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Abstract

Background and Purpose: Diffusion-weighted imaging is able to capture important 

information about cerebral white matter (WM) structure. However, diffusion data can suffer from 

MRI and biological noise that degrades the quality of the images and makes finding important 

features difficult. We investigated how effectively local and non-local denoising increased the 

sensitivity to detect differences in cerebral WM in neuroHIV.

Methods: We utilized principal component analysis (PCA) denoising to detect WM differences 

using fractional anisotropy. Local and non-local PCA denoising paradigms were implemented 

that varied in search area and number o components. We examined different-sized WM 

tracts that consistently show differences between people living with Human Immunodeficiency 

Virus (HIV) (PWH) and HIV-negative individuals (corpus callosum, forceps minor, and right 

uncinate fasciculus), and size-matched tracts not typically associated with HIV-related differences 

(spinothalamic, right medial lemniscus, and left occipito-pontine). We first conducted a full 

sample comparison of WM differences between groups, and then randomly reduced the sample to 

the point where we still found differences in WM.

Results: Non-local PCA denoising allowed us to detect differences after a sample reduction of 

35% in the forceps minor, 17% in the right uncinate fasciculus, and 6% in the corpus callosum.

Conclusions: PCA denoising had a beneficial effect on detecting significant differences PWH 

after sample size reduction. The smaller forceps minor tract and right uncinate fasciculus showed 

greater sensitivity to PCA denoising than the larger corpus callosum. These results show the 

importance of identifying the most effective PCA denoising strategy when investigating WM in 

PWH.
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Introduction

HIV disease is commonly associated with white matter (WM) damage in the brain.1 

Diffusion-weighted imaging (DWI) is an MRI technique that quantifies WM damage 

by measuring the diffusion of water molecules across individual voxels. DWI has been 

utilized in multiple studies to characterize WM differences in persons with Human 

Immunodeficiency Virus (HIV) (PWH) relative to persons without HIV. However, an issue 

associated with DWI is its inherent low signal-to-noise ratio (SNR), which degrades image 

quality and obscure interpretation of important neurobiological features.2 DWI data with 

inherently low SNR might be further susceptible to signal fluctuations due to arterial blood 

pulsation and participant head motion,3 and the image quality might be degraded by noise 

of various patterns (e.g., Gaussian, speckle, or salt and pepper noise).4 Because of the 

issues related to confounding biological noise and low SNR, DWI studies usually require a 

relatively large number of individuals to detect WM signal changes that reflect underlying 

pathological processes due to diseases. The requirement of a large sample size could be 

a concern when imaging clinical populations, as recruitment can be difficult for multiple 

reasons including a small pool of available participants, the high cost of MRI scanning, and 

difficulty in reaching the desired population.

To reduce the negative impact of image noise, DWI data typically undergo a denoising 

step as part of pre-processing, aiming to reduce noise without removing anatomical features 

from the data. The application of denoising can theoretically result in increased power to 

identify WM deficits in clinical samples, and thus reduce the number of participants needed 

to achieve the same effect size as compared with non-denoised data. However, denoising can 

be achieved with different approaches with various combinations of filtering parameters, and 

it remains unclear which denoising protocol is most suitable for clinical studies.

One of the most promising and commonly used DWI denoising approaches is based on 

applying principal component analysis (PCA) along the diffusion dimension. This paradigm 

is referred to as local denoising. As reported by Manjon, Coupe, Concha, Buades, Collins 

and Robles 5 the signal variations of neighboring voxels along the diffusion dimension 

could be decomposed into components reflecting diffusion relevant signals and noise, and 

then denoising is achieved by suppressing the noise components in reconstruction. Inspired 

by Manjon’s method (specifically designed for diffusion MRI) and Buades’ earlier work 

on non-local denoising (not specific for diffusion MRI),6 we implemented a non-local 

PCA based diffusion MRI denoising procedure, comprising 1) identifying non-neighboring 

voxels that demonstrate similar signal variation patterns along the diffusion dimension, and 

2) suppressing noise-dominant principal components in those identified non-neighboring 

voxels.7

Local and non-local implementations of PCA based diffusion MRI denoising approaches 

have relative advantages. Local PCA denoising could be operated without needing 

procedures of identifying matching voxels, and is thus not susceptible to errors resulting 

from identifying “non-matching voxels”. However, local PCA denoising is known to be 

susceptible to partial volume effect. A benefit is that local PCA denoising is relatively 

inexpensive computationally. Non-local PCA denoising performs PCA filtering across a 
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group of voxels that have a high level of homogenous information (e.g., along two 

white-matter fiber tracts of the same orientation), which could better preserve anatomic 

resolvability (e.g., retaining high-resolution representation of thin fibers). In addition, as 

the non-local denoising method utilizes voxels that are not necessarily contiguous, it might 

reduce the chance of mixing signals of different tissue types from neighboring voxels.

