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Abstract
Structural magnetic resonance imaging (sMRI) offers immense potential for increasing our understanding of how anatomical brain 
development relates to clinical symptoms and functioning in neurodevelopmental disorders. Clinical developmental sMRI may help 
identify neurobiological risk factors or markers that may ultimately assist in diagnosis and treatment. However, researchers and clini-
cians aiming to conduct sMRI studies of neurodevelopmental disorders face several methodological challenges. This review offers 
hands-on guidelines for clinical developmental sMRI. First, we present brain morphometry metrics and review evidence on typical 
developmental trajectories throughout adolescence, together with atypical trajectories in selected neurodevelopmental disorders. Next, 
we discuss challenges and good scientific practices in study design, image acquisition and analysis, and recent options to implement 
quality control. Finally, we discuss choices related to statistical analysis and interpretation of results. We call for greater completeness 
and transparency in the reporting of methods to advance understanding of structural brain alterations in neurodevelopmental disorders.
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Introduction

Knowledge about the prevalence, clinical diagnosis and 
treatment of frequent neurodevelopmental disorders has 
increased considerably over the past two decades. These 

comprise, for example, attention deficit hyperactivity disor-
der (ADHD; prevalence approx. 6 %; Barkley, 2014), con-
duct disorder (CD; prevalence approx. 3 %; Canino et al., 
2010), and oppositional defiant disorder (ODD; prevalence 
approx. 3 %; Canino et al., 2010). These externalizing dis-
orders often persist into adulthood, impacting quality of life 
dramatically (Kessler et al., 2005). To prevent worsening of 
symptoms and life-long suffering from these disorders, it 
is crucial to investigate and understand their complex neu-
robiology, which may enable early diagnosis, prevention, 
prognosis, and treatment during childhood and adolescence.

Certainly, several challenges remain in improving prevention 
and treatment of these disorders. First, the etiology of neurode-
velopmental disorders is still largely unknown, but likely com-
prises a mix of factors ranging from genetics (Blesson & Cohen, 
2020) to epigenetics and environmental influences (Nigg, 2012). 
Moreover, to date, neurodevelopmental disorders are phenom-
enologically defined and diagnosed by clinical observations and 
reports from the child and caregivers. However, classification 
into clinical categories may not match individual circumstances, 
problems, and needs (Hyman, 2010). Consequently, psychop-
harmacological and psychotherapeutic treatments do not help all 
patients. Therefore, researchers and clinicians should consider 
neurobiological processes, together with psychological mecha-
nisms, to gain a more holistic picture of neurodevelopmental 
disorders (see also Research Domain Criteria; RDoC, Sanislow 
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et al., 2019). One invaluable tool that has the potential to iden-
tify neurobiological markers, and inform diagnosis and therapy 
is structural magnetic resonance imaging (sMRI). SMRI allows 
researchers and clinicians to quantify aspects of brain morpho-
metry, such as the size and shape of specific brain structures and 
regions. By showing how structural brain maturation in neurode-
velopmental disorders deviates from typical developmental tra-
jectories, sMRI may advance understanding of disorder etiology 
and ontogeny. Beyond increasing knowledge about the neurobio-
logical underpinnings of particular neurodevelopment disorders, 
a possible research and clinical application could be to directly 
compare and contrast brain developmental patterns across dis-
orders and subgroups (see Opel et al., 2020), and address ques-
tions about transdiagnostic versus disorder-specific developmen-
tal abnormalities. Further, it has been suggested that sMRI one 
day might even provide brain growth charts, similar to existing 
charts for height, weight and head circumference, which may be 
used at the individual level to help identify developing disorders 
early on. Pioneering studies in this field are emerging (Marquand 
et al., 2019). For example, Dong et al., (2020) analyzed data from 
two accelerated longitudinal cohorts from China and the United 
States, including in total 590 typically developing children with 
864 scans, and generated brain volumetric growth charts. Impor-
tantly, certain growth differences between the two cohorts were 
observed. Two possible causes of such differences are meth-
odological differences between sites and ethnicity differences, 
with both of these possibilities requiring increased attention in 
future endeavors to develop brain growth charts. Moreover, in 
this context where individual brain developmental differences, 
including infrequent atypically developmental trajectories, are of 
interest, existing studies are still limited in terms of sample size 
or cross-sectional design. For brain growth charts to be useful, it 
might also, at least in some situations, be necessary to scan the 
individual child undergoing clinical examination repeatedly over 
time. This may not only provide a static comparison with the 
variation in brain structure across children at the same age, but 
may also allow mapping her or his brain developmental trajec-
tories, similar to how the body growth charts typically are used.

In order to achieve these goals, the design, implementa-
tion, and interpretation of sMRI studies require particular 
attention. First, theoretical foundations of different brain 
morphometry metrics need to be considered when formu-
lating hypotheses and choosing data analysis tools. Second, 
the recruitment of children and adolescents with neurode-
velopmental disorders is often challenging. Third, these 
participants tend to move more during data acquisition, 
which often produces artifacts in the data. Trying to mini-
mize movement by ensuring compliance, training of study 
personnel regarding movement, controlling data quality and 
employing quality control software tools are important steps. 
Further important challenges comprise the choice of statis-
tical analysis approaches, including selecting appropriate 
thresholds for multiple comparison correction. In this paper 

we focus on mid-childhood (5 years) to early adulthood (24 
years), as there are almost no longitudinal sMRI data on neu-
rodevelopmental disorders for early childhood due to several 
methodological challenges. These comprise techniques to 
manage participant anxiety or excessive movement, techni-
cal obstacles like availability of child-appropriate equipment, 
and special data analysis techniques like the use of pediatric 
atlases to parcellate brain structure; as discussed in detail by 
Raschle et al. (2012). Moreover, we focus on brain’s gray 
matter and the semi-automated processing tool FreeSurfer, 
but refer to other tools where appropriate.

After giving an overview of metrics commonly used to probe 
brain morphometry, we will review typical neuromaturation 
from childhood to early adulthood and structural alterations in 
selected neurodevelopmental disorders, that is, ADHD, CD, and 
ODD. These frequent externalizing disorders with childhood 
onset exemplify key challenges in sMRI studies with neurode-
velopmental disorders like younger age and hyperactivity in the 
scanner. For reviews on structural alterations of the less frequent, 
yet extensively studied autism spectrum disorder, please refer to 
Bednarz and Kana (2018) and Ecker et al. (2015). Please note 
that the methodological considerations throughout this paper are 
not restricted to these disorders but instead apply to the diverse 
range of neurodevelopmental disorders and studies of typical 
development.

In this review we provide a hands-on, start-to-finish over-
view of challenges in clinical neurodevelopmental sMRI 
research, including suggestions on how to improve practices. 
We will discuss these challenges following the chronological 
order of any sMRI study: study design, image acquisition, 
image processing, quality control of data, and finally, statisti-
cal analysis and interpretation.

Brain Morphometry Metrics

To display brain structure, T1-weighted sequences depict high 
signal (i.e. lighter areas) for fat content as in white matter, and 
lower signal (i.e. darker areas) for more water content as in cere-
brospinal fluid, skull and gray matter (Westbrook & Talbot, 2018). 
Gray matter consists of neuron bodies, glial cells, dendrites, blood 
vessels, extracellular space, unmyelinated and myelinated axons. 
It is found in the outer layer of the cerebrum (cerebral cortex), 
as well as in subcortical structures, and in the cerebellar cortex. 
White matter consists chiefly of long-range myelinated axons and 
is found in the cerebrum and the cerebellum (Mills & Tamnes, 
2014). As the majority of sMRI studies of neurodevelopmental 
disorders focused on gray matter, this will also be the main focus 
in this paper.

