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� We developed a set of well-defined
reference materials, which is very
beneficial to monitor problems in
mNGS workflows and identify
optimal protocols.

� The high interlaboratory variability in
the identification and quantitation of
microbes indicates that the current
mNGS protocols are in urgent need of
standardization and optimization.

� The detection rate of mNGS for low-
concentration microbes (less than 103

cell/ml) is significantly lower than
that of microbes with a concentration
of 104 cell/ml and higher.

� Only 56.7% to 83.3% of the
laboratories showed a sufficient
ability to obtain clear etiological
diagnoses for three simulated cases
combined with patient information.

� Addressing laboratory contamination
(false positive) is an urgent task.
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Introduction: Metagenomic next-generation sequencing (mNGS) assay for detecting infectious agents is
now in the stage of being translated into clinical practice. With no approved approaches or guidelines
available, laboratories adopt customized mNGS assays to detect clinical samples. However, the accuracy,
reliability, and problems of these routinely implemented assays are not clear.
Objectives: To evaluate the performance of 90 mNGS laboratories under routine testing conditions
through analyzing identical samples.
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Methods: Eleven microbial communities were generated using 15 quantitative microbial suspensions.
They were used as reference materials to evaluate the false negatives and false positives of participating
mNGS protocols, as well as the ability to distinguish genetically similar organisms and to identify true
pathogens from other microbes based on fictitious case reports.
Results: High interlaboratory variability was found in the identification and the quantitative reads per
million reads (RPM) values of each microbe in the samples, especially when testing microbes present
at low concentrations (1 � 103 cell/ml or less). 42.2% (38/90) of the laboratories reported unexpected
microbes (i.e. false positive problem). Only 56.7% (51/90) to 83.3% (75/90) of the laboratories showed a
sufficient ability to obtain clear etiological diagnoses for three simulated cases combined with patient
information. The analysis of the performance of mNGS in distinguishing genetically similar organisms
in three samples revealed that only 56.6% to 63.0% of the laboratories recovered RPM ratios (RPMS. aur-

eus/RPMS. epidermidis) within the range of a 2-fold change of the initial input ratios (indicating a relatively
low level of bias).
Conclusion: The high interlaboratory variability found in both identifying microbes and distinguishing
true pathogens emphasizes the urgent need for improving the accuracy and comparability of the results
generated across different mNGS laboratories, especially in the detection of low-microbial-biomass
samples.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction and enhancing the accuracy of bioinformatics algorithms [17,18].
Respiratory tract infection (RTI) remains a significant health care
burden worldwide, causing extensive morbidity and mortality
among patients [1,2]. A wide variety of organisms are known to
cause RTIs. However, due to the inhibitory effect of antibiotic use
prior to specimen collection on the growth of cultures, impaired
immunity of the body leading to an inability to produce serological
responses (i.e., theproductionof specific antibodies), and the limited
number of selected targets of molecular assays (such as polymerase
chain reaction, PCR), current microbiologic diagnostics frequently
fail to capture the true pathogens involved [3–5]. Data show that
despite extensive testingvia culture, serologic assays andPCR, a cau-
sative pathogen remains unidentified in 20%–60% of pneumonia
cases, indicating an unmet need for improved diagnostics [6,7].

Metagenomic next-generation sequencing (mNGS), an unbiased
culture-independent pathogen detection technique, offers several
advantages over conventional methods. mNGS can theoretically
detect any organism directly from clinical samples in a single assay
without a priori selection of target pathogens [8]. We reviewed the
application of mNGS testing in clinical infections in the past dec-
ade, and found that nearly one-third of mNGS testing was used
for the diagnosis of RTIs [9]. From sample processing to result
reporting, testing based on a second-generation sequencing plat-
form (such as illumina sequencing) can be completed within 24–
48 h, while a third-generation sequencing platform (such as Nano-
pore sequencing) takes only 6 h [10]. Respiratory tract infection-
based cohort studies have shown that the detection rate of mNGS
(>60%) for respiratory tract samples is significantly higher than
that of traditional detection methods (30%–50%) [11–13]. In partic-
ular, mNGS shows excellent detection performance in identifying
unexpected, atypical and slow-growing pathogens within a clini-
cally actionable time frame [9]. An increasing number of clinicians
recommend this technique as a powerful tool for the differential
diagnosis of complicated and diagnostically challenging cases.