In addition to local and non-local PCA denoising, there are other denoising paradigms 

currently available that were not examined in this investigation. Listed below is a non-

exhaustive list of alternative denoising filters. The non-local estimation of multispectral 

magnitudes (NESMA) filter is utilized on multispectral MRI data. This method searches for 

voxels with similar multispectral signal patterns to a given voxel. While similar to the above-

described non-local PCA methods, this filter instead does not rely on a fixed number of 

voxels to be searched for similarity to the index voxel. Instead, NESMA utilizes an adaptive 

strategy to determine the optimal threshold value using an unbiased criterion.8,9 While a 

promising denoising paradigm, it has thus far been applied to multispectral MRI data with 

multiple TE times. These sequence parameters are not available in most clinical research 

scans. Whereas PCA denoising is applicable to diffusion-weighted images with a single TE. 

Another denoising methodology is utilized for high angular resolution diffusion imaging 

where each voxel is sampled along multiple dimensions that are uniformly distributed on 

a sphere. This method combines singular value decomposition (SVD) and non-local means 

(NLM) filters and is referred to as SVD-NLM. Here, matching patches are identified, 

forming a matrix for SVD decomposition that implements low rank approximation to 

the data. A modified NLM filter is then used to remove residual noise.10 However, this 

filter is only applicable for high angular resolution diffusion images that are not always 

available from legacy data or clinical scans. PCA filters can be applied to both high and 

low angular resolution diffusion data. Another method uses the linear minimum mean 

square error estimation for a Rician distribution of noise in magnitude diffusion images. 

This method utilizes a closed-form solution and the estimator is based on a local search 

area.11 DWI collected with parallel MRI may be distorted by other types of non-Rician 

spatially-dependent noise of which PCA is effective at denoising. While all of these methods 

have been successfully tested, the scope of this investigation is to implement PCA denoising 

strategies that are commonly implemented in popular DWI processing software.

To our knowledge, there has not been an investigation on how local and non-local denoising 

paradigms affect the sensitivity to detect WM signal abnormalities related to HIV. Data from 

PWH are ideal for evaluating DWI data processing pipelines (including denoising), as HIV 

disease is known to cause decreases in WM integrity as measured by fractional anisotropy 

(FA).12 FA is a voxel-wise scalar measurement of the degree of directional preference for 

water diffusion, and is closely related to WM tract structure. If the diffusion of water occurs 

in a greater number of directions, it can be interpreted as having less structure within that 

voxel. Reductions in FA are believed to result from HIV crossing the blood-brain-barrier 

and forming a neural reservoir despite successful intervention with antiretroviral therapy.13 

HIV-infected cells produce neurotoxic substrates that break down the blood-brain barrier and 

allows for the influx of neurotoxic substances into the brain.14 These effects are thought to 

occur relatively early in the infection, as decreased WM integrity has been observed in PWH 

within the first 100 days of infection.15
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In the present study, we evaluated whether local and non-local PCA denoising paradigms 

increase the sensitivity to detect HIV induced FA signal changes relative to no denoising. 

Specifically, using diffusion MRI data obtained from 30 adults with and 31 without HIV 

disease, we examined mean FA within the corpus callosum, forceps minor, and right 

uncinate fasciculus, regions commonly known to be affected by HIV disease.1,16,17 While 

the corpus callosum is the most reported region when examining WM differences in PWH, 
18 multiple studies have found differences across multiple projection and association fiber 

tracts including the forceps minor and right uncinate fasciculus.19–21 These regions were 

also selected because they differ in size (specifically, the corpus callosum is a large WM 

tract, the forceps minor is a medium size tract, and the right uncinate fasciculus is a 

small WM tract), and therefore might benefit differently from local and non-local PCA 

denoising approaches. Specifically, larger WM tracts are expected to directly benefit from 

local PCA denoising, while smaller WM tracts that are susceptible to partial volume effect 

might benefit more from non-local PCA denoising. We also examined mean FA within 

the left occipito-pontine, spinothalamic, and right medial lemniscus WM tract, which are 

comparably sized regions that do not typically have abnormal structure in PWH. These 

regions were selected as control regions as we would not expect to find group differences 

in these structures, and could be more confident that PCA denoising was not introducing 

spurious effects.