One established method to characterize the volume and den-
sity of gray matter in brain structures is voxel-based morphom-
etry (VBM; Ashburner & Friston, 2000). However, these vol-
ume output metrics consist of a mixture of complex underlying  

401Neuropsychology Review  (2022) 32:400–418

1 3



effects, which has also lead to criticism (Ashburner, 2009; 
Davatzikos, 2004). In the following, we will hence focus on 
surface-based and volume-based analysis in semi-automated  
tools like FreeSurfer (Fischl, 2012), which allow the  
individual investigation of several morphometry metrics (see 
Textbox 1). For a short review of major differences between 
VBM and surface-based analysis, please see Greve (2011).

Surface‑based and Volume‑based Analysis

FreeSurfer (Fischl, 2012) is widely used, documented,  
freely available (http://​surfer.​nmr.​mgh.​harva​rd.​edu/) and widely 
supported by the neuroimaging community. FreeSurfer calcu-
lates various morphometry metrics in two processing streams: 
a surface-based and a volume-based stream (see Textbox 1 
and Fig. 1 for an overview of these metrics, their computation, 
and format). Cortical surface-based reconstruction (left side of 
Fig. 1) is based on geometric models of the cortical surface and 
the identification of the borders between certain tissue types 
(described in detail in Dale et al., 1999). The boundary between 
the pia mater and cortical gray matter forms the pial surface 
(medium blue in Fig. 1), while the boundary between cortical 
gray and white matter represents the white surface (light blue 
in Fig. 1). The cortex is further modeled as a surface with a 
mesh of triangles (not depicted in Fig. 1). Each meeting point 
of triangles (called a vertex) has exact coordinates which allows 
various non-linear manipulations, like inflation, to perform 
spatial normalization and group analysis, and to improve visu-
alization. These reconstructions allow for a differentiation of 
cortical volume, thickness, surface area, mean curvature, and 
local gyrification patterns. For cortical thickness (turquoise in 
Fig. 1), FreeSurfer calculates the distance between the pial and 
white surface (Fischl & Dale, 2000). Cortical volume repre-
sents a product of cortical thickness and surface area (gray in 
Fig. 1). Local gyrification index quantifies the gyrification at 

each vertex on the surface (yellow in Fig. 1), and is computed 
in a 3D fashion using a circular region of interest (ROI; 20 to 
25 mm) around each vertex (Schaer et al., 2008). Recent studies 
indicated different genetic, cognitive, and clinical correlates for 
different cortical morphometry metrics (Nissim et al., 2017; 
Raznahan et al., 2011; Winkler et al., 2010), emphasizing their 
independent development.

The volume-based stream (right side of Fig. 1) applies five 
stages when analyzing T1-weighted raw data (Fischl et al., 2002, 
2004) and was developed independently from the surface-based 
stream. It labels each voxel in cortical and subcortical tissue in a 
skull-stripped mask of the brain depending on voxel intensity and 
probability maps. Consequently, the volume of subcortical struc-
tures (e.g. nucleus caudatus, thalamus, putamen, globus pallidus, 
amygdala, and hippocampus), cerebellar gray and white matter, 
cortical gray matter, and cerebral white matter is calculated (see 
Fig. 1). FreeSurfer also calculates “estimated total intracranial 
volume” (eTIV; also called intracranial volume or ICV), using 
an atlas-representative template and the Atlas Scaling Factor 
(ASF) which represents “the whole-brain volume expansion  
(or contraction) required to register each individual to the tem-
plate” (Buckner et al., 2004, p. 725). For visualization of eTIV,  
please see Fig. 3 in Buckner et al. (2004, p. 728). This metric may also  
be used in cross-sectional comparative studies to adjust for indi-
vidual differences in brain size (see section Statistical analysis). 
Alternatively, whole brain volume may be used for adjustment. 
Typically, it is calculated by summing the gray and white mat-
ter volumes, excluding the brainstem. Still, whole brain volume 
may vary depending on researchers’ choice to include non-brain 
matter such as cerebrospinal fluid, ventricles, and choroid plexus.

Other semi-automated tools exist that analyze several of 
the aforementioned metrics, for example, AFNI (https://​afni.​
nimh.​nih.​gov/), Brain Visa (brainvisa.info), Brain Voyager 
(brainvoyager.com), CARET (brainvis.wustl.edu/wiki/index.
php/Main_Page), CAT12 (http://​www.​neuro.​uni-​jena.​de/​cat/), 

Fig. 1   Overview of structural 
brain metrics. Coronal 
slice of an individual brain 
indicating metrics according 
to the surface-based (left) and 
volume-based (right) processing 
streams as implemented in 
FreeSurfer. Depicted are the 
subcortical structures nucleus 
caudatus (blue-gray), thalamus 
(green), putamen (magenta), 
globus pallidus (deep sky 
blue), amygdala (cyan), and 
hippocampus (yellow). Black 
represents cerebrospinal fluid. 
Corpus callosum and ventricles 
are not labeled. For illustration 
purposes, the graphic and 
scaling was simplified and 
does not claim anatomical 
correctness. Figure courtesy 
of Anna Backhausen
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FSL (https://​fsl.​fmrib.​ox.​ac.​uk/​fsl/​fslwi​ki), and MindBoggle 
(https://​mindb​oggle.​info/). Please see Mills and Tamnes (2014) 
and Popescu et al. (2016) for overviews. Moreover, processing 
pipelines like the Human Connectome Project (HPC) pipeline 
(Glasser et al., 2013) combine several tools to facilitate multi-
modal neuroimaging analysis, including sMRI, resting-state 
MRI, task functional MRI, and diffusion MRI.

Textbox 1. Brain Morphometry Metrics Given by FreeSurfer 
(Fischl, 2012).

ATLAS‑based Spatial Normalization 
Estimated Total Intracranial Volume (eTIV)  Also 
called intracranial volume (ICV); may be used for global 
brain size adjustment when analyzing cortical volume, 
subcortical volume, and surface area in cross-sectional 
group comparisons. Reported in mm3 or ml.
Surface‑based Analysis  Surface area  Area of the brain 
surface, spanning two metrics with the same topology:

1)	 White surface (inner surface area): area of the bound-
ary between white and gray matter. Reported in mm2.
2)	 Pial surface (outer surface area): area of the bound-
ary between gray matter and pia mater. Reported in mm2.

Cortical thickness  Distance between white surface and 
pial surface; calculated by finding the closest point on the 
opposite surface. Reported in mm.

Cortical gray matter volume  Also called cortex vol-
ume; represents the volume inside the pial surface minus 
the volume inside the white surface minus tissue inside the 
ribbon that is not part of the cortex (e.g. hippocampus). 
Reported in mm3 or ml.

Mean curvature  Indicator for degree of cortex folding 
with increased curvature indicating increased or sharper 
folding; Calculated by the average of two principal curva-
tures of white matter or pial surface; measured in 1/r, where 
r is the radius of an inscribed circle. Reported in mm^-1.

Local gyrification index  Quantifies the amount of cor-
tex buried within the sulcal folds as compared with the 
amount of cortex on the outer visible cortex; extensive 
folding indicates large gyrification index whereas limited 
folding indicates small gyrification index. Has no unit.

Volume‑based Analysis  Subcortical volumes  Gray mat-
ter volume of various segmented subcortical structures 
(e.g. nucleus caudatus, thalamus, putamen, globus palli-
dus, amygdala, hippocampus, ventral diencephalon, and 
substantia nigra). Reported in mm3 or ml.

Cerebellar gray and white matter volume  Gray and 
white matter volume of the cerebellum. Reported in mm3 
or ml.

Cortical gray matter volume  Also called cortex vol-
ume; sum of all cortical label voxels. Reported in mm3 
or ml.