However, although the promise of mNGS is strong, it is techni-
cally complex and operationally tedious, and it is still in the early
stages of translation into clinical practice. There is no FDA-
approved mNGS approach available at this stage, and only a few
laboratory-validated mNGS protocols are available to aid pathogen
identification from cerebrospinal fluid (CSF), plasma and respira-
tory samples [14–16]. Laboratories adopt highly customized
strategies based on their own experiences for reducing inter-sam
ple/laboratory/reagent contamination, removing host DNA inter-
ference, improving the efficiency of microbial nucleic acid extrac-
tion methods, increasing the integrity of the reference database
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These nonstandardized processing strategies greatly affect the
interlaboratory reproducibility of metagenomic sequencing, lead-
ing to uncertainty in the results [19–21]. As reported, the sensitiv-
ity and specificity of mNGS platforms developed in different
laboratories for diagnosing infectious disease vary widely, ranging
from 50.7% to 96.6% and 41.7% to 85.7%, respectively [10,22,23].

Additionally, universally accepted reference standards and
other positive/negative controls used to ensure mNGS assay qual-
ity and stability over time are lacking [24]. Several organizations
and biological companies (such as ATCC, NIST, BEI Resources and
ZYMO Research) recently released sets of microbial cells or DNA
reference materials that can be used to benchmark and optimize
high-throughput sequencing-based diagnostic assays for specific
research or clinical questions [25–27]. Unfortunately, none of these
commercially available materials can represent the characteristics
of the pathogen spectrum of a real infection in a specific clinical
context, and they do not take into account the factors that may
interfere with mNGS assays in relevant clinical samples (such as
the level of human DNA and background microorganisms). Thus,
these materials are not applicable to the facilitation of comparisons
of mNGS assay performances between different laboratories in
specific clinical infections such as RTIs.

With the rapid development of sequencing technology, an
increasing number of individuals and institutions have established
proprietary mNGS procedures, providing us with a variety of
choices of sequencing platforms for the diagnosis of infectious dis-
eases. However, as mentioned above, with the lack of methodolog-
ical standardization and available reference materials, are the
results of these untargeted mNGS tests comparable when analyz-
ing identical samples under routine testing conditions? Further-
more, what are the main factors causing variations in practices
and what is the degree of their influence? To begin answering
these questions, we carried out a large-scale multicenter study in
2020 to evaluate the mNGS protocols among 90 individual labora-
tories using a set of designed samples (11mockcommunities) con-
taining microbes related to RTIs. The results objectively revealed
the current issues of mNGS tests in real world applications for
diagnosing clinical infectious diseases.
Methods and materials

Microbial culture and quantification

Thirteen bacterial and two fungal microbes were collected as
materials for the preparation of microbial cell mock communities
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in this study. These microbes included were:（gram-positive (G
+) bacteria (Staphylococcus aureus (American Type Culture Collec-
tion [ATCC] 43300), Streptococcus pneumoniae (ATCC 49619),
Acinetobacter baumannii (clinical strain), and Staphylococcus epi-
dermidis (clinical strain)); gram-negative (G-) bacteria (Pseu-
domonas aeruginosa (ATCC 27853), Haemophilus influenzae
(ATCC 49247), Klebsiella pneumoniae (ATCC BAA-1075), Escheri-
chia coli (ATCC 25922), Fusobacterium nucleatum (ATCC 25586),
Bacteroides fragilis (ATCC 25285), Moraxella catarrhalis (clinical
strain), Stenotrophomonas maltophilia (clinical strain), and Serratia
marcescens (clinical strain)); and fungi (Candida albicans (ATCC
10231), and Aspergillus fumigatus (ATCC 96918)). All the
microbes were cultured individually under standard microbiolog-
ical conditions. In detail, two anaerobic bacteria (B. fragilis and F.
nucleatum) grew at 37 �C under anaerobic conditions on CDC
Anaerobic Blood Agar Plates (catalog number axk20, Crmicrobial,
China) in a Genbag Anaer (catalog number 45,534, BioMérieux,
France). The incubation time varied from three to five days.
The other 11 bacteria and the fungus C. albicans were cultured
on blood agar plates (catalog number P0901, Crmicrobial, China)
overnight at 37 �C. Each of the above microbes on the plate was
scraped in an individual 15 ml centrifuge tube, suspended in
sterile saline solution (0.9% w/v NaCl), and then stored at
�80 �C prior to further processing. For A. fumigatus, we pur-
chased a fresh, pure spore suspension from BeNa Culture Collec-

tion (BNCC) in China (http://www.bnbio.com/), which could be
directly used for subsequent nucleic acid extraction and
quantification.