Our analysis strategy consisted of first conducting a full sample comparison between groups 

to identify differences in WM. This full sample comparison entailed comparing PWH and 

HIV-negative individuals to identify if the groups differed in WM integrity within the six 

tracts using no denoising. Local and non-local PCA denoising was then applied and a 

full sample comparison was again conducted to observe the effect of PCA denoising on 

group differences. We then decreased the sample size incrementally to find the minimum 

number of participants (with permutation resampling) displaying significant differences 

under each PCA denoising procedure utilizing different parameters consisting of number of 

voxels and principal components. We hypothesized that PCA denoising, with the appropriate 

implementation of parameters, will show increased sensitivity to detect group differences in 

WM tracts known to be impacted by HIV.

Methods

Participants

This study included adults with (N=30) and without (N=31) HIV disease who were aged 

24-55 years. For individuals with known HIV diagnosis, HIV status was verified by 

medical record review. PWH had to have been diagnosed for >3 months and prescribed 

antiretroviral medications. For others, an oral rapid antibody test (OraSure ADVANCE® 

HIV-1/2) was conducted; all HIV-negative participants had a non-reactive result. Exclusion 

criteria were: English non-fluency or illiteracy; <8th grade education; severe learning 

disability; unresolved neurological disorders or neuroinfections; severe head trauma with 

loss of consciousness >30 minutes and persistent functional decline; bipolar I or psychotic 

disorder; acute psychiatric symptoms interfering with functioning; MRI contraindications; 

and/or impaired mental status. Current nicotine, alcohol, and marijuana use was permissible, 
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but participants could not meet criteria for current dependence for alcohol and/or marijuana. 

For other drugs, individuals were excluded for a history of dependence, lifetime regular use 

for >2 years, any use in the past 30 days, and/or a positive urine drug screen.

Procedures

All participants provided written informed consent, and procedures were approved by the 

institutional review board at Duke University Health System. Individuals completed an in-

person screening that assessed medical, psychiatric, and substance abuse histories. Eligible 

participants returned for MRI scanning.

Brain data were acquired on a 3.0T GE Discovery MR750 whole-body scanner using an 

8-channel head coil. High-resolution T1-weighted images were recorded using a spoiled 

echo sequence [repetition time (TR) = 8.10ms, echo time (TE) = 3.18ms, field of view 

(FOV) = 25.6cm, 256*256 matrix, 12° flip angle, voxel size = 1mm3, 166 interleaved slices 

of 1mm thickness). DWI data were acquired in the axial plane using a diffusion sensitized 

parallel echo-planar sequence (FOV = 25.6 cm, 128*128 matrix, 90° flip angle, voxel size 

= 2mm x 2mm x 2 mm, interleaved slices of 2mm thickness) with 30 diffusion directions. 

Additional parameters differed slightly between protocol 1 (b-factor = 900 s/mm2, TR = 

10,000/min, 73 slices, TE was set to use the minimum to maximize the signal-to-noise ratio, 

and has a range of 77.9ms – 84.9ms) and protocol 2 (b-factor = 800 s/mm2, TR = 8000, 67 

slices, TE was set to use the minimum to maximize the signal-to-noise ratio, and has a range 

of 79.4ms – 86.7ms). However, the proportion of PWH was comparable across the two DWI 

protocols (55% and 47%; x2=.412, p=.521).

Quantification and correction of intra-scan motion

To ensure that any observed effect was not a result of in-scanner motion, we calculated 

head motion parameters to compare groups. Using eddy as implemented in FSL,22 diffusion 

motion parameters of translation and rotation were used to calculate framewise displacement 

(FD),23 which sums the magnitudes of the translation and rotation components for a 

hypothetical voxel 50mm from the center of rotation. As an additional metric of motion, 

instead of the Manhattan-distance approach used by FD, we calculated the exact maximum 

distance (using the same 50mm sphere described above) a hypothetical voxel might travel 

given the translation and rotation components. This measure, though highly correlated 

with FD in our data (r=.996; p<1e-10), may be more accurate at assessing motion if the 

participant did not move exactly along or around one of the X, Y, or Z axes.

