et al., 

2020; Zheng et al., 2019). The discriminative ability of the four surface values for the 

diagnosis of ADHD has not been investigated until now.

The purpose of this study was to identify diagnostic biomarkers for ADHD among some 

novel quantitative features of structural MRI images, i.e., surface values, volumetric 

measurements, and radiomic features, using multi-institutional data from the ADHD-200 

consortium. Statistical analysis was used to explore specific brain areas/cortical structures 

and corresponding features showing significant differences among TDCs, ADHD-C patients, 

and ADHD-I patients. Furthermore, we established machine learning models using each 

category of features within multiple brain areas/cortical structures and their combination to 

evaluate their diagnostic performance for individual participants.

Materials and Methods

Datasets

Public structural MRI data of New York University (NYU) Child Study Centre and 

Peking University (PU) were downloaded from the ADHD-200 Consortium (http://

fcon_1000.projects.nitrc.org/indi/adhd200/index.html) (HD-200, 2012). ADHD diagnoses 

were based on the Schedule of Affective Disorders and Schizophrenia for Children-Present 

and Lifetime Version (KSADS-PL) administered to children and parents and the Conners’ 

Parent Rating Scale-Revised, Long version (CPRS-LV). Patients were included if they 

(1) had available phenotypic data and MRI images and (2) passed the quality control of 

anatomical images. Patient exclusions were (1) left-handedness and (2) abnormal clinical 

phenotypes (such as ADHD index, inattentive score, and hyper/impulsive score) (equal to 

−999). ADHD-H/I patients were also excluded due to the small sample size (NYU: 2; 

PU: 1). Finally, 155/166 participants aged 7–18/8–16 years at NYU/PU were selected for 

analysis. Table 1 shows all participants’ demographic information. All images were acquired 

using a Siemens Allegra 3.0 T scanner at NYU and a Siemens TrioTim 3.0T scanner at PU 

for brain imaging, with a high-resolution T1-weighted MPRAGE 3D volume. The detailed 

parameters were as follows: slice thickness = 1.33 mm, slices per slab =128, repetition time 

(TR) = 2530 ms, echo time (TE) = 3.25 ms (NYU) and 3.39 ms (PU), field of view (FOV) 

read = 256 mm, and voxel size: 1.3×1.0×1.3 mm. The total acquisition time (scan time) was 

8:07 minutes.
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Image pre-processing

Figure 1 shows the workflow of this study. First, all original NIfTI data were reoriented 

and cropped using DCM2NII (https://people.cas.sc.edu/rorden/mricron/dcm2nii.html). The 

image quality was checked based on the following criteria: a) images had no motion artefact, 

b) the scanning range completely enveloped the brain tissue, and c) the head was not over-

rotated. Images that did not pass the quality check or those with serious head movement 

were removed from the analysis. Next, we performed image pre-processing using the 

MATLAB (R2013b) toolbox cat12 (Computational Anatomy Toolbox 12, vCAT12.1, http://

www.neuro.uni-jena.de/cat/) (Gaser & Dahnke, 2016), which is an extension of SPM12 

(Statistical Parametric Mapping 12, https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The 

pre-processing included image reconstruction, correction, registration, and segmentation. 

The cat12 toolbox parameters were as follows: the spatial registration template was Dartel; 

the voxel size for normalized images was 1.5 mm × 1.5 mm × 1.5 mm; the hemispheres 

were not merged, thus resampled data were saved separately for each hemisphere; the 

resample size was 164k mesh (FreeSurfer); and the smoothing filter size in FWHM was 15 

mm. Standardized GM volume images, standardized white matter (WM) volume images, 

and standardized T1 images with scalp stripping were exported after the pre-processing was 

finished. We checked the quality of the exported images, and participants with low-quality 

images were excluded from the analysis. Then, resampling and smoothing were applied to 

the images to make the data obey a normal distribution.

Feature extraction

As shown in Figure 1, ROI-based surface values, volumetric measurements, and radiomic 

features were extracted from the pre-processed images. First, the surface values, including 

cortical thickness, gyrification, fractal dimension, and sqrtsulc, were extracted based on 

the Desikan-Killiany 40 (DK) atlas (72 cortical structures) after the pre-processed images 

were aligned to the MNI152 template space using cat12 (Gaser & Dahnke, 2016; R. 