Similar to our previous study on the quantification of gut
microorganisms [19], EvaGreen dye-based droplet digital PCR
(ddPCR) was employed for the absolute quantification of 15
microbes in the prepared suspensions in this study. Briefly, nucleic
acids were extracted under the manufacturer’s recommendation
from 1 ml of each microbial suspension using a QIAamp PowerFe-
cal Pro DNA Kit (catalog number 51804, Qiagen, Germany). The
extracted microbial nucleic acids were amplified on a QX200
ddPCR system (Bio-Rad) and analyzed on a QX200 droplet reader
(Bio-Rad) and QuantaSoft software (Bio-Rad) [19]. The specific
PCR primers used for every microbe are shown in supplementary
Table S1. The concentration of the original bacterial suspensions
(cell/ml) was calculated according to the number of positive dro-
plets in ddPCR testing, the dilution of the initial nucleic acid tem-
plate, and the copy numbers of the amplified genes in the
microbes.
Mock community composition

Eleven microbial communities (samples S1-S11) were gener-
ated by using quantitative microbial suspensions. Each commu-
nity had a different microbial composition (see supplementary
dataset 1) and was used for different evaluation purposes in this
study (detailed in Table 1). Immortalized cell lines (GM 12878)
purchased from Coriell Cell Repositories (Coriell Institute for Med-
ical Research, Camden, New Jersey, USA) were spiked into each
community with a concentration of 1 � 105 cell/ml to simulate
the host background, which is an important factor affecting the
sensitivity of mNGS testing. In particular, we provided three ficti-
tious case reports (case reports 1, 2 and 3) for samples S8, S9 and
S10 to evaluate the ability of laboratories to distinguish true
pathogens from other microbes detected by mNGS based on
patient history, detection and treatment information. The true
pathogens of case reports 1, 2 and 3 were A. fumigatus, C. albicans
and S. pneumonia, respectively. The data set of the case reports is
available in the supplementary material (Supplementary
methods).
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Organization

This multicenter quality evaluation study was initiated by the
National Center for Clinical Laboratories (NCCL). Ninety laborato-
ries from China that have developed mNGS workflows and carried
out routine testing volunteered to participate in this quality assess-
ment study. Among the 90 participants, 14 were clinical laborato-
ries affiliated to hospitals, and the rest were independent third-
party testing laboratories. Each laboratory received one sample
set (Samples S1-S11) on dry ice sent by NCCL. A blank question-
naire required to document the methodological details of mNGS
testing operating procedures was also delivered to the participants
alongside the sample sets. All the samples were stored at �80 �C
until further processing and were tested within three weeks. The
results(data) need reported by the laboratory to NCCL for every
sample is listed in Table 1. The NCCL compared the results reported
by each laboratory with the expected results to evaluate their
accuracy and comparability and discussed the factors that may
contribute to the interlaboratory deviations.
Statistical analysis

We introduced a normalized reads per million reads (RPM) met-
ric to compare the variation of test results in different laboratories.
RPM is defined as the number of specific reads of a microbe/total
sequencing reads (�M reads) obtained in a sample. Pearson’s chi-
square test was used to evaluate the impact of host DNA depletion
and bead-beating approaches on low-microbial-biomass samples.
p < 0.05 means that there is a significant difference between the
two comparison groups.
Results

Participant questionnaires

Participants who had different levels of practical experience in
performing mNGS assays reported a wide range of practices and
approaches for steps ranging from initial DNA extraction to the
choice of sequencers to the final data analysis pipelines. Table 2
summarizes the recorded data. Twenty-seven laboratories applied
pretreatment steps for host DNA depletion, and 88.9% (24/27) of
them used chemical reagents (such as 1% saponins) to differen-
tially lyse human cells and then degraded human DNA with DNA
enzymes (such as recombinant DNase I). To increase the yield of
microbial DNA in samples, 77.8% (70/90) of the laboratories
employed bead-beating for cell lysis in the DNA extraction proto-
cols. The nucleic acid extraction process in most laboratories is
not automated. In addition to several common nucleic acid extrac-
tion kits on the market (i.e., TIANGEN, QIAGEN and Zymo
Research), a variety of self-developed kits, such as MGITM and MAP-
MITM kits, were also applied in approximately half of the participat-
ing laboratories. The mainstream sequencing platforms were
NextSeq 500/550 (Illumina, San Diego, CA, USA) (43.3%, 39/90)
and MGISEQ-2000/200/50 (MGI Tech Co. Ltd., Shenzhen, China)
(20%, 18/90). Participants tended to develop their own proprietary
bioinformatics analysis pipelines based on different releases of
public sequence alignment or taxonomy assignment tools (e.g.,
BWA, SNAP and Kraken2) and reference databases (NCBI nr/nt/
RefSeq databases) for the interpretation of mNGS data. The total
reads assigned to each sample were similar in the same laboratory,
but there were differences between laboratories. Taking sample S1
as an example, the median sequence data was 24.0 M (interquartile
range (IQR) 16.4 M�40.7 M). The method validation of the mNGS
assay was completed in 56.7% (51/90) of the participating
laboratories.

http://www.bnbio.com/


Table 1
Characteristics of the mock communities in this study.