Denoising procedures

Local PCA denoising—We expanded the default setting of the dwidenoise program from 

MRtrix324 to further implement varieties of parameters (in Python: see the subsequent 

section on PCA denoising parameter space) for the local PCA denoising approach. 

dwidenoise estimates and eliminates noise-dominant principal components from diffusion-

weighted scans25,26 using PCA on the time-series in a cubic neighborhood surrounding each 

voxel, and characteristics of the Marchenko-Pastur distribution are used to determine, on a 

voxel-by-voxel basis, the number of non-noise components to use to regenerate the central 
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voxel’s denoised signal. By default, dwidenoise chooses a 5x5x5 voxel neighborhood for 

data with 28-125 diffusion-weighted volumes.

Non-local PCA denoising—Non-local PCA denoising was based on the following 

procedures: for every voxel V in the WM mask, we recruit a chosen number of voxels 

from non-neighboring areas (see the subsequent section on PCA denoising parameter 

space) whose time-series are most similar (measured by L1-norm) to that of V. PCA is 

then performed on those non-neighboring voxels (including V), and V’s signal is then 

regenerated by excluding the weakest PCA components, which are presumed to be noise. 

This procedure was very similar to what was described in our recent paper 7, except 

that in this current study we analyze magnitude images instead of complex-valued images 

(unavailable in this current study).

PCA denoising parameter space—To evaluate the effect of PCA denoising parameters 

on detecting contrast between groups, we tested PCA denoising with different kernel sizes 

(i.e., the number of voxels in cubic region for local denoising; and the number of non-

neighboring voxels being recruited to PCA in non-local denoising) and different numbers of 

retained PCA components.

For local PCA denoising, we started with a kernel size of 5x5x5 (125 voxels) as chosen by 

default by dwidenoise (from the dwidenoise documentation: “the smallest isotropic patch 

size that exceeds the number of diffusion-weighted images in the input data”), and then 

explored smaller 3x3x3 (27 voxels) and larger 7x7x7 (343 voxels) neighborhoods as well. 

We identified the mean number of PCA components retained by dwidenoise across all 

voxels for a randomly-chosen participant from our dataset for each of these neighborhood 

sizes: 14, 23, and 25 components, respectively.

In local PCA denoising, the number of recruited voxels is strictly the same as the 

neighborhood size. To isolate the effect of non-local voxel selection on PCA denoising, we 

then test using the same number of recruited voxels as in local denoising (i.e. 27, 125, and 

343 voxels) but from a neighborhood larger by 2 voxels in every direction (7x7x7, 9x9x9, 

and 11x11x11 respectively). For each of these neighborhoods we also explored changing the 

number of retained PCA components: 12/16/20 components for the smallest neighborhood, 

and 20/24/28 components for the larger neighborhoods. These numbers of components were 

selected to bracket those chosen by the local algorithm (14, 23, and 25 on average).

The tested parameter space is then three neighborhood sizes for local PCA denoising, and 

then a 3-by-3 matrix of non-local PCA denoising approaches where one axis matches the 

local denoising’s number of recruited voxels (but with a larger search neighborhood), and 

another axis tests the impact of changing the number of retained PCA components.

Creating fractional anisotropy maps

For every raw and denoised b0 (non-diffusion MRI), a “synthetic” undistorted b0 was 

created using Synb0-DisCo.27 The raw and denoised DWI data were then all run through 

a pipeline using FSL v6.0.328 and MRtrix3. FSL’s topup29 estimated and corrected for the 

susceptibility-induced off-resonance field using the original and synthetic b0 images, and 
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applied the correction to the full DWI data. The data were then run through FSL’s eddy22,30 

to correct for motion and scanner eddy currents, and MRtrix3’s dwi2mask31 and FSL’s 

BET32 to create a combined whole brain DWI mask. MRtrix3’s dwibiascorrect was then 

used for B1 field inhomogeneity correction.33 Diffusion tensors were then estimated, and FA 

maps were extracted using MRtrix3’s dwi2tensor.24

FA maps were transformed to the FSL MNI-space standard brain using the combination of 

a rigid-body registration from the distortion-corrected b0 to the same subject’s T1-weighted 

image, and a non-linear registration from the T1-weighted image to the FSL standard brain, 

using Advanced Normalization Tools.34 FA maps were smoothed with an isotropic Gaussian 

kernel with a sigma (width) of 5mm.