Cerebral white matter volume  Total volume inside the 
white surface minus anything that is not white matter, 
does neither include cerebellar white matter nor brain 
stem. Reported in mm3 or ml.

Typical and Atypical Structural Brain 
Development

The objective to track structural brain alterations and under-
stand the underlying mechanisms of neurodevelopmental 
disorders requires researchers and clinicians to first char-
acterize typical neurodevelopment. Components of cortical 
and subcortical morphometry develop along different tra-
jectories throughout childhood into adolescence and early 
adulthood (see e.g. Herting et al., 2018; Tamnes et al., 2017; 
Vijayakumar et al., 2016). In the next section we will first 
review typical neurodevelopmental trajectories, followed by 
a review on alterations in the externalizing disorders ADHD, 
CD, and ODD. For more details and schematic illustrations 
of typical neurodevelopmental trajectories for various brain 
measures, we refer to Mills and Tamnes (2014).

Typical Structural Brain Development

Mills et al. (2016) identified different trajectories for 
whole brain volume (here a composite measure of white 
and gray matter including the cerebellum) and eTIV 
(atlas-based spatial normalization procedure using a scal-
ing factor) across four longitudinal samples. While whole 
brain volume increased across childhood, peaked at age 
13 followed by a gradual decrease in adolescence and 
stabilized in the early twenties, eTIV showed an annual 
increase of around one percent between late childhood 
and mid-adolescence, followed by a stabilization in late 
adolescence (Mills et al., 2016).

Cortical gray matter volume, which comprises both 
cortical thickness and surface area, follows an inverted 
U-shape trajectory with an increase during early child-
hood followed by decrease during later childhood and 
adolescence, and into adulthood (Gilmore et al., 2012; 
Mills et al., 2016). The decrease of gray matter volume 
from childhood into adulthood seems to be largely driven 
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by decreases in cortical thickness (Storsve et al., 2014; 
Tamnes et al., 2017). According to pioneering studies, 
regions serving primary functions such as the visual and 
motor cortex show a gray matter peak earlier, while the 
peak in higher-order association areas such as the pre-
frontal and temporal cortex appears later (Gogtay et al., 
2004; Sowell et al., 2004). However, more recent lon-
gitudinal studies did not replicate a peak of gray matter 
during late childhood or adolescence. Instead, results 
suggest that gray matter volume is highest before 8 years 
of age (Mills et al., 2016), decreases across the second 
decade (Tamnes et al., 2013; Wierenga et al., 2014), and 
stabilizes in the third decade (Mills et al., 2016). For 
cortical thickness, recent studies reported a monotonic 
decrease from childhood to early adulthood (Tamnes 
et al., 2017; Walhovd et al., 2017). Generally, cortical 
surface area showed smaller changes relative to corti-
cal thickness and volume (Tamnes et al., 2017). Increase 
was reported until about 9 years of age (Wierenga et al., 
2014) followed by stability or relatively smaller decrease 
during adolescence (Amlien et al., 2016; Tamnes et al., 
2017; Vijayakumar et al., 2016; Wierenga et al., 2014). 
Although being one of the most prominent features of 
the human brain, a unified model on the development 
and role of cortical folding does not yet exist. Origi-
nally, cortical shape was seen as a product of underlying 
patterns of connectivity (see axon tension-based model 
of convolutional development; Essen, 1997). However, 
more recent investigations on the development of cor-
tical folding focus on genetic influences (Alexander-
Bloch et al., 2020), as well as mechanical (stiffness and 
elasticity), and cellular mechanisms (Llinares-Benadero 
& Borrell, 2019). So far, a smaller number of studies 
investigated the development of curvature and gyrifica-
tion patterns. These mostly found decreasing gyrification  
from childhood to adulthood (Mutlu et al., 2013; Raznahan  
et al., 2011). Concerning subcortical brain structures, 
the basal ganglia (i.e. nucleus caudatus, putamen, and 
globus pallidus), nucleus accumbens, and cerebellar 
gray matter showed volume decreases from ages 8 to 22 
(Tamnes et al., 2013), while the amygdala and hippocam-
pus appeared to increase with age during adolescence 
(Durston et al., 2001; Giedd et al., 1996) or showed little 
to no change (Tamnes et al., 2013). Consistent with these 
data, a recent study reported slight nonlinear increase for 
hippocampus and amygdala volume from age 10 to 22 
(Herting et al., 2018). In contrast to cortical, subcortical 
and cerebellar gray matter volumes, which for the most 
part decrease in adolescence, white matter volume has 
been shown to increase throughout childhood and ado-
lescence, and possibly even further (Mills et al., 2016; 
Westlye et al., 2010).

Although longitudinal studies are the gold standard and 
were widely used in recent years to characterize develop-
ment, please note that contradictory findings exist. These 
likely stem from specific methodological challenges of lon-
gitudinal projects like age range, number of assessments, 
sample characteristics, image processing techniques, and 
longitudinal statistical analytic methods. These challenges 
and best practices have been recently reviewed by Vijaya-
kumar et al. (2018).

Alterations in the Externalizing Disorders ADHD, CD, 
and ODD

In contrast to typical development, almost all studies on the 
neurodevelopmental disorders ADHD, CD, and ODD are 
cross-sectional, that is, focus on age-independent or age-
related differences between patient and control groups, as 
opposed to differences in development (but see longitudinal 
studies from Shaw et al., 2012, 2013, 2014). Overall, dis-
tinct alterations in neurodevelopmental disorders emerge for 
cortical and subcortical metrics (see e.g. meta-analysis on 
ADHD: Hoogman et al., 2017; Nakao et al., 2011 and meta-
analysis on CD or ODD: Noordermeer et al., 2016). Please 
note that results for these neurodevelopmental disorders are 
biased given high comorbidity rates between ADHD and CD 
or ODD in most studies, complicating interpretation (Vetter 
et al., 2020).

For ADHD, reductions have recently been found in eTIV 
(5%; Vetter et al., 2020), as well as in total brain volume (2.5%; 
Greven et al., 2015). Concerning cortical gray matter volume, a 
meta-analysis with children and adolescents with CD or ODD 
revealed reductions in the bilateral insula and the left middle/
superior frontal gyrus, possibly indicating compromised hot 
executive functions (e.g. emotion processing, empathy, and 
introspection) in CD or ODD (Noordermeer et al., 2016). In 
ADHD, studies showed decreased (Ambrosino et al., 2017), 
but also increased (Semrud-Clikeman et al., 2014) volume of 
the prefrontal cortex. Moreover, delayed cortical thinning in 
prefrontal areas in ADHD has been interpreted as a matura-
tional delay in regions important for cognitive control processes, 
including attention and motor planning (Shaw et al., 2007). Chil-
dren and adolescents with CD showed reduced cortical thickness 
within the parietal lobe, paracentral lobule, precuneus (Hyatt 
et al., 2012), and superior temporal cortex (Wallace et al., 2014). 
The thickness of the latter region also correlated with callous-
unemotional traits, the core emotional component of psychopa-
thy (Wallace et al., 2014). Concerning surface area, a reduced 
total, frontal, temporal, and parietal area has been found in chil-
dren and adolescents with ADHD (Noordermeer et al., 2017), as 
well as a delayed developmental trajectory of the prefrontal cor-
tex surface area (Shaw et al., 2012). For CD or ODD, a reduced 
prefrontal surface area (Fairchild et al., 2015; Sarkar et al., 2015) 
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or no surface area alterations have been reported (Wallace et al., 
2014). Furthermore, Shaw et al. (2012) reported no alterations 
in cortical gyrification for children and adolescents with ADHD 
from ages 10 to 18, neither in baseline gyrification nor in devel-
opmental trajectories. Similarly, no alterations in developmental 
trajectories for intrinsic curvature and local gyrification index 
were found for adolescents with ADHD (Forde et al., 2017). 
For 22 children and adolescents with CD, decreased gyrifica-
tion has been shown in the right ventromedial prefrontal cortex 
(Wallace et al., 2014), yet this finding did not survive cluster 
correction. Moreover, Hyatt et al. (2012) found widespread fold-
ing deficits in a similar sample, located mainly in anterior brain 
regions, including the left anterior insular cortex. In line with 
the somatic marker hypothesis, alterations in this region may 
be related to deficits in the formation of subjective feeling and 
empathy (Medford & Critchley, 2010). Concerning white matter 
volume, no alterations were found neither for ADHD, nor for CD 
(Greven et al., 2015; Stevens & Haney-Caron, 2012).