Sample
ID

Microbial composition Concentration (Cell/ml) Results need reported by the laboratory to NCCL Use in this study

S1 14 microbes at different
concentrations

1 � 102 –1 � 107 All the microbes that higher than the cut-off value built by
the laboratory and their specific reads and RPM values

Sensitivity of mNGS for
detecting microbes

S2-S4 9 microbes at the same
concentration

5 � 102 (S2), 1 � 102 (S3),
1 � 10 (S4)

All the microbes that higher than the cut-off value built by
the laboratory and their specific reads and RPM values

Performance in detecting low
microbial biomass samples

S5-S7 Staphylococcus aureus:
Staphylococcus
epidermidis

1 � 106: 1 � 105 (10:1),
1 � 106: 1 � 106 (1:1),
1 � 105: 1 � 106 (1:10)

Staphylococcus aureus and Staphylococcus epidermidis and
their specific reads and RPM values

Performance in distinguishing
genetically similar organisms

S8 Aspergillus fumigatus and
other 5 bacteria

1 � 104 (Aspergillus
fumigatus)

Microbes that considered to be the true pathogens of
simulated cases and their specific reads and RPM values

Performance in identifying true
pathogens for case report 1

S9 Candida albicans and other
6 bacteria

1 � 105 (Candida albicans) Microbes that considered to be the true pathogens of
simulated cases and their specific reads and RPM values

Performance in identifying true
pathogens for case report 2

S10 Streptococcus pneumoniae
and other 6 bacteria

1 � 105 (Streptococcus
pneumoniae)

Microbes that considered to be the true pathogens of
simulated cases and their specific reads and RPM values

Performance in identifying true
pathogens for case report 3

S11 Negative sample – All the microbes that higher than the cut-off value built by
the laboratory and their specific reads and RPM values

Negative control
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Performance in detecting microbes with different concentrations

Sample S1 is a complex mock community consisting of 14 dif-
ferent concentrations of microbes and is used to evaluate the sen-
sitivity of mNGS in microbial identification. The reported data
showed that no laboratory could detect all the 14 microbes. 40%
(36/90) of the laboratories detected all the microbes with concen-
trations in the range of 1 � 104 to 1 � 107cell/ml (Fig. 1a). By con-
trast, <50% of the laboratories could detect any of the six microbes
at concentrations of 1 � 103 cell/ml or less (Fig. 1a). Taking the
reported data of all laboratories as a whole, we found that the
higher the microbial load in the sample was, the higher the median
RPM of the corresponding microbe obtained by sequencing (see
supplementary dataset 2, Fig. 1b). However, for each microbe,
the RPM values reported by each laboratory varied greatly (see
supplementary dataset 2). For example, the median RPMs of H.
influenza and S. pneumoniae were 17556.9 (IQR: 4358.9–41154.8;
range: 0.3 (lab_34)-330310 (lab_82)) and 24977.3 (IQR 5236.4–
58704.8; range: 0.5 (lab_34)-962186.2(lab_8)), respectively.

The presence of unexpected microbes (i.e. false positive) is a
matter of concern. In this study, 42.2% (38/90) of the laboratories
reported 306 unexpected microbes (Fig. 1c). Among the 306 unex-
pected microbes, the ones with the highest frequency were Pas-
teurella multocida (in 15 labs), Haemophilus aegyptius (in 13 labs)
and Haemophilus haemolyticus (in 12 labs). They are not common
microorganisms in the laboratory environment and might origi-
nate from mismatches in sequence alignment and assignment
steps. Other bacteria, such as Streptococcus mitis, Haemophilus
parainfluenzae, Streptococcus oralis, Acinetobacter pittii and Kleb-
siella oxytoca, are common microorganisms in respiratory tract
samples. They might be reported as a result of laboratory contam-
ination or cross-contamination with other clinical respiratory
specimens. The reported Streptococcus pseudopneumoniae and Shi-
gella flexneri are genetically similar microorganisms to S. pneumo-
niae and E. coli in sample S1, respectively. Their misreporting
might be caused by an inadequate resolution of the bioinformatics
algorithms in the relevant laboratories.