A Yotter et al., 2011b). Second, we extracted the volumetric measurements (mean GM 

volume and mean WM volume) inside the brain areas defined by the automated anatomical 

labelling (AAL) atlas (116 brain areas) after importing the cat12 exported standardized 

volume images to Dpabi (V4.2_190919) (Yan, Wang, Zuo, & Zang, 2016). Finally, 209 

radiomic features within each AAL area on standardized T1 images and a total of 209*116 

radiomic features were extracted using open source software, IBEX source (V1.0β) (Aerts 

et al., 2014; Zhang et al., 2015). The radiomic features included first-order statistical 

features derived directly from the image intensity and intensity histogram (e.g., skewness, 

kurtosis, and variance) and high-order texture features calculated based on the grey-level 

cooccurrence matrix (GLCM), grey-level run length matrix (GLRLM), and neighbourhood 

intensity difference matrix (NIDM). The texture features were averaged over all 3D 

directions as the final feature values to approach a rotationally invariant system.

Statistical analysis

We calculated the differences in surface values, volumetric measurements, and radiomic 

features among the three groups of participants. The Lilliefors test and Bartlett test were 

used to determine whether the data of one feature obeyed a normal distribution with equal 
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variances. We used one-way analysis of variance (ANOVA) for the normally distributed data 

and the Kruskal-Wallis test for the nonnormally distributed data to calculate the differences 

in all data among the three groups. The Bonferroni method was applied to all results to 

correct multiple testing problems, where corrected P < 0.05 was considered as statistically 

significant. A multiple comparison test was used to further investigate the differences 

between each pair of the three groups in those features with corrected P < 0.05.

Furthermore, the association of brain and age was investigated for TDCs and ADHD 

patients separately using Spearman’s rank correlation coefficient, and the difference in the 

association between the two groups was evaluated using a two-sample two-sided t test. 

Bonferroni correction was applied to the results of the t test, where corrected P < 0.05 was 

statistically significant.

Feature selection and classification

All data were normalized to a range of 0 to 1 using min-max normalization. We classified 

the TDCs and patients with ADHD using all 321 participants’ data, and classified ADHD-C 

patients and ADHD-I patients using 151 ADHD participants’ data. For each classifier, all 

participants were randomly allocated into the training set and the testing set using a ratio 

of 3:1. We selected the most diagnostic features using the least absolute shrinkage and 

selection operator (LASSO) algorithm, which performs feature selection and regularization 

to improve the overall performance and interpretability of the model (Friedman, Hastie, 

& Tibshirani, 2010; Tibshirani, 2011). This algorithm has been widely used in recent 

MRI-based machine learning studies and has shown advantages over other feature selection 

algorithms (Lohmann et al., 2021; Park et al., 2020). During the training of a LASSO 

model, the area under the receiver operating characteristic curve (AUROC) between two 

classes was maximized by tuning parameter (λ) in a 10-fold cross validation using data 

in the training set. The minimum criterion or one standard error criterion was adopted 

depending on its performance in the training set. Most covariate coefficients simultaneously 

shrank to zero, and those features with nonzero coefficients were finally selected by LASSO. 

The selected features of participants in the training set were used to train an SVM model 

with a radial basis function (RBF) kernel and optimize the classification performance in 

the 10-fold cross validation. The SVM algorithm performs reasonably well with small 

sample-sized data and has shown excellent performance in brain image analysis (Nguyen, 

Blears, Ross, Lall, & Ortega-Barnett, 2018; Sordo & Zeng, 2005; Wu et al., 2019). The 

combination of LASSO and SVM can avoid possible overfitting during feature selection and 

model training and has recently been used in neuroimage-based radiomics studies (Wang 

et al., 2020). For each classification task, we established five single LASSO-SVM models 

using clinical factors (Table 1), grey matter volumes, white matter volumes, surface values, 

and radiomic features and combined all of them to build a hybrid LASSO-SVM model. 

The final trained model was used to predict the class of participants in the testing set. 