For subcortical brain structures, a recent mega-analysis 
spanning 1713 participants with ADHD aged 4 to 63 years 
found volume reductions in the amygdala, nucleus accum-
bens, hippocampus, and putamen (Hoogman et al., 2017). 
Here, the biggest effects emerged in the amygdala, which 
emphasizes the role of emotional dysregulation in ADHD 
(Hoogman et al., 2017). In children with CD or ODD, vol-
ume reductions in the striatum, amygdala, and hippocampus 
(Noordermeer et al., 2017; Rogers & Brito, 2016) seem to 
mirror deficits in emotion processing and decision-making. 
In sum, there is evidence for alterations in cortical and sub-
cortical structures in children and adolescents with neu-
rodevelopmental disorders such as ADHD and CD or ODD. 
Affected regions seem to reflect distinct mechanisms under-
lying the symptomatology of each disorder, that is, atten-
tion processes, motor planning, and emotional regulation 
in ADHD, as well as empathy, introspection, and emotion 
processing in CD and ODD.

Still, longitudinal studies with large samples are mostly 
missing, presumably in part due to challenges involved in 
conducting longitudinal studies with patient groups. How-
ever, longitudinal studies are critically needed to probe brain 
developmental trajectories in neurodevelopmental disorders, 
both at the group and individual level, as these may yield dif-
ferent results than case-control studies testing for age-effects 
(see e.g. discussion about limitations with cross-sectional 
designs in Kraemer et al., 2000). Longitudinal studies are 
needed to inform us about the ontogeny of structural brain 
alterations in neurodevelopmental disorders, and ultimately 
to track developmental trajectories in individuals with psy-
chopathological risk factors or a clinical diagnosis.

Finally, several findings remain inconclusive, espe-
cially when trying to unravel the unique role of the differ-
ent brain structure metrics in atypical neuromaturation. 
Divergent findings might arise, among other reasons, from 

methodological heterogeneity in image acquisition, image 
data processing, and statistical analysis. Hence, we will now 
present guidelines with the goal to help clinical researchers 
improve their practices and ultimately to gain more robust, 
cross-study comparable results for the field. In Textbox 2 we 
include a non-exhaustive summary of important considera-
tions in study design and guidelines for image acquisition 
and analysis, quality control, and statistical analysis, which 
apply to all studies in clinical developmental structural neu-
roimaging research.

Textbox 2. Guidelines for Reporting Methodological Details 
in Clinical Developmental sMRI Research

Study Design  ✓ Consider generalizability of sample 
during recruitment and report details (i.e. age, IQ, socio-
economic status, pubertal status, and ethnicity)

✓ Report physical and psychiatric comorbidities
✓ For the patient group:

–	 Report characteristics for (previous) medica-
tion and therapy, age of onset and duration of 
illness for neurodevelopmental disorder

–	 Report diagnostic procedure

•	 confirmed by whom and how (e.g. through 
questionnaires and clinical interviews by 
registered psychologist or study staff)

•	 cut-offs to define clinical psychopathology
•	 specify subtypes and severity

✓ Match groups according to e.g. sex and age; provide  
        information on matching strategy

✓ Provide information on missing data (e.g. question- 
         naires, medication status, IQ)

Image Acquisition
  ✓ Implement and report protocols to improve comfort  
      and thus reduce motion
✓ Report on participants’ motion
✓ Consider acquisition techniques (e.g. fMRI as proxy,  

         PROMO) for motion-correction
✓ Avoid change in scanner hardware, sequences and  

        protocols across sites and participants
–	 If not possible, account for differences in all analy-

ses

Image Processing and Quality Control
  ✓ Employ same software (and version) across all par- 
      ticipants within a study and report details
✓ Give preference to software that covers brain metrics  

         and regions of interest, chose these a priori based on  
         literature and hypotheses, and report details

✓ Report on quality control procedure
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–	 Inspection of the quality of raw and processed 
images with specification of exclusion criteria

–	 Tools or algorithms used during quality control pro-
cedure

–	 Manual changes/trouble shooting techniques

Statistical Analysis
  ✓ Consider e.g. sex, age, and global brain size as  
       covariates

–	 If correcting for global brain size:

•	 Report the brain metric and correction 
method used

•	 Report results from both raw and corrected 
regional brain measures

•	 Take into account relationships between sex, 
age, and global brain size

✓ Appropriately account for the multivariate nature of  
         the data by:

–	 Correcting for multiple comparisons applying 
suggested thresholds for different brain metrics

–	 Conducting multivariate analyses

Conclusions
  ✓ Interpret findings within the bounds of the analytic  
      technique and in line with the statistical analyses per- 
   formed (e.g. as relative differences if results were  
      adjusted for global brain size)

Steps to Successful Clinical Developmental 
Structural Neuroimaging Research

Study Design

Decisions on the study design depend on the goal of the 
clinical developmental sMRI study (Greene et al., 2016). If 
one seeks to understand underlying mechanisms of a disor-
der, a “clean” sample, that is, participants with symptoms 
of the neurodevelopmental disorder of interest who do not 
receive medication or treatment, is preferable (Greene et al., 
2016). However, this is seldom feasible as most patients with 
neurodevelopmental disorders receive some kind of treat-
ment. In addition, samples that are more naturalistic allow 
for investigation of treatment effects (e.g. medication). Fur-
ther, studies investigating neurodevelopmental disorders are 
often not capable of including large enough patient groups 
to compare effects of important, possibly confounding vari-
ables such as disorder subtypes, comorbidities, medication, 
and other treatments. Decisions made at this stage regard-
ing recruitment and study focus will substantially affect the 
capability to conduct statistical analyses and reliably inter-
pret results.

Many challenges of study design in clinical neurodevel-
opmental sMRI studies have already been discussed in detail 
elsewhere, spanning participant inclusion, sample composi-
tion (sample size, high versus low-functioning participants, 
subtypes, and comorbidities), medication, and other treat-
ment history, as well as considerations for control groups 
(Bednarz & Kana, 2018; Greene et al., 2016). Therefore, we 
kindly refer to these publications. For discussion on statisti-
cal power and selective, small or non-representative sam-
ples, please refer to Klapwijk et al. (2019a, 2019b). We will 
further present considerations for image acquisition, quality 
control and image processing.