Performance in detecting low-microbial-biomass samples

We compared the performance of the mNGS assay in testing
three low-microbial-biomass samples (S2, S3 and S4) with concen-
trations of 500 cell/ml, 100 cell/ml and 10 cell/ml, respectively. For
most microbes, with the decrease of microbial concentration, the
number of laboratories with positive results decreased (Fig. 2a).
When compared the effects of various approaches used in different
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laboratories on low-microbial-biomass samples, we found that the
detected rate of every microbe was lower in the laboratories using
host depletion approach (depletion group) than in those without
host depletion (nondepletion group) (supplementary Table S2).
Fig. 2b intuitively shows that the detection rate of each microbe
in sample S2 decreased in the depletion group, with S. pneumoniae,
H. influenza, P. aeruginosa and A. fumigatus decreasing significantly
(all p < 0.05). These results indicated that adding a host DNA deple-
tion process in an mNGS protocol might increase the risk of false
negatives in testing low-microbial-biomass samples. Similarly,
we performed the same analysis on the data of sample S1 and
found that the detection rate of most microbes (S. maltophilia, S.
epidermidis, S. marcescens and B. fragilis) at low concentrations
(1 � 102–1 � 103 cell/ml) dropped significantly in the depletion
group (supplementary Table S3). However, host DNA depletion
did not have a significant effect on the detection rate of four bacte-
ria (H. influenzae, S. pneumoniae, A. baumannii and K. pneumoniae)
at high concentrations (1 � 106–1 � 107 cell/ml) (supplementary
Table S3, all p > 0.05).

In addition, the data showed that the detection rate of
microbes in the three samples was higher in the laboratories
with a bead-beating process (bead-beating group) (supplemen-
tary Table S4). Fig. 2c showed that the detection rate of H.
influenza, P. aeruginosa and A. fumigatus in sample S2 was signif-
icantly increased in the bead-beating group (all p < 0.05). Espe-
cially for A. fumigatus, a fungus with a hard cell wall, its
detection rate can greatly improve in laboratories by adding a
bead-beating process. For example, in sample S2, the detection
rate of A. fumigatus in the bead-beating group was 62.9%
(44/70), while that in the no bead-beating group was only 30%
(6/20). When the concentration of A. fumigatus was reduced to
10 cell/ml (Sample S4), all the test results of the laboratories
in the no bead-beating group were negative, but 37.1% (26/70)
of the laboratories in the bead-beating group could still detect
this microbe, with a relatively low median RPM value (0.3, IQR
0.1–0.8) (see supplementary dataset 3).

However, when we compared the effects of other variables (ex-
traction strategy, sequencer, alignment/taxonomy assignment tool
and database) on the detection rate of microbes in samples, we
found that no one approach was better than the other approaches
for every microbe (see supplementary dataset 6).

Performance in distinguishing genetically similar organisms

Whether genetically closely related species can be accurately
distinguished is an important aspect to evaluate the analytical



Table 2
Methodological variability reported by the participating laboratories.

1. host DNA depletion Number of
laboratories

Yes
Differential lysis 24
Magnetic bead-based method selectively removes host

DNA containing CpG methylation
2

CRISPR–Cas9-based approaches, deplete abundant
sequences

1

No 63
2. bead-beating included in microbal cell disruption?
Yes 70
No 20
3. DNA extraction kit
TIANGEN 32
QIAGEN 。 9
MGITM 8
MAPMITM 8
Zymo Research 4
MagMAXTM 2
Promega 1
Other custom kits (16kinds) 26
4. Extraction strategy
Automatic 7
Manual 83
5. Sequencer
illumina NextSeq 500/550 39
MGISEQ-2000/200/50 18
illumina NextSeq CN500 11
BioelectronSeq 4000 8
illumina NovaSeq 6000 4
Others 10
6. Sequence alignment or taxonomy assignment
BWA 23
SNAP 13
Kraken2 12
Kraken 10
bowtie 10
NCBI BLAST 4
Centrifuge 2
MetaPhlAn 1
Not report 15
7. Database
Public database
NCBI nr/nt database 6
NCBI RefSeq database 22
Custom database
Genseq-PDB V0.20.0 11
PMseqDB v5.3.0 11
CBPD V3.2 8
IDseqDB V2.0 7
Others 25
8. method validation
Done 51
Not yet 39
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specificity of an mNGS protocol [16,31]. In this study, we analyzed
three samples (S5, S6 and S7) that contained two related species in
the same genus (S. aureus and S. epidermidis) at concentrations to
yield RPM ratios (RPM S. aureus/RPM S. epidermidis) of approximately
10:1, 1:1, and 1:10 (see supplementary dataset 1). The results
revealed that, although the two bacteria were both present at a
high concentration of 1 � 105 or 1 � 106 cell/ml, not all laborato-
ries successfully detected them. For example, S. aureus and S. epi-
dermidis both reached a concentration level of 1 � 106 cell/ml in
sample S6, but they were even missed by 3 (lab_34, 54 and 80)
and 5 (lab_34, 46, 48, 54 and 80) laboratories, respectively (see
supplementary dataset 4). In addition, the calculated RPM ratio
(RPM S. aureus/RPM S. epidermidis) of S. aureus and S. epidermidis varied
greatly from 0.02 (lab_7) to 64.4 (lab_49) in sample S5, from 0.002
(lab_7) to 9.8 (lab_50) in sample S6, and from 0.0001 (lab_62) to
5.9 (lab_50) in sample S7 (see supplementary dataset 4). A high
level of bias (over- or underestimating > 2-fold) from the initial
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input ratios (10:1 in sample S5, 1:1 in sample S6, 1:10 in sample
S7) was observed in many laboratories. Only 56.6% (43/76) of the
laboratories tested for sample S5 have an RPM ratio within the
range of a 2-fold change of the initial input ratio (10:1) (Fig. 3a),
lower than that for sample S6 (65.9%, 56/85) and that for sample
S7 (63.0%, 51/81) (Fig. 3b and 3c). In total, all the above results
indicate that the sample processing or data analysis processes in
some laboratories need further optimization to enhance the ability
of accurate discrimination and quantification of similar species in
samples.
Performance in identifying true pathogens