A receiver operating characteristic (ROC) curve illustrated the classification ability of the 

trained model, while the area under the curve (AUC) was simultaneously calculated. Feature 

selection and classification were carried out using R version 4.0.4.
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Results

Statistical analysis

After Bonferroni correction, 142 radiomic features of 18 brain areas (AAL numbers: 12, 

17, 18, 29, 30, 32, 39, 63, 79–82, 85, 87, 91, 95, 105, and 106) and the cortical thickness 

of ‘linsula’ were statistically significant among the three groups of participants (corrected 

ANOVA P = 1.91×10−4-0.05). In the multiple comparison test, all these features showed 

significant differences between TDCs and ADHD-C patients (P = 2.09×10−9-5.73×10−5); 

20 radiomic features of 4 brain areas (AAL numbers: 63, 79, 80, and 81) (AAL numbers:) 

had significant differences between TDCs and ADHD-I patients (P = 2.29×10−5-0.05); 

ADHD-C patients significantly differed from ADHD-I patients in 109 radiomic features 

of 14 brain areas (AAL numbers: 12, 17, 18, 29, 30, 32, 39, 63, 80, 81, 87, 91, 105, 

106) (P = 1.53×10−4-0.05). Only two radiomic features (‘30 percentile’ and ‘0.25 quantile’) 

of ‘Heschl_R’ and one radiomic feature (‘10 percentile’) of ‘Temporal_Sup_L’ showed 

significant differences in all pairwise comparisons of the three groups (P = 3.31×10−9-0.05). 

Figure 2 shows boxplots and data distribution of cortical thickness of ‘linsula’ and ‘30 

percentile’ of ‘Heschl_R’ among three groups of participants in two medical centres 

(corrected ANOVA P = 0.05 and 2.41×10−3). All results of the statistical analysis are shown 

in supplementary Table S1.

For the association of brain and age, ADHD patients differed from TDCs in grey matter 

volume, white matter volume, sqrtsulc, cortical thickness, and 30 radiomic features (28 

first-order features and 2 texture features) (corrected P = 4.36*10−13, 9.12*10−23, 0.01, 

4.49*10−8, and 5.02*10−12-0.04, respectively) (supplementary Table S2).

The classification of TDCs and patients with ADHD

Figure 3 shows the confusion matrices of all features in classifying TDCs and patients with 

ADHD in the testing set. The hybrid LASSO-SVM model integrating 10 radiomic features, 

3 surface values, 1 grey matter volume, and 2 clinical factors outperformed any single model 

in both the training set (AUC [95% CI]: 0.82 [0.77–0.87]; sensitivity: 61.21%; specificity: 

89.60%) and testing set (AUC [95% CI]: 0.83 [0.73–0.92]; sensitivity: 68.57%; specificity: 

93.33%) (Figure 4). The SVM classification results and LASSO-selected features and their 

corresponding brain areas/cortical structures of all models are shown in Supplementary 

Tables S3 and S4, respectively.

For single models, the radiomics model achieved better performance than the other models 

in discriminating between TDCs and patients with ADHD (AUC [95% CI]: 0.78 [0.73–0.84] 

and 0.79 [0.69–0.90]; sensitivity: 83.62% and 82.85%; specificity: 56.00% and 71.11% in 

the training and testing sets, respectively). The discriminative radiomic features were seven 

first-order features of seven brain areas (AAL numbers: 20, 21, 30, 87, 88, 91, and 97) 

and two texture features of ‘Cerebelum_9_R’ (supplementary Table S4). The single models 

built using clinical factors, surface values, grey matter volumes, and white matter volumes 

also showed discriminative power between TDCs and ADHD patients (AUC: 0.71–0.80 and 

0.63–0.74 in the training and testing sets, respectively) (supplementary Table S3 and Figure 

4).
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The classification of ADHD-C patients and ADHD-I patients

Figure 5 shows the confusion matrices of all features in classifying ADHD-C patients and 

ADHD-I patients in the testing set. The radiomic feature-based model performed the best 

in discriminating between the two subtypes of ADHD (AUC [95% CI]: 0.94 [0.91–0.99] 

and 0.85 [0.72–0.98]; sensitivity: 95.65% and 85.29%; specificity: 84.21% and 83.33% 

in the training and testing sets, respectively) (Figure 6 and supplementary Table S5). The 

discriminative radiomic features included 5 texture features of 4 brain areas (AAL numbers: 