Between-group analyses for full sample comparisons

For our between-group analysis, the full sample comparison consisted of choosing WM 

regions that have previously been identified to differ between PWH and HIV-negative 

individuals. For this, we picked the corpus callosum, right uncinate fasciculus, and forceps 

minor as regions of interest from the Illinois Institute of Technology white matter atlas.35,36 

We also chose the left occipito-pontine, right medial lemniscus, and spinothalamic WM 

tract as control regions to investigate for WM differences between groups. The inclusion of 

control regions helps ensure that the PCA denoising procedures are not introducing spurious 

group differences if differences were to be observed.

Mean FA was extracted from each of the four WM tracts using fslmeants. Independent 

sample t-tests were performed separately using mean FA of the corpus callosum, right 

uncinate fasiculus, forceps minor, left occipito-pontine, right medial lemniscus, and 

spinothalamic tracts as the dependent variable, and HIV status as the independent variable. 

Effect size (cohen’s d) and significance (p value) of group differences were then determined 

using the Python-based statistical package pingouin for each denoising paradigm. This 

analysis was conducted on the non-denoised, non-local PCA, and locally PCA denoised data 

for each set of parameters. Age and protocol were included as covariates of no interest.

Between-group analyses with partial sample comparisons

To assess the minimum number of participants needed in each group to still detect a 

significant group difference, partial sample comparisons were conduced and consisted of 

choosingmultiple random samples of decreased sample size.

For any PCA denoising method or set of PCA denoising parameters, permutation testing 

was conducted on the partial samples using 500 random samples (or up to as many unique 

samples as possible) that were selected for each sample size of 10 to 30 subjects per group. 

Every subject was represented in some subset of the 500 random samples. The lowest 

number of subjects that resulted in a mean p-value less than 0.05 was recorded for each 

approach.
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Results

Sample characteristics

The sample included 30 PWH and 31 HIV-negative participants. Groups did not differ on 

demographic factors or intrascan head motion (See Table 1).

For PWH, the mean years since HIV diagnosis was 10.1 (standard deviation=8.3). 70% of 

individuals were virologically suppressed at < 50 copies/mL. The median of most recent 

CD4 count was 568.50 (interquartile range = 589). The median of lowest recorded CD4 

count was 250 (interquartile range = 345).

Between-group analysis of FA with full sample

The non-local PCA denoising parameters displayed consistent linear differences across 

the different voxel sizes and numbers of PCA components. For this reason, we report 

representative results using the parameters of 5x5x5 (125 voxels) sized neighborhoods 

with 24 PCA components. Data for all other parameters are available upon request. When 

examining local PCA denoising with similar parameters to the non-local PCA parameters 

reported above (5x5x5), there were significant differences between groups in both the corpus 

callosum and forceps minor using non-local PCA denoising (see Table 2). Our other local 

parameters performed very similarly and no set of parameters for local PCA denoising 

showed higher effect sizes than other non-local PCA implementations.

Corpus callosum—When applying local PCA denoising, and non-local PCA denoising to 

the participant’s FA maps, PWH displayed lower FA relative to HIV-negative participants in 

the corpus callosum. Without any denoising applied to the participant’s FA maps, PWH did 

not display significant lower FA relative to HIV-negative participants, although there was a 

trend in that direction (p=0.056). Implementing non-local PCA denoising produced a higher 

effect size relative to no denoising and local PCA denoising (see Table 2 and Figure 1).

Forceps minor—With no denoising, non-local PCA, and local PCA denoising applied 

to the forceps minor tract, PWH showed lower FA relative to HIV-negative participants. 

Non-local PCA denoising displayed the highest effect size relative to no denoising and local 

PCA denoising (see Table 2 and Figure 1).

Right uncinate fasciculus—With non-local PCA denoising applied to the right uncinate 

fasciculus, PWH showed lower FA relative to HIV-negative participants. Without any 

denoising applied to the participant’s FA maps, PWH did not display significant lower FA 

relative to HIV-negative participants, although there was a trend in that direction (p=0.051). 