At present, there is no guideline as a standard for interpreting
mNGS sequencing data. Laboratories give reportable results based
on their own independent interpreting criteria [9]. In this study,
we designed three fictitious case reports (case reports 1, 2 and
3) and the corresponding simulation samples (samples S8, S9
and S10) to assess the laboratory’s ability to identify true patho-
gens from multimicrobial samples. The reported RPM for every
microbe varied greatly from laboratory to laboratory (see supple-
mentary dataset 5, Fig. 4). Only 56.7% (51/90) to 83.3% (75/90) of
the participating laboratories made definite diagnosis for these
case reports (Table 3). 32.2% (29/90), 15.6% (14/90) and 12.2%
(11/90) of the laboratories had detected the true pathogen but
did not give a definitive diagnosis samples S8, S9, and S10,
respectively (Table 3), indicating that although some laboratories
can detect the microbes present in the samples, their data analy-
sis team does not have enough ability to make a clear etiological
diagnosis combined with the given case information (clinical
symptoms, medication history, outcome, etc.). In addition, a few
laboratories mistakenly reported microbes that did not exist in
the original samples, which will mislead the clinical diagnosis
and treatments of the cases.
Discussion

During the initial phase of the survey, we received applications
from as many as 90 laboratories to participate in this multicenter
quality assessment study, which showed that the use of mNGS
technology into clinical practice recently to aid infection diagnosis
has been advancing rapidly. By designing a sample set containing
15 microbes related to respiratory tract infections, we evaluated
the testing performance of all the participating laboratories that
have established what they believe is the best way to perform
mNGS testing. Analysis of the reported data indicated several
issues of mNGS tests under local conditions, including a variety
of mNGS protocols with different operating procedures from
nucleic acid extraction to result interpretation were reported by
the participating laboratories. However, approximately half
(43.3%, 39/90) of the laboratories have not yet completed method
validation; high interlaboratory variability was found in the iden-
tification and reported RPM value of each microbe in the samples,
especially when testing microbes with low concentrations; the
data analysis teams of several laboratories did not show sufficient
ability to make a clear etiological diagnosis of a case combined
with the given patient information; and the analysis of the perfor-
mance mNGS in distinguishing genetically similar organisms in
three samples revealed that only 56.6% to 63.0% of the laboratories
recovered RPM ratios (S. aureus and S. epidermidis) within the range
of a 2-fold change in the initial input ratios (indicating a relatively
low level of bias).