Image Acquisition and Immediate Quality 
Control

Most studies including MRI examinations (i.e. functional 
task-based/resting-state MRI or diffusion MRI) also run a 
T1-weighted sequence by default to check for neuroanatomi-
cal anomalies and to coregister data. The FreeSurfer Wiki 
(https://​surfer.​nmr.​mgh.​harva​rd.​edu/​fswiki) recommends 
T1-weighted sequence acquisition protocols for use with 
the FreeSurfer processing pipeline. Contrary to functional 
MRI, which aims to monitor brain activity, the measure-
ment of brain morphometry is not timing sensitive during 
one MRI session. In addition, the acquisition time of typical 
sequences (≈1 mm isotropic) is relatively short (5-10 min-
utes) and users may inspect quality of T1-weighted images 
immediately after scan completion. Hence, if data quality 
was not satisfactory, such a short T1-weighted sequence 
can often be repeated (see also Backhausen et al., 2016) 
and a time buffer of 15 minutes included in the MRI session 
schedule may help reduce data loss in challenging samples 
like children and adolescents with neurodevelopmental dis-
orders. Therefore, personnel present at the scanner should 
learn about different types of artifacts (mostly technical and 
motion artifacts) and their impact on the data to be able to 
identify compromised data quality and decide on the neces-
sity to rescan. Technical artifacts include head coverage, 
radiofrequency noise, signal inhomogeneity, and suscepti-
bility (Costa et al., 2009; Reuter et al., 2015; Wood & Hen-
kelman, 1985). Motion artifacts result from the participant 
swallowing, blinking, chewing, turning, fidgeting or repo-
sitioning a limb (Bellon et al., 1986; Zaitsev et al., 2015). 
Younger age groups tend to produce more motion artifacts 
(Blumenthal et al., 2002; Satterthwaite et al., 2013; Van Dijk 
et al., 2012; Yuan et al., 2009). Moreover, images of children 
and adolescents with neurodevelopmental disorders might 
be particularly prone to motion artifacts due to the symp-
toms themselves (see for ADHD: Backhausen et al., 2016; 
Rauch, 2005; Vetter et al., 2020, and for CD: Huebner et al., 
2008). Our group recently demonstrated that good quality 
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of structural data can be acquired in clinical developmental 
samples such as ADHD and CD or ODD when applying a 
systematic and detailed workflow (Backhausen et al., 2016). 
A further important procedure to reduce movement is to 
ensure compliance by age-appropriate instructions with film 
clips, a playful approach like the “statue game”, or by using 
a mock scanner (Raschle et al., 2009), allowing the partici-
pants to understand and practice the importance of holding 
still. These preparations can even be individualized in the 
form of personalized familiarization strategies and rewards 
to enable children and adolescents with neurodevelopmental 
disorders to better tolerate the MRI scanner environment and 
ensure high quality images (Pua et al., 2020).

Moreover, prospective motion correction (PMC) techniques 
exist which track the participants’s head motion during the scan 
(e.g. through volumetric navigators) and modify pulse sequences 
to correct for participant motion (Tisdall et al., 2016). PMC tech-
niques specific to the three main scanner manufacturers include 
PROMO for GE (White et al., 2010) and motion tracking systems 
for Siemens (Zaitsev et al., 2006) and Philips (Ooi et al., 2009). 
To evaluate the costs and benefits of PMC, a recent study com-
pared reliability and quality of structural imaging in traditional 
Magnetization-Prepared Rapid Gradient-Echo (MPRAGE) ver-
sus MPRAGE with PMC in a developmental data set (Ai et al., 
2020). They reported higher intra-sequence reliability but poorer 
quality metrics in scans with PMC compared to the traditional 
MPRAGE and noted that scans with PMC were robust but not 
fully resistant to high head motion (Ai et al., 2020). In conclusion, 
Ai et al. (2020) recommend the use for hyperkinetic populations 
when increased motion can be expected (i.e. children, patients 
with neurodevelopmental disorders).

Still, from our experience, data quality can and should 
be evaluated at different stages in an sMRI study. First, 
check acquired images at the scanner console after run-
ning the structural scan to allow for re-scan if needed and 
possible. Second, visually rate data quality of acquired raw 
T1-weighted data sets according to a standard rating sys-
tem or using an automated method, and third, check data 
sets after they have been processed, again, either visually 
or using an automated method (see below and Backhausen 
et al. (2016) for a detailed workflow suggestion).

Another important concern of image acquisition is the reli-
ability, that is, overall consistency of MRI-derived output met-
rics. Reliability might vary across MRI scanners, field-strength 
and head-coils (Heinen et al., 2016). As higher field strength 
improves signal-to-noise ratio and spatial resolution (Tijssen 
et al., 2009), 3 Tesla MRI scanners are preferable as compared 
to 1.5 Tesla MRI scanners. More recently, ultrahigh-field 7 
Tesla MRI has been utilized given it provides greater signal-to-
noise ratio, contrast-to-noise ratio, and increased spatial reso-
lution as compared to lower magnetic fields (Barisano et al., 
2018). Although 7 Tesla MRI scanners became FDA approved 
for clinical use in October 2017 (Barisano et al., 2018), and 

a few studies, including the Human Connectome Lifespan 
(https://​www.​human​conne​ctome.​org/​study-​hcp-​lifes​pan-​pilot/​
phase​1b-​pilot-​param​eters), have successfully imaged children 
8 years and older on 7 Tesla MRIs (albeit not structural MRI 
but rather to collect resting-state and diffusion MRI), 3 Tesla 
MRI has been more widely used world-wide. Moreover, 7 Telsa 
human brain imaging still has some limitations and faces tech-
nical challenges, including increased specific absorption rate 
(SAR) and increased sensitivity of inhomogeneity and motion 
artifacts (Barisano et al., 2018). Participant protections are also 
unique given potential increases in nausea, claustrophobia or 
dizziness. As advances in magnetic resonance technology tackle 
these issues, mainstream imaging with 3 Tesla may eventually 
be replaced by 7 Tesla protocols. Regardless of field strength, 
MRI technologists or physicists should regularly perform data 
quality checks (e.g. signal-to-noise) to ensure stable machine 
characteristics and performance. It is imperative that all partici-
pants are scanned using the same hardware, software, and MRI 
sequence to avoid increased variability or even systematic bias. 
If unavoidable, these effects should be estimated and statistically 
accounted for (Lee et al., 2019), either by including site, scanner 
or sequence as a covariate in statistical analysis or by apply-
ing tools developed for multi-site harmonization. The recent 
algorithm ComBat removes unwanted non-biological variabil-
ity associated with different properties of MRI scanners from 
cortical thickness data in cross-sectional (Fortin et al., 2018) 
and longitudinal studies (Beer et al., 2020), which may increase 
power and reproducibility of subsequent statistical analysis.

Image Processing

The choice of an sMRI data processing tool depends 
on the research question and regions or metrics of inter-
est. Since tools differ with regard to reconstruction algo-
rithms and brain atlases, it is important to learn about the 
specific nomenclature of brain regions available for ROI-
based analysis. Importantly, all tools, although appearing 
to offer automatic processing, require thorough quality con-
trol and other “manual” decisions. We will thus term them 
“semi-automatic”.

As previously outlined in detail, FreeSurfer (Fischl, 
2012) computes volume-based and surface-based metrics. 
Using nonlinear transformations, cortical measurements 
are spatially re-sampled onto a standard surface-based 
template (fsaverage), which represents an average brain 
(Sabuncu et al., 2014). By default, FreeSurfer provides 
outputs of these estimates using the option of two standard 
atlases: the Destrieux atlas (Destrieux et al., 2010) and the 
Desikan-Killiany atlas (Desikan et al., 2006; see Fig. 2). 
In adults, the test-retest reliability tends to be higher when 
using the Desikan-Kiliany compared to the Destrieux 
atlas (Iscan et al., 2015); albeit to our knowledge a similar 
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comparison has not yet been performed in children and 
adolescents.

For more than one data set per participant, researchers 
and clinicians should use the FreeSurfer longitudinal stream 
(Reuter et al., 2010). This pipeline includes surface- and 
volume-based image processing in three steps: 1) CROSS: 
processing of every data set cross-sectionally, 2) BASE: tem-
plate creation, and 3) LONG: reanalyzing cross-sectional 
data sets with information from the BASE template. This 
process improves robustness compared to conventional 
cross-sectional analysis pipelines (Jovicich et al., 2013).