Local PCA denoising did not produce a significant difference between groups. Non-local 

PCA denoising displayed the highest effect size relative to no denoising and local PCA 

denoising (see Table 2 and Figure 1).

Left occipito-pontine—With no denoising, as expected, we did not observe any 

differences between groups in the left occipito-pontine tract. We also did not observe 

any significant differences between groups utilizing non-local and local PCA denoising 

parameters (see Table 2 and Figure 1).
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Spinothalamic—With no denoising, non-local and local PCA denoising applied to the 

spinothalamic tract, we did not observe any significant differences between groups (see 

Table 2 and Figure 1).

Right medial lemniscus—With no denoising, non-local, and local PCA denoising 

applied to the right medial lemniscus tract, we did not observe any significant differences 

between groups (see Table 2 and Figure 1).

Between-group analyses with partial sample

Corpus callosum—With no denoising, we did not observe a significant effect with any 

reduction in participants, although there was a trend in that direction (n=30; t=1.93; p=0.06). 

With non-local PCA denoising, we observed a significant difference in a reduced sample 

of 30 participants. With local PCA denoising, we did not observe a significant difference 

in a reduced sample of 30 participants although there was a trend in that direction (t=1.99; 

p=0.052 see Table 3 and Figure 1).

Forceps minor—With no denoising, we observed a significant difference in a reduced 

sample of 25 participants. With non-local PCA denoising, we observed a significant 

difference in a reduced sample of 20 participants. With local PCA denoising, we observed a 

significant difference in a reduced sample of 26 participants (see Table 3 and Figure 1).

Right uncinate fasciculus—With no denoising, we did not observe a significant effect 

with any reduction in participants, although there was a trend in that direction (n=30; t=1.97; 

p=0.055). With non-local PCA denoising, we observed a significant difference in a reduced 

sample of 25 participants. With local PCA denoising, we did not observe a significant 

difference in a reduced sample of 30 (see Table 3 and Figure 1).

Discussion

Our observations from this study offer evidence that non-local PCA denoising increases the 

sensitivity of diffusion data in three WM regions known to be affected by HIV infection. 

These results demonstrate that non-local PCA denoising can effectively aid in identifying 

differences in WM in PWH in both large, medium, and small WM tracts using reduced 

sample sizes. This was counter to our hypothesis that local PCA would perform better for 

larger WM tracts. However, in the smaller forceps minor and right uncinate fasciculus, group 

differences were found after a greater reduction in participants relative to the larger corpus 

callosum. We also showed that the PCA denoising approaches most likely did not introduce 

spurious effects as no significant differences were detected in the left occipito-pontine, 

right medial lemniscus, or spinothalamic tract, regions that are not typically associated with 

deficits in structural integrity in PWH.

The different sets of parameters, including different voxel size neighborhoods and number 

of PCA component, utilized for non-local PCA denoising all performed relatively similarly. 

Therefore, any set of non-local PCA parameters described in this study could be utilized 

in future investigations of WM in PWH to increase sensitivity. An advantage of these 

non-local PCA implementations described here is that they are relatively computationally 
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inexpensive, as we are only slightly increasing the voxel search size relative to local PCA 

denoising. A significant drawback of many non-local PCA implementations is the amount 

of computational time and capacity to perform such processes as the search area is usually 

significantly larger to cover more of the cortex.37 However, we were able to increase our 

sensitivity with only slightly larger neighborhoods relative to the local PCA denoising 

parameters.

Of significant interest is that we were able to identify group differences in FA with 

significantly reduced sample sizes. When examining the forceps minor, we were able to 

reduce the sample size by 35% and still detect significant differences between groups 

using non-local PCA denoising. When examining the right uncinate fasciculus, we observed 

significant differences between groups when reducing the sample size by 17%. However, 

the reduction in the corpus callosum was not as substantial as we were only able to achieve 

a significant group difference with 30 participants out of 31. The corpus callosum region 