For mNGS, an important issue at present is the lack of standard-
ized guidelines for method validation. The general requirements
for validation of laboratory-developed molecular assays for infec-
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Fig. 1. The results of Sample S1 detected by the 90 participating laboratories. (a) The heat map shows the detection of each microbe in sample S1 by each laboratory. In
general, mNGS performed poorly in the detection of microbes at low concentrations (S. maltophilia, S. epidermidis, S. marcescens,M. catarrhalis, F. nucleatum, and B. fragilis). The
yellow square indicates ‘‘detected”, and the red square indicates ‘‘not detected”. (b) The scatter plot shows that the RPM value (converted to log2 value) of each microbe from
each laboratory varies widely. Each dot represents a laboratory. This figure also shows that the higher the concentration of a microbe, the higher the median RPM value
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tious diseases were not entirely suitable for this new technique,
which enables unbiased detection of all potential pathogens in a
single test [32]. In this study, approximately 56.7% (51/90) of the
laboratories validated their workflows using self-designed mock
communities containing a small number of microbes or collected
clinical samples. Part or all of the performance metrics, such as
analytical sensitivity (limit of detection), precision (repeatability
and reproducibility), analytical specificity and accuracy, were eval-
uated. However, the validation strategies used in most laboratories
can hardly be said to be standardized because of the great differ-
ences in the selected sample types (sputum, blood, nasopharyngeal
swab and bronchoalveolar lavage fluid, etc.), sample sizes (from a
few to hundreds), the numbers and type of microbes and the inter-
pretation criteria. To our knowledge, scientists from ARUP Labora-
tories (Salt Lake City, Utah), IDbyDNA Inc. (Sunnyvale, California),
and the University of California, San Francisco, are making efforts
to carry out independent validation for the mNGS assay [15]. In
2017, Schlaberg et al. provided two example solutions for validat-
ing mNGS workflows that were used for pathogen detection from
respiratory secretions and cerebrospinal fluid [15]. They discussed
the challenges and provided solutions about assay design, valida-
tion of ‘‘wet lab” and bioinformatics pipelines, and various quality
control (QC) metrics. In 2019, Miller et al. and Blauwkamp et al.
first validated the performance of two clinical mNGS assays for
testing cerebrospinal fluid (CSF) and plasma samples, respectively,
in Clinical Laboratory Improvement Amendments (CLIA)-certified
laboratories [16,31]. They thoroughly described the strategies used
to evaluate the performance characteristics, including limits of
218
detection, precision, accuracy, interference and stability. In 2020,
a study presented the validation strategies of an mNGS protocol
enabling simultaneous detection of both DNA and RNA viruses
on Illumina HiSeq 4000 and NextSeq 500 sequencing systems
using a selection of 25 respiratory pediatric samples [14]. These
practices are important to ensure that the developed mNGS proto-
cols are ready for implementation in the clinical laboratory and to
provide feasible examples for other laboratories to validate the
performance of their in-house mNGS pipelines.

Previous studies have shown that the analytical sensitivity of
mNGS for different organism types can be as low as hundreds or
fewer copies per test [14,31]. In this study, the detection rate
decreased significantly for microbes at a concentration of 1 � 104

cell/ml or less. Less than half of the participating laboratories were
able to detect common respiratory microbes at concentrations
below 1 � 103 cell/ml. The validation of a molecular assay is often
completed when the testing system is in the best state, and the
whole process is subject to the least external interference. Thus,
the reported performance metrics, such as the limit of detection,
just represent the optimal values of the validated protocol. mNGS
is a technique that requires complex multistep processing. The
results observed from real-world applications have difficulty
reaching the level claimed by method validation because they
are easily affected by various variation factors associated with
samples, laboratory environment, reagents, consumables and
human operation [7]. Increasing studies have made efforts to
enhance the detection sensitivity of mNGS for different specimen
types by optimizing the procedures of sample preparation [17],
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Table 3
The result interpretation for three case reports by each participating laboratory.

Labs Unexpected microbes&

Case Report 1- the result
interpretation of Sample S8

1. Definitely diagnosed as A.
fumigatus infection.

56.7%
(51/
90)

2. Did not give a conclusive
diagnosis:

a. Negative report, no pathogen
was detected and reported.

10%
(9/90)

b. A. fumigatus was not detected,
unexpected microbes were
reported.

1.1%
(1/90)

C. albicans (lab_11)

c. In addition to A. fumigatus,
unexpected microbes were
also reported.

3.3%
(3/90)

C. albicans (lab_56), P.
aeruginosa (lab_75), S.
pneumonia (lab_38)

d. Both A. fumigatus and other
microbes initially added to
the sample S8 were reported.

28.9%
(26/
90)

Case Report 2- the result
interpretation of Sample S9

1. Definitely diagnosed as C.
albicans infection.

78.9%
(71/
90)

2. Did not give a conclusive
diagnosis:

a. Negative report, no pathogen
was detected and reported.

4.4%
(4/90)

b. C. albicans was not detected,
unexpected microbes were
reported.

1.1%
(1/90)

Candida tropicalis（lab_48)

c. In addition to C. albicans,
unexpected microbes were
also reported.

2.2%
(2/90)

S. epidermidis (lab_46 and
lab_40)

d. Both C. albicans and other
microbes initially added to
the sample S9 were reported.

13.3%
(12/
90)

Case Report 3- the result
interpretation of Sample S10

1. Definitely diagnosed as S.
pneumonia infection.

83.3%
(75/
90)

2. Did not give a conclusive
diagnosis:

a. Negative report, no pathogen
was detected and reported.