To sum up, researchers and clinicians need to keep in 
mind that output metrics and nomenclatures vary between 
image processing tools and their brain atlases, complicat-
ing interpretation of results. When comparing results of 
structural alterations in clinical developmental samples, 
it is thus crucial to consider the size and location of brain 
regions used for ROI-based analysis and how they compare 
to similar regions from other brain atlases implemented in 
different semi-automated processing tools. Moreover, for all 
neuroimaging studies, but perhaps especially for develop-
mental clinical sMRI, the next important step is to check 
data to ensure good data quality for valid results. We will 
thus present considerations on quality control of both raw 
and processed data in the next passage.

Quality Control After Image Acquisition

Bad image quality can lead to poor image reconstruction with 
semi-automated tools and, importantly, to underestimation 
of gray matter volumes and cortical thickness (Backhausen 
et al., 2016; Blumenthal et al., 2002; Reuter et al., 2015). One 

study also demonstrated the impact of quality control proce-
dures on developmental trajectories, as quadratic trajectories 
of cortical thickness across ages 5 – 22 years could no longer 
be identified when applying a more stringent quality control 
as opposed to the standard form (Ducharme et al., 2016). 
Hence, stringent quality control procedures are of critical 
importance in clinical developmental sMRI studies to prevent 
biased results on case-control differences or on developmen-
tal trajectories.

Conventional quality control procedures include visual 
inspection of raw or processed T1-weighted images, without 
knowing patient versus control participants to reduce inher-
ent bias. First, evaluating them according to a rating system 
including several quality markers (e.g. blurring, ringing, 
signal-to-noise ratio of the gray and white matter borders 
and subcortical structures, see rating system proposed by 
Backhausen et al., 2016) and then sorting scans into catego-
ries (e.g. as “pass”, “warn” or “fail” by Backhausen et al., 
2016; Reuter et al., 2015). Those categorized as “fail” should 
then be excluded from further data analysis. Implementing 
visual quality control based on rating systems like these can 
be challenging as it usually requires experienced raters and 
is excessively time consuming, especially for large data sets. 
Yet, the need of increased transparency and detailed reports 
of quality control protocols has to be emphasized, as to this 
point several previous studies did not include any description 
of quality control (Vijayakumar et al., 2018). Arguably, both 
inter-rater as well as intra-rater variability of visual quality 
control is generally high but may still lead to inclusion of 
poor quality scans and exclusion of scans of usable qual-
ity (Klapwijk et al., 2019a, 2019b). In an attempt to expand 
the conventional visual quality control, we present a non-
exhaustive selection of recently developed techniques in 

Fig. 2   ROI-based versus surface vertex-wise approach as implemented 
in FreeSurfer. ROI-based approach depicting the lateral part of the 
right hemisphere with Desikan-Kiliany atlas regions (left) and surface 
vertex-wise approach (right) for statistical analysis of clinical develop-
mental sMRI data. The hemisphere is inflated for a better view of gyri 
and sulci. The blue area on the right picture highlights a region with 
significant differences in cortical thickness between two groups, which 

falls partly into pars triangularis and rostral middle frontal cortex as 
indicated by Desikan-Kiliany atlas region outlines. Using the ROI-
based approach this difference may or may not contribute to signifi-
cant cortical thickness differences in the rostral middle frontal cortex, 
pars triangularis, or pars opercularis without the possibility of local-
izing the area more precisely. OP = pars opercularis; RMF = rostral 
middle frontal cortex; PT = pars triangularis
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Table 1. They are evaluated concerning quality control input 
measures, visual quality control and classifier categories, 
techniques, quality control outputs, and performance.

The first approach shown in Table 1 uses the Euler num-
ber from the standard FreeSurfer output as a proxy for 
cortical reconstruction quality. It represents the number 
of topological defects which may occur during the sur-
face retesselation step when structural data sets are recon-
structed by the FreeSurfer pipeline. An Euler number of 
2 (equal to that of a sphere) indicates a smooth cortical 
reconstruction. However, as stated by Fischl, Liu, & Dale 
(2001), two types of defects may occur during the recon-
struction process, termed “holes” and “handles”. Holes 
consist of small perforations in planar sheets of white mat-
ter and handles are bridges between nonadjacent points in 
the cortex. Each defect of either type reduces the Euler 
number and FreeSurfer seeks to maximize the Euler char-
acteristic to a value of 2 in subsequent topology correc-
tion steps. This quality measure was recently found to be 
consistently correlated with visual quality control rat-
ings across samples, being able to identify images scored 
“unusable” by human raters with a high degree of accu-
racy (area under the curve (AUC): 0.98–0.99; Rosen et al., 
2018). Rosen et al. (2018) reported z-scores for Euler 
numbers, and advised researchers to determine classifica-
tion thresholds for each specific data set. This approach 
was followed by Yu et  al. (2018) who identified three 
cases as outliers according to the averaged Euler number 
across the left and right hemispheres and thus excluded 
them from further analyses. Here, Yu et al. (2018) set the 
threshold for outliers to averaged Euler numbers < 3.29 
standard deviations below the sample mean.

Furthermore, the frame-by-frame displacement (FD) 
approach uses head movement parameters of functional MRI 
scanning (average FD calculated for each individual; Power 
et al., 2014) during the same scan session as a proxy for move-
ment during the structural scan (Savalia et al., 2017). As FD 
is derived from functional scan output it may be seen as an 
objective quantitative quality measure in comparison to quali-
tative visual quality control rating, which is arguably subjec-
tive. It is attempted to hereby identify and reduce potential 
motion-induced bias. Individuals showing excessive head 
motion during the functional scan combined with bad visual 
quality control ratings on the structural scans themselves can 
be “flagged” and subsequently removed from further statisti-
cal analysis. Nevertheless, measures derived from functional 
scans remain imprecise estimations as the severity of partici-
pants’ movement may vary across the scanning session.

Using automated machine-learning algorithms, the MRI 
Quality Control tool (MRIQC; Esteban et al., 2017) extracts 
64 image quality metrics (IQM) from raw T1-weighted 
images, including measurements of variability and specific 
artifacts in the images, and gives a recommendation whether 

to include or exclude each image. The tool also provides 
individual anatomical reports including calculated IQM and 
metadata, as well as a series of image mosaics and plots 
designed to assist visual assessment of structural images. 
MRIQC can be accessed freely online via a web interface 
using the OpenNeuro.org portal. Moreover, the source code 
is publicly accessible through GitHub (https://​github.​com/​
poldr​acklab/​mriqc) providing a maximum of transparency.

Moreover, the supervised-learning model Qoala-T tool 
(Klapwijk et al., 2019a, 2019b) predicts manual quality 
control ratings from FreeSurfer processed metrics including 
the Euler number (namely “Surface holes” in the FreeSurfer 
output files), as well as subcortical volumes, cortical thick-
ness, and cortical surface estimates. Researchers can choose 
either to predict scan quality by using the BrainTime data 
model provided by Qoala-T or to train the algorithm using 
ratings of their own data set. Qoala-T scores ranging from 0 
to 100 are provided for every individual scan (scores smaller 
than 50 are advised to be excluded from further analyses). 
Still, as the algorithm had been originally trained based on 
subjective visual quality control ratings, the authors recom-
mend to visually check scans with a score between 30 and 
70 as misclassified scans are more likely to fall within these 
boundaries (Klapwijk et al., 2019a, 2019b). The use of the 
Qoala-T tool could greatly reduce the time needed for qual-
ity control as only a part of the data set has to be visually 
checked. More importantly, this procedure could further help 
to reduce variability related to visual quality control, thereby 
benefiting the comparability of data quality between studies 
(Klapwijk et al., 2019a, 2019b). Qoala-T scores could even be 
used as a covariate for head motion, that is, motion artifacts 
in statistical analysis. In sum, these tools provide researchers 
with a good overview of the quality of their data set and assist 
decisions about including or excluding data sets.