6, 10, 37, and 51) and 18 first-order features of 13 brain areas (AAL numbers: 14, 35, 41, 

42, 44, 48, 49, 63, 69, 71, 95, 109, and 113) (supplementary Table S6). Combining other 

categories of features with radiomic features to build a hybrid model did not improve the 

discriminative power (AUC [95% CI]: 0.94 [0.90–0.98] and 0.83 [0.69–0.97]; sensitivity: 

89.13% and 94.74%; specificity: 85.29% and 66.67% in the training and testing sets, 

respectively). Here, the sensitivity was defined as the accuracy in the ADHD-I group, while 

the specificity was defined as the accuracy in the ADHD-C group.

The other single models only showed limited discriminative power for classifying the 

two subtypes of ADHD (AUC: 0.69–0.75 and 0.60–0.66 in the training and testing sets, 

respectively) (supplementary Table S5 and Figure 6).

Discussion

This study explored diagnostic biomarkers for ADHD among ROI-based features calculated 

from structural MRI images, including DK atlas-based surface values and AAL-based 

mean GM volume, mean WM volume, and radiomic features. The major finding was 

that 142 radiomic features of 18 brain areas and cortical thickness of ‘linsula’ (a 

surface value) showed significant differences among the TDC, ADHD-C, and ADHD-I 

groups (corrected ANOVA P = 1.91×10−4-0.05). Among them, two radiomic features (‘30 

percentile’ and ‘0.25 quantile’) of ‘Heschl_R’ and one radiomic feature (‘30 percentile’) 

of ‘Temporal_Sup_L’ had statistically significant differences in all pairwise comparisons of 

the three groups in the multiple comparison test (P = 3.31×10−9-0.05). Additionally, ADHD 

patients and TDCs had significant differences in the association of brain and age, which 

can be quantified by grey matter volume, white matter volume, sqrtsulc, cortical thickness, 

and 30 radiomic features. Furthermore, we established LASSO-SVM models using each 

category of features and their combination to classify ADHD and TDC as well as ADHD-C 

and ADHD-I. The radiomic feature-based LASSO-SVM model outperformed the other 

single models in diagnosing ADHD as well as separating ADHD-C patients from ADHD-I 

patients. The discriminative radiomics included first-order features and texture features of 

multiple brain areas. The other single models built using surface values, clinical factors, grey 

matter volumes, and white matter volumes also showed discrimination between TDC and 

ADHD. In addition, combining surface values, grey matter volume, and clinical factors with 

radiomic features to build a hybrid model can slightly improve classification performance 

for the diagnosis of ADHD but not for the discrimination between the two ADHD subtypes. 

Therefore, structural MRI features of multiple brain areas are potential biomarkers for the 

clinical diagnosis and subtyping of ADHD.
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The ADHD-200 Global Competition was organized to find the best tools to diagnose 

patients with ADHD based on functional and structural MRI images (Brown et al., 2012; 

Guo, An, Kuang, Zhao, & He, 2014; Sato, Hoexter, Fujita, & Rohde, 2012). The winner 

of the competition was a team from Johns Hopkins University. They correctly identified 

94% of TDCs but only 21% of ADHD cases, resulting in an accuracy of 61% (HD-200, 

2012). Some fMRI-based studies reported that the accuracies of distinguishing ADHD from 

TDC or other brain diseases were 85%−86.5% (Rish et al., 2009; Shen, Wang, Liu, & Hu, 