(168,712 mm3) was substantially larger than both the forceps minor (35,395 mm3) and right 

uncinate fasciculus (5,638 mm3), which could partially explain the decreased sensitivity 

for this region. The corpus callosum is frequently segregated into sub-regions including 

the genu, body, splenium, and rostrum.15,38 As we utilized mean FA across WM tracts 

for our analyses, we may have reduced the sensitivity to find significant WM differences 

between groups. Other potential reasons for why the corpus callosum exhibited less of an 

effect due to denoising could be due to the presence of artifacts, the effects of motion or 

distortion correction, and the proximity to cerebrospinal fluid. However, it is important to 

note that non-local PCA denoising was still able to achieve significant group differences 

with a reduction in sample size. Future investigations could explore how segregating the 

corpus callosum aids in increasing sensitivity within this important WM tract. It is also 

worth mentioning that a degree of heterogeneity exists in the literature pertaining to WM 

deficits in PWH. Specifically, more severe effects have been observed in PWH that have 

a detectable HIV viral load.39,40 Therefore, any observed differences in WM tracts could 

be related to HIV disease characteristics, and might affect the potential for non-local PCA 

denoising to increase sensitivity.

It is also important to note the differences in effect sizes for the full sample comparison 

analysis of the forceps minor and right uncinate fasciculus, and to a lesser extent, the corpus 

callosum. While both local and non-local PCA denoising strategies showed differences 

between groups, the effect size for non-local PCA denoising was higher than local PCA, 

as well as no denoising. For the forceps minor, the effect size for non-local PCA was 0.74, 

while the effect size for local PCA was 0.60. A large effect size is considered 0.8 with the 

non-local PCA results very close to that size. In contrast, local PCA denoising produced an 

effect size that is well within what is considered a medium effect size. Similarly, for the 

right uncinate fasciculus, local PCA denoising produced a small effect size of 0.44 while 

non-local PCA denoising produced a medium effect size of 0.62. For the corpus callosum, 

though the effect sizes were medium for both PCA denoising strategies, the effect size was 

higher for non-local PCA compared to local PCA and no denoising. Therefore, utilizing 

non-local PCA denoising within this dataset would effectively increase the strength of your 

significant findings.
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Although we did not include local and non-local PCA denoising in the same statistical 

model, non-local PCA denoising did appear to obtain greater sensitivity in identifying group 

differences in the forceps minor in a sample of only 20 participants, the right uncinate 

fasciculus in a sample of 25 participants, and the corpus callosum in 30 participants. A 

potential limitation of a local PCA method is that it may reduce anatomic resolvability 

as filtering is performed across nearest-neighboring voxels that may contain heterogeneous 

diffusion properties resulting in partial volume effects.41 This could effectively reduce 

anatomic resolvability when a voxel neighborhood contains multiple crossing white matter 

regions. This effect could explain why local PCA denoising appears to have decreased 

sensitivity in this investigation. Future investigations will have to explore whether local or 

non-local PCA denoising may be more appropriate for analyses of WM deficits in PWH. 

This would involve statistically comparing between different PCA denoising strategies.

There are several limitations to the current investigation. We found that our various 

non-local PCA parameter iterations performed relatively similar. It could be that if we 

employed a larger search area for our non-local PCA paradigm that different parameters 

could perform better. Future investigations could explore the effect of non-local PCA search 

area sizes on the ability to increase sensitivity. An additional limitation is that non-local 

PCA denoising takes a significant amount of computational time if you employ a large 

search area. However, we were able to use a small non-local PCA search area that was still 

able to increase sensitivity. We also only utilized FA for our analysis. Other DTI metrics 

may be affected differently utilizing other PCA denoising paradigms and parameters. A 

future direction would be the test whether PCA denoising has specific effects based on the 

diffusion metric. The diffusion data that was acquired did not collect complex data. A future 

direction would be to observe the effect of PCA denoising on complex data. We also did 

not assess the effect of PCA denoising strategy when using tractography analyses. Future 

investigations could look at the effects of PCA denoising on alternative diffusion processing 

approaches. We also limited this analysis to PCA denoising paradigms as implemented 

in commonly utilized diffusion imaging processing software (i.e. MRtrix). However, other 

non-local denoising filters have shown to be efficacious. For example, NESMA has been 

utilized on DWI data to good effect. Future investigations should examine the effect of 

additional non-local denoising paradigms on identifying differences in WM in PWH.