After good data quality has been insured, more challenges 
await when statistically testing for brain structure differences 
in neurodevelopmental disorders. We will address challenges 
concerning ROI-based versus vertex-wise analysis, covari-
ates, multiple comparison correction, and generalization of 
results in the next section.

Statistical Analysis

Statistical analysis affects interpretation of results and may 
potentially bias decisions concerning diagnosis and treat-
ment of a disorder. For a detailed review on statistical infer-
ences and pitfalls in neuroimaging, see Hupé (2015).

FreeSurfer offers two possibilities to statistically analyze 
group comparisons and correlations with other variables of inter-
est, namely the ROI-based and surface vertex-wise approach. 
ROI-based includes analyzing the subcortical and cortical vol-
umes, cortical thickness, surface area, and local gyrification 
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values according to pre-defined atlases (Destrieux or Desikan-
Kiliany; see section Image processing). ROIs should be derived 
a priori based on literature review and with specific hypotheses, 
as an excessive number of ROIs may lead to problems during 
multiple comparisons correction. By contrast, vertex-wise group 
analysis fits a between-subject general linear model at each par-
ticular surface vertex to compare values of cortical thickness, 
surface area, volume or local gyrification. Statistical maps are 
then overlaid on a template brain as a surface map represent-
ing contrast estimates in different colors. This approach may 
be useful in explorative studies without a priori hypotheses on 
affected brain regions. Note that FreeSurfer users can conduct a 
ROI-based analysis with segmented subcortical and parcellated 
cortical metrics, while the vertex-wise analysis is only available 
for cortical metrics. Choosing one or the other approach depends 
on the effects of interest. If regions with significant group differ-
ences follow gyral borders defined in a ROI-based atlas, using 
these pre-defined parcellations may increase statistical power. 
On the downside, effects in smaller or more specific regions 
might not be detected as values are averaged within one parcel-
lated ROI (see Fig. 2). Finally, both methods may be used in one 
study to complement each other.

Furthermore, researchers and clinicians need to consider 
several covariates during statistical analysis of clinical neu-
rodevelopmental sMRI data as they may confound between-
subject comparisons. These closely intertwined variables 
include age, sex, and different global brain size measures. 
Researchers and clinicians should thoroughly look into the 
methods and metrics to use for correction and take them into 
account when interpreting results. The participants’ age mat-
ters especially during periods of dynamic neurodevelopment 
like childhood and puberty, as regional brain metrics change 
with time (see section Typical structural brain development). 
Therefore, researchers and clinicians should examine scaling 
of regional metrics of interest with age within each group 
and interpret group differences with respect to the metrics’ 
underlying developmental trajectory. Concerning sex dif-
ferences in structural brain development, boys have larger 
head and brain sizes (De Bellis et al., 2001; Paus et al., 2017; 
Sowell et al., 2002) as compared to girls. Moreover, subtle 
sex differences have been reported for cortical thinning dur-
ing adolescence (higher rate of cortical thinning in females 
in right temporal regions and the left temporoparietal junc-
tion; Mutlu et al., 2013). As sex differences during neurode-
velopment may be associated with a different age of onset 
and clinical presentation of neurodevelopmental disorders, 
sex should always be considered in statistical analysis, for 
example, by including it as a covariate.

Moreover, accounting for global brain size or not is a par-
ticularly important issue in cross-sectional comparative stud-
ies, since differences between groups may be driven by interin-
dividual global brain size differences and may not be inherent 
to the regional metric of interest. In longitudinal developmental 

studies, this issue is more complex, as global brain size meas-
ures may themselves change with age in children and adoles-
cents. The decision whether or not to correct for global brain 
size (O’Brien et al., 2011) and which metric and method to use 
for this correction (Mills et al., 2016) may affect both results 
and their interpretation. As already discussed (section Typi-
cal and atypical structural brain development), estimations for 
global brain size differed significantly in past sMRI research, 
including, for example, cerebral volume (De Bellis et al., 
2001), total brain volume (Sowell et al., 2007), whole brain 
volume, and eTIV (Mills et al., 2016).

Moreover, researchers and clinicians may use three main 
adjustment methods to correct regional metrics for these 
global sizes: proportion, analysis of covariance, and residual 
approach (although the last is rarely used anymore as it may 
be difficult to interpret; O’Brien et al., 2011). In the propor-
tional method, regional brain metrics of interest are divided 
by global brain size, leaving a proportional value for further 
analyses. In group comparisons, this implies the assumption 
of an identical linear relationship of each brain region and 
total eTIV or whole brain volume between the groups. If these 
conditions are not met, calculating a proportion may intro-
duce a bias. The analysis of covariance method accounts for 
shared variance with global brain size by regression statistics 
through the inclusion of global brain size as a covariate into 
the analysis. Due to its simpler implementation the analysis 
of covariance method is preferred, especially in vertex-wise 
analysis, as the proportional method would imply adjusting 
each cortical vertex prior to statistical analysis (Vijayakumar 
et al., 2018). Notably, these variables may affect results of 
corrected regional brain metrics differently, as developmental 
trajectories of cortical gray matter volume from childhood 
to adulthood differed depending on the adjustment method 
and metric for brain size (eTIV or whole brain volume; Mills 
et al., 2016). Furthermore, eTIV and whole brain volume have 
both been found to account for sex differences in gray mat-
ter development during adolescence using the proportional 
adjustment method, yet only whole brain volume did so when 
applying the analysis of covariance adjustment method (Mills 
et al., 2016). Hence, the relationship between brain size and 
sex should be carefully investigated when including these two 
covariates in statistical analysis. For a further discussion of 
the assumption of linear scaling between regional and global 
brain size, please also see Vijayakumar et al. (2018).

Importantly, an adjustment for global brain sizes is not 
always necessary. ETIV should be included as a covariate 
only when analyzing metrics that scale with global brain size, 
including subcortical volume, cortical volume, and surface 
area (see FreeSurfer Wiki; https://​surfer.​nmr.​mgh.​harva​rd.​
edu/​fswiki/​eTIV). As cortical thickness is thought to be inde-
pendent of global brain size, eTIV should not be considered 
and the majority of research on cortical thickness chose not 
to control for global brain size (Vijayakumar et al., 2018). 
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Correspondingly, Barnes et al. (2010) propose to adjust for 
age, sex, and global brain size when analyzing gray matter 
volume and an adjustment for age and sex when analyzing cor-
tical thickness. Taken together, researchers and clinicians are 
strongly advised to present results for both raw and corrected 
brain metrics, report metrics and methods used for correction 
in detail, and discuss how correction may affect interpretation 
of results.

A big challenge, especially in vertex-wise analysis, is con-
trolling the false positive rate (FPR) of results. The FPR rep-
resents the rate of type-I errors (assuming a group difference 
when in truth there is none), which should be arbitrarily but 
conventionally less than 5 % (Benjamin et al., 2018). In clini-
cal developmental structural neuroimaging this is aggravated 
by the tens of thousands single measurements (vertices) in an 
image of the brain, where a large number of hypotheses are 
tested simultaneously. For a summary of approaches to this 
multiple comparisons problem, see Bender and Lange (2001) 
on when and how to adjust for multiple testing and Greve and 
Fischl (2018) on specifics in surface-based analysis.