2010; Zhu et al., 2008). However, Brown et al.’s study found that the clinical characteristic 

data performed better than the fMRI measurements in the diagnosis of ADHD with an 

accuracy of 62.52% using data in the ADHD-200 consortium (Brown et al., 2012). Sun et 

al. found that some radiomic features, which described the local distribution of white matter 

and grey matter on structural MRI images, can classify patients with ADHD and TDCs 

as well as ADHD-C patients and ADHD-I patients (accuracy: 73.7% and 80.1%) (Sun et 

al., 2018). The present study utilized data from two centres with the largest sample size 

in the ADHD-200 consortium to build LASSO-SVM models based on multiple features to 

improve the diagnosis of ADHD. We found that radiomic features that were extracted from 

structural MRI images could distinguish patients with ADHD from TDCs and discern two 

subtypes (accuracy: 76.25% and 83.78%) with balanced sensitivity (82.85% and 84.21%) 

and specificity (71.11% and 83.33%) in the testing set. Furthermore, the combination 

of radiomic features, surface values, grey matter volume, and clinical characteristics can 

improve the accuracy of classifying TDCs and ADHD patients to 82.50%. Our results 

demonstrate that the method proposed in our study can unearth more structural MRI 

information that correlates with the diagnosis and subtyping of ADHD.

We utilized a novel statistical descriptor of structural MRI images, radiomics, for the 

diagnosis and subtyping of ADHD, achieving good performance based on multi-institutional 

data. Radiomics can characterize the spatial relationship of voxel intensity and was found 

to be a useful quantitative tool for the diagnosis of brain diseases, such as Alzheimer’s 

disease, mild cognitive impairment, and ADHD (Yupeng Li et al., 2019; Y. Li et al., 2018; 

Sun et al., 2018). In our study, the radiomic features extracted from structural MRI images 

can diagnose ADHD and separate the two subtypes with accuracies of 76.25% and 83.78%, 

respectively, outperforming clinical factors, volumetric measurements, and surface values. 

It should be noted that integrating other categories of features with radiomic features did 

not improve the performance in discerning the two subtypes. The selected discriminative 

radiomic features for ADHD diagnosis and subtyping were principally distributed in the 

bilateral temporal lobe, left olfactory lobe, insula, right supplementary motor area, left 

occipital lobe, right frontal lobe, left hippocampus, bilateral amygdala, right calcarine, right 

lingual lobe, left caudate, vermis, left paracentral lobule, left supramarginal gyrus, and 

bilateral cerebellum (supplementary Tables S4 and S6). Previous studies also observed 

smaller volumes of the amygdala, caudate, hippocampus, and vermis in patients with 

ADHD than in TDCs (Hoogman et al., 2017; Ivanov, Murrough, Bansal, Hao, & Peterson, 

2014). Differences in grey matter volume and cortical characterizations of frontal, temporal 

lobe, prefrontal, parietal, and occipital areas between TDCs and ADHD patients were also 

previously reported (Almeida et al., 2010; K. L. Narr et al., 2009; Norman et al., 2016; 

Philip Shaw et al., 2012; Silk et al., 2016; Tomohiro et al., 2011; Valera et al., 2007). The 
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cerebellum in our study contributed to both ADHD diagnosis and subtyping, and previous 

studies have also found cerebellar abnormalities in ADHD (Castellanos et al., 2002; 

Stoodley, 2016). The potential neurodevelopmental mechanisms underlying the association 

between radiomics of multiple brain areas and ADHD should be further investigated.

The surface values analysed in this study can quantify the morphology and complexity of 

the cortex and characterize cortical folding patterns, which may reflect the pathology of 

ADHD (Giedd & Rapoport, 2010; X. Li et al., 2007). ADHD was associated with decreased 

cortical thickness and delayed cortical maturation in previous studies (Narr, Woods, Lin, 

Kim, & Levitt, 2009; P Shaw et al., 2007). The features that described the distribution of the 

local cortical characterizations and white matter characterizations can discriminate between 

patients with ADHD and TDCs as well as between ADHD-C patients and ADHD-I patients 

according to Sun et al.’s study (Sun et al., 2018). The top discriminative features were 

alterations in cortical shape in the bilateral cuneus, left temporal lobe, and structures around 

the left central sulcus (Sun et al., 2018). In our study, the bilateral cuneus and subregions 

of the bilateral temporal lobe were also discriminative structures selected by the LASSO 

model, but 13 out of 18 selected surface values were distributed in the right hemisphere 

(supplementary Tables S4 and S6). Our results showed that surface values can distinguish 

ADHD from TDC with AUCs of 0.80 and 0.72 in the training and testing sets, respectively, 

but failed to discern two ADHD subtypes (AUC = 0.73 and 0.6 in the training and testing 

sets). The diagnostic performance of surface values for ADHD should be validated in future 

studies.