DWI denoising is typically applied using default local PCA denoising parameters within a 

neuroimaging processing software package. However, our investigation provides evidence 

for identifying the most sensitive PCA denoising parameters before implementing PCA 

denoising paradigms in clinical neuroimaging investigations. We have provided evidence of 

non-local PCA patch sizes and number of PCA components that were effective in increasing 

sensitivity in our population. These parameters are computationally similar to local PCA 

denoising, and relatively easy to implement. The utility of denoising DWI data is relevant 

across clinical neuroimaging studies that involve hard-to-recruit clinical populations. DWI 

analyses should carefully investigate the type of PCA denoising paradigm to be employed as 

there appear to be differences in outcome based on the selected strategy.
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Figure 1. Effect of reducing sample size
Plots showing each iteration of denoising where there are still significant group differences 

when reducing the sample size. X-axis = sample size. Lines in the shaded gray area were not 

significant.
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Table 1.

Demographics and head motion

HIV (N = 30) Control (N = 31) Statistic p-value

Demographic Characteristics

Male, %, N 76.7%, 23 61.3%, 19 χ2(2) =1.68 0.195

Age in years 41.90±8.40 40.74±9.40 t(59) = −0.51 0.614

African American, %, N 76.7%, 23 67.7%, 21 χ2(1) = 0.60 0.437

Education in years 14.13±2.11 14.06±2.20 t(59) = −0.12 0.901

Framewise displacement 0.186±0.12 0.17 ±0.04 t(59) = −0.40 0.692

Exact maximum distance 0.131±0.09 0.122±0.03 t(59) = −0.53 0.597

N = sample size. All the data represent mean ± standard deviation unless otherwise indicated.
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Table 2.

Full-sample results

HIV+ (N=30) HIV− (N=31)

White matter tract Denoising paradigm t Cohen’s d p-value

Corpus callosum no denoising 0.458±.023 0.469±.018 1.943 0.499 0.056

non-local 0.454±.023 0.465±.018 2.046 0.526 0.044

local 0.455±.021 0.465±.017 2.006 0.516 0.049

Forceps minor no denoising 0.423±.031 0.441±.024 2.486 0.639 0.015

non-local 0.416±.032 0.437±.025 2.862 0.736 0.006

local 0.421±.031 0.437±.023 2.316 0.596 0.023

R. uncinate fasciculus no denoising 0.420±.027 0.433±.022 1.983 0.510 0.051

non-local 0.414±.029 0.432±.027 2.436 0.624 0.018

local 0.410±.030 0.422±.021 1.701 0.438 0.092

L. occipito-pontine no denoising 0.539±.020 0.544±.022 1.012 0.259 0.316

non-local 0.528±.021 0.532±.026 0.620 0.158 0.539

local 0.529±.021 0.536±.023 1.238 0.316 0.221

Spinothalamic no denoising 0.505±.018 0.505±.029 0.046 0.012 0.964

non-local 0.487±.028 0.491±.031 0.560 0.153 0.552

local 0.494±.018 0.492±.030 0.281 0.071 0.781

R. medial lemniscus no denoising 0.536±.021 0.538±.028 0.365 0.093 0.717

non-local 0.510±.041 0.521±.039 1.066 0.273 0.290

local 0.521±.025 0.521±.030 0.013 0.003 0.989

All the data represent mean ± standard deviation unless otherwise indicated. N = sample size. L = Left, R = Right
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Table 3.

Reduced sample results

Sample size HIV+ HIV− t Cohen’s d p-value

White Matter Tract Denoising paradigm

Corpus callosum no denoising 30 0.458±.023 0.469±.018 1.931 0.499 0.060

non-local 30 0.454±.023 0.465±.018 2.034 0.525 0.048

local 30 0.455±.021 0.465±.017 1.993 0.515 0.052

Forceps minor no denoising 25 0.423±.031 0.441±.024 2.272 0.643 0.039

non-local 20 0.416±.031 0.437±.025 2.346 0.742 0.048

local 26 0.421±.031 0.437±.023 2.152 0.597 0.048

R. uncinate fasciculus no denoising 30 0.420±.027 0.433±.027 1.971 0.509 0.055

non-local 25 0.414±.028 0.431±.027 2.213 0.626 0.048

local 30 0.410±.030 0.422±.021 1.692 0.437 0.098

Sample size reflects total number of participants in each group still showing significant group differences after sample reduction. If significant 
group differences were not observed after any sample size reduction, sample size=30 is listed with the corresponding p-value. All the data represent 
mean ± standard deviation unless otherwise indicated. R = Right
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