Considering vertex-wise group comparisons in FreeSurfer, 
parametric gaussian-based Monte Carlo (MC) simulation is used 
by default to compute the FPR. MC simulation extracts sets of 
contiguous vertices (clusters) after smoothing and threshold-
ing white noise (cluster forming threshold; CFT) in many itera-
tions, usually 10,000. Subsequently, this algorithm computes the 
p-value of the clusters in the real data (Greve & Fischl, 2018). 
This parametric approach relies on gaussian spatial smoothness 
of data and a gaussian distributed underlying noise, which is not 
always met in neuroimaging data (Eklund et al., 2016). Non-
gaussian permutation offers an alternative approach to multiple 
comparison correction and was previously found to adequately 
control FPRs (Winkler et al., 2014). Calculations of both MC 
simulation and permutation depend on the smoothing kernel (2, 
4, 6, 8, 10, or 12 mm full-width/ half-max; FWHM) and CFT 
(0.05, 0.01, 0.005, or 0.001). In a study testing the performance 
of these two approaches in vertex-wise analysis of cortical thick-
ness, surface area, and volume, Greve and Fischl (2018) sug-
gested the following when applying MC simulation:

–	 thickness or volume: CFT ≤ 0.001 and any smoothness 
level OR CFT ≤ 0.005 with smoothness level FWHM 
> 10 mm;

–	 surface area: CFT ≤ 0.001 and smoothness level FWHM 
> 10 mm

Still, often no vertices survive with such stringent CFTs, 
greatly reducing power. Permutation allows less stringent 
CFTs as it adequately controls FPR with all combinations 
of CFT and smoothness levels. However, permutation comes 
with some disadvantages including more complicated set 
up, high computation time, and it requires the data to be 
exchangeable across participants, a topic discussed in detail 

by Winkler et al. (2014). Both MC simulation and permuta-
tion are available within FreeSurfer statistical analysis using 
the mri_glmfit-sim script.

For ROI-based analysis, false discovery rate (FDR) is fre-
quently used to handle the multiple-testing problem (Benjamini 
& Hochberg, 1995). This method can be easily applied with 
tools like the False Discovery Rate Online Calculator (https://​
tools.​carbo​cation.​com/​FDR). Similarly, researchers and clini-
cians may apply Bonferroni adjustment procedures (Bland & 
Altman, 1995). The original Bonferroni method is fairly simple 
but at the same time tends to have low power and should be 
used for a small number of tests (Bender & Lange, 2001). The 
Bonferroni method and some improvements like the more pow-
erful Holm method (Aickin & Gensler, 1996), and correction for 
correlated outcome variables are implemented and easy to apply 
(e.g. via Simple Interactive Statistical Analysis; https://​www.​
quant​itati​veski​lls.​com/​sisa/​calcu​latio​ns/​bonhlp.​htm). As a weak-
ness of these procedures, the interpretation of a finding depends 
on the number of other ROIs going into the FDR or Bonferroni 
correction. Hence, excessive numbers of ROIs reduce the prob-
ability of any significant result and truly important differences 
may be deemed non-significant. In any case, researchers and 
clinicians should include and transparently report steps taken 
to correct for multiple comparisons, and discuss possible inter-
pretations of each result to ease comparability between studies.

Results on altered brain structure in neurodevelopmental 
disorders, even when statistically significant and corrected for 
multiple comparisons, often need to be interpreted with cau-
tion due to small sample sizes and redundant samples when the 
same participants are utilized in several reports (Anderson & 
Kiehl, 2012). As mentioned earlier, recruiting enough children 
or adolescents with neurodevelopmental disorders who ful-
fill inclusion criteria is often difficult for smaller laboratories. 
Smaller samples are usually more manageable, and researchers 
are able to thoroughly check for exclusion criteria in each par-
ticipant. Concerning the goal to obtain results from clean sam-
ples, this is beneficial. Yet, small samples have been shown to 
more likely yield false significant findings and produce type-I  
errors with relatively large effect sizes (Ingre, 2013). Larger 
sample sizes allow for a better estimation of effect sizes (Ingre, 
2013), which are usually quite small in sMRI research.

One way to increase the value of small clinical develop-
mental samples is to work together across multiple centers 
to increase total sample sizes. Researchers and clinicians 
can pursue this goal via collaborations in multi-center stud-
ies. Another option is to take part in global alliances like the 
ENIGMA (Enhancing NeuroImaging Genetics through Meta-
Analysis) consortium, where over 50 diverse working groups 
participate in post-hoc data pooling and analyses (Thompson 
et al., 2020). These efforts accounted for the largest sMRI 
studies to date in several neurodevelopmental disorders (e.g. 
Hoogman et al., 2017 for ADHD). In doing so, large scale 
study findings from the ENIGMA-ADHD working group with 
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36 cohorts from around the world indicated significant corti-
cal thickness reductions in the fusiform, parahippocampal, 
and precentral gyrus, as well as the temporal pole in 1018 
children with ADHD compared to 1048 controls (Hoogman 
et al., 2019). Likewise, surface area reductions were found 
with the largest effect size d being - 0.21 for total surface 
area (Hoogman et al., 2019). Importantly, such collabora-
tive approaches heavily rely on transparent standardized 
procedures (study protocol, hardware and sequences used 
for acquiring sMRI data, quality control procedure, process-
ing tools, statistical analysis methods etc.). These measures 
are vital to enable replication studies and to include studies 
in meta-analyses to combine several smaller studies on the 
same research questions. To further promote collaboration, 
the Brain Imaging Data Structure (BIDS) has been developed 
to organize and describe neuroimaging and behavioral data 
sets (i.e. file naming and folder organization) prior to image 
processing to facilitate automatic pipelines and quality control 
protocols in shared data (Gorgolewski et al., 2016).

Please note that all aforementioned statistical analysis 
approaches fall under easier implemented univariate meth-
ods which assume that differences between groups can be 
observed in isolated ROIs or vertices but ignore relationships 
between them (Davis & Poldrack, 2013). Additional multivar-
iate methods are also valuable as they allow for more complex 
analyses concerning cortical networks like identifying cortical 
regions that co-vary together (Alexander-Bloch et al., 2013) 
using, for example, nonnegative matrix factorization (Ball, 
Beare, and Seal 2019) or machine learning (Peng et al., 2013).

To sum up, it is highly advised to follow guidelines for 
reporting methodological details in clinical developmental 
sMRI research. An overview of such guidelines was presented 
by Vijayakumar et al. (2018) spanning sample, acquisition, pro-
cessing, analysis, and conclusion. As the authors formulated the 
guidelines specifically for longitudinal sMRI studies investigat-
ing typical brain development, we modified them to apply to 
clinical developmental sMRI (see Textbox 2). They represent 
comprehensive guidance when implementing transparency of 
practices in order to reach accurate understanding of neurode-
velopmental disorders.

Conclusion

In conclusion, we have discussed several important meth-
odological challenges of clinical developmental sMRI 
research and provided step-by-step hands-on guidelines 
how to approach them in the order of an sMRI study: study 
design, image acquisition, image processing, quality con-
trol at different stages, and statistical analysis and inter-
pretation. Variation in these approaches at each step may 
have contributed to differing results and interpretations of 

typical neuromaturation from childhood to adolescence, 
and of alterations in these processes in neurodevelopmental 
disorders. Further research should seek for three things: 
1) adopt greater transparency of practice and rationales 
for decisions on study design, image acquisition, image 
processing, and statistical analysis, 2) conduct analyses 
and report findings for each brain morphometry metric to 
achieve a complete picture of brain structure and matura-
tion and possible alterations, 3) empirically examine the 
effects of varying methods on results, in order to promote 
the most robust results possible. Adoption of these criteria 
will help to ensure findings do not only apply to specific 
samples or methods, but are robust enough to ultimately 
promote a solid and accurate understanding of neurodevel-
opmental disorders.
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