2.2%
(2/90)

b. S. pneumonia was not detected,
unexpected microbes were
reported.

2.2%
(2/90)

S. epidermidis (lab_68), Oral
Streptococcus and Streptococcus
mutans (lab_72)

c. In addition to S. pneumonia,
unexpected microbes were
also reported.

3,3%
(3/90)

H. influenza (lab_32),
Staphylococcus hominis and
Acinetobacter lwoffii (lab_40),
Citrobacter koseri and
Enterobacter cloacae (lab_78)

d. Both S. pneumonia and other
microbes initially added to
the sample S10 were reported.

8.9%
(8/90)

& Unexpected microbes represent microbes that did not initially spiked into to the
corresponding sample (S8, S9, or S10). If these microbes are reported, the diagnosis
will be considered wrong.
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results in more losses. The second is that the chemical reagents
used for host DNA depletion, such as saponins, can not only destroy
human cells but also lyse the cell walls of microbes to a certain
extent, especially for microbes with weak walls or no walls, such
as viruses and gram-negative bacteria [29,30]. When these
microbes are lysed, their DNA will be released and, like the host
DNA, will be degraded by DNA enzymes, making them unde-
tectable. This result emphasizes the importance of standardized
operation in handling the low microbial biomass samples. Consis-
tent with other studies, analysis of the observed data from 70 lab-
oratories with bead beating approaches in their protocols revealed
221
that mechanical wall breaking can increase the yield of microbes at
low concentrations, especially for fungi with hard cell walls, such
as A. fumigatus.

How to interpret and report the sequencing results is a topic
with inconclusive answers. Facing clinical samples with complex
backgrounds and large biological variations, it is very challenging
or even impossible to set a general standard for interpreting the
results of mNGS sequencing data. Not only comprehensive techni-
cal skills but also bioinformatic, biological and medical knowledge
is of paramount importance for proper analyses of mNGS data for
true pathogen identification. As we reviewed in a previous report,
metrics including the specific read ranking, normalized read num-
bers (such as RPM), genome coverage, scoring algorithms,
pathogenicity and clinical relationships of the detected microbes
were selected as some of the criteria developed in different labora-
tories [9]. In this study, 84.4% (76/90) of the participants were
independent third-party testing laboratories. These laboratories
often own a powerful team of bioinformatics talents but lack
front-line physicians and microbiologists with rich clinical experi-
ence. When reporting the sequencing results were performed at
the discretion of their data analysis teams, 32.2% (29/90), 15.6%
(14/90) and 12.2% (11/90) of the participating laboratories had
detected the true pathogen but did not give a definitive diagnosis
for the three simulated case-related samples (S8, S9, and S10),
respectively (Table 3). Thus, the experienced clinical microbiolo-
gists and clinicians should lead the interpretation of the mNGS
data.

Well-defined reference materials are the premise for perform-
ing multicenter quality assessment evaluations [19,38,39]. How-
ever, there are no accredited or certified fit-for-purpose reference
materials available to enable researchers to compare results gener-
ated across different mNGS laboratories. In this study, by designing
11 mock communities containing 15 clinical microbes and a back-
ground matrix (human cells), we made such a large-scale multi-
center evaluation in the field. Although DNA viruses and RNA
viruses were not included, these mock communities with bacteria
and fungi did reflect the issues in the pathogen DNA mNGS proto-
cols performed by routine laboratories from different aspects. We
have included the evaluation of RNA virus mNGS in the follow-
up research plan. In addition, analysis of mNGS in distinguishing
genetically related microbes revealed a relatively low level of bias
(<2-fold change) from the original input ratios of S. aureus and S.
epidermidis observed in only 56.6% to 63.0% of the laboratories.
However, we cannot tell whether the biases come from wet labs
(from sampling to DNA extraction and library preparation to
sequencing) or dry labs (bioinformatics analysis). This question
can be further addressed by developing DNA standards for assess-
ing the performance of the processes after nucleic acid extraction
or in silico data sets for assessing bioinformatic performance
[15,38].
Conclusions

We developed a sample set of 11 mock communities with
different respiratory microbes and used it as the standard for
completing the largest multicenter performance evaluation for
mNGS assays in the field of clinical metagenomics. Analysis of
the reported data of 90 participating laboratories revealed high
interlaboratory variability in both identifying microbes and dis-
tinguishing true pathogens. To improve the accuracy and compa-
rability of the mNGS results generated across different
laboratories, especially in the detection of low-microbial-
biomass samples, methodologies employed in routine mNGS lab-
oratories urgently need to be further optimized, integrated and
standardized.
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