Structural MRI provides insights into GM volume and WM volume by high-resolution 

anatomical imaging. Brain volumetric analyses show that the GM volume of patients with 

ADHD was 3%−5% smaller than that of control subjects (Corina U. Greven et al., 2015). 

ADHD has been associated with alterations in both GM volume and WM volume in 

previous studies (Corina U. Greven et al., 2015; Zhao et al., 2020). However, Sun et al. 

reported that no volume difference was found in WM and GM between patients with ADHD 

and TDCs (Sun et al., 2018). Our results show that the local GM volume and local WM 

volume can provide limited discriminatory power between patients with ADHD and TDCs 

as well as between the two subtypes, with overall AUCs of 0.61–0.66.

There were several limitations in this work. First, this study only analysed the differences in 

the association of brain and age between TDCs and ADHD patients using a cross-sectional 

method and did not further investigate how ADHD affects brain development due to the 

limitation of data. Future work will explore longitudinal changes in the brain in ADHD 

patients. Second, this study did not investigate whether the psychological assessment and 

cognitive parameters of ADHD can improve the classification accuracy because of the 

absence of these data. Third, the age range of participants in this study was fairly large; 

the heterogeneity in brain maturation associated with age may influence the selected 

features and the classification performance. Finally, this study did not explore the underlying 

pathobiological mechanism for the correlation between structural MRI features and ADHD, 

which should be clarified in future studies.
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Conclusions

This study established LASSO-SVM models using multiple structural MRI features, i.e., 

radiomic features, surface values, grey matter volumes, white matter volumes, and clinical 

factors, for the diagnosis and subtyping of ADHD. The radiomic feature-based models 

outperformed the others in discriminating patients with ADHD from TDCs as well as 

classifying ADHD-C patients and ADHD-I patients. Combining surface values, grey matter 

volume, and clinical factors with radiomics to build a hybrid model can improve the 

classification of TDCs and ADHD patients. The models established using quantitative 

features of structural MRI T1-weighted images are potential tools that are capable of 

informing the diagnosis and subtyping of ADHD in the clinic.
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Figure 1. 
The workflow of image processing (a), feature extraction (b), and feature selection and 

classification (c) performed in this study. The software and templates used in each step are 

also shown. LASSO: least absolute shrinkage and selection operator; SVM: support vector 

machine.
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Figure 2. 
Boxplots and data distribution of two representative discriminative features: cortical 

thickness of the left insula (a surface value) (a) and intensity-30 percentile of the right 

Heschl gyrus (a radiomic feature) (b). The horizontal line inside the box represents the 

median. The upper and lower whiskers extend to the highest and lowest values within the 

1.5*IQR of the 0.75 quartile and 0.25 quartile, respectively. Outliers are plotted as plus 

signs. ‘·’ represents data from New York University (NYU); ‘x’ represents data from Peking 

University (PU); ‘*’ Compared to the typically developing controls (TDC), P < 0.05; ‘#’ 

Compared to the ADHD combined type (ADHD-C), P < 0.05.
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Figure 3. 
The confusion matrices for the classification of patients with attention-deficit/hyperactivity 

disorder (ADHD) and typically developing controls (TDCs) based on different categories of 

features in the testing set. Each column/row of a confusion matrix represents the number of 

patients in an actual/predicted class.
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Figure 4. 
The ROC curves for the discrimination between patients with attention-deficit/hyperactivity 

disorder (ADHD) and typically developing controls (TDCs) in the training (a) and testing (b) 

sets.
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Figure 5. 
The confusion matrices for the classification of attention-deficit/hyperactivity disorder 

(ADHD) inattentive type (ADHD-I) patients and ADHD combined type (ADHD-C) patients 

based on different categories of features in the testing set. Each column/row of a confusion 

matrix represents the number of patients in an actual/predicted class.
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Figure 6. 
The ROC curves for the discrimination between attention-deficit/hyperactivity disorder 

(ADHD) inattentive type (ADHD-I) patients and ADHD combined type (ADHD-C) patients 

in the training (a) and testing (b) sets.
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