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Abstract

We established a genome-wide compendium of somatic mutation events in 3949 whole 

cancer genomes representing 19 tumor types. Protein-coding events captured well-established 

drivers. Noncoding events near tissue-specific genes, such as ALB in the liver or KLK3 in 

the prostate, characterized localized passenger mutation patterns and may reflect tumor-cell-of-

origin imprinting. Noncoding events in regulatory promoter and enhancer regions frequently 

involved cancer-relevant genes such as BCL6, FGFR2, RAD51B, SMC6, TERT, and XBP1 and 

represent possible drivers. Unlike most noncoding regulatory events, XBP1 mutations primarily 

accumulated outside the gene’s promoter, and we validated their effect on gene expression using 

CRISPR-interference screening and luciferase reporter assays. Broadly, our study provides a 

blueprint for capturing mutation events across the entire genome to guide advances in biological 

discovery, therapies, and diagnostics.
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Abstract

INTRODUCTION—A central hallmark of tumor development is that cancer cells acquire somatic 

mutations in their genomes that are not present in normal tissue. Some mutations are drivers and 

contribute to the growth of tumor cells, but many others are passengers without apparent effects on 

tumor biology. Over the past decade, driver mutations have been comprehensively characterized 

in protein-coding genomic regions by analyzing sequencing data from thousands of tumor-normal 

pairs. This characterization in protein-coding regions has yielded a wealth of insights into tumor 

biology, including many genome-inspired drug targets. However, the role of somatic mutations in 

the other 98% of the cancer genome—the noncoding genome—remains incompletely understood.

RATIONALE—Many statistical approaches detect drivers as recurrent mutation events by 

comparing the number of mutations with and without effects on protein-coding sequences in 

each gene. These approaches are therefore inapplicable outside of protein-coding regions, where 

the roles of somatic mutations remain less well understood. The noncoding genome encompasses 

a diverse spectrum of elements, including regulatory regions of gene expression that differ in their 

locations and activities between tumor types. To expand our understanding of mutations beyond 

protein-coding regions, we designed and implemented a genome-wide, sliding-window approach 

that detects mutation events irrespective of their locations in regulatory elements or effects on 

protein-coding sequences.

RESULTS—We developed a composite of three methods to detect recurrent mutation events 

across the whole genomes of 3949 patients with 19 cancer types and 61.2 million somatic 

mutations. This approach automatically stratified mutation events into different categories on the 

basis of their position in the genome. In protein-coding regions, we identified an average of 7.5 

events per cancer type and recovered well-established driver mutations. In the noncoding genome, 

3.7 events per cancer type occurred adjacent to genes exclusively expressed in specific tissue 

types (ALB in liver, KLK3 in prostate, SFTPB in lung, SLC5A12 in kidney, TG in thyroid 

tissue, and many others). These tissue-specific events were unlikely to be prototypical drivers 

because they stemmed from a mutagenic process that was exclusively active around these genes, 

instead reflecting possible imprints of the expression programs of the tumor cells of origin. 

Moreover, we found 3.8 noncoding events per cancer type in regulatory regions of expression, 

many involving cancer-relevant genes (BCL6, FGFR2, RAD51B, SMC6, TERT, XBP1, and many 

others). In contrast to most events in regulatory regions, breast cancer mutations near XBP1 
mainly accumulated in a regulatory region outside of its promoter. We validated their regulatory 

effects on gene expression by performing CRISPR-interference screening and luciferase reporter 

assays, illuminating the potential of genome-wide approaches paired with harmonized sequencing 

cohorts to comprehensively capture mutation patterns in both known and unknown elements of the 

noncoding genome.

CONCLUSION—Our study establishes a genome-wide compendium of the diverse mutation 

patterns that shape the genomes of 19 major cancer types, including events near genes with known 

roles in tumor biology and some exhibiting experimentally validated effects on gene expression. 

Our results demonstrate that noncoding mutations are associated with a broad spectrum of 

different biological processes and that their location in the genome is essential for their accurate 

interpretation. Broadly, our study provides a blueprint for interpreting whole-genome sequencing 

data and lays the foundation for future experimental endeavors to implicate noncoding mutations 
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in tumor development, ultimately paving the way for therapies tailored to the noncoding cancer 

genome.

Graphical Abstract

Genome-wide compendium of somatic mutation patterns in human cancer. We analyzed 61.2 

million mutations from 3949 patients of 19 cancer types (top). Using a sliding-window approach, 

we detected mutation events across the entire cancer genome and classified them by their genomic 

locations (middle). For systematic follow-up, we used both computational and experimental 

strategies (bottom). PCAWG, Pan-Cancer Analysis of Whole Genomes; HMF, Hartwig Medical 

Foundation.

Tumors carry different types of somatic mutations in their genomes. Most of these mutations 

are random “passengers” that are propagated through clonal evolution without contributing 

to tumor development (1). However, a few are “drivers” that contribute to the uncontrolled 

growth and proliferation of cancer cells (1) and therefore represent targets for many 

therapies in precision medicine.

Over the past decade, the characterization of somatic drivers has focused primarily on 

protein-coding regions (2), where such mutations change the amino acid sequences of 

oncogenes and tumor suppressor genes. Statistical algorithms have been established to detect 

drivers as recurrent “mutation events” in large sequencing cohorts of tumor patients (3–5). 

Applying these algorithms to the sequencing data of thousands of tumor-normal pairs has 

helped considerably to elucidate which mutations contribute to tumor development in coding 

regions (2), whereas the role of noncoding somatic mutations in the remaining ~98% of the 

genome remains less well understood (6).

In the noncoding genome, the detection and interpretation of mutation events are 

complex. Many algorithms have been established that detect mutation events based on 
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nonsynonymous and synonymous amino acid changes in coding regions (3, 4), rendering 

them inapplicable to noncoding regions in whole-genome sequencing (WGS) data. 

Furthermore, the noncoding genome comprises a diverse spectrum of genomic elements, 

ranging from active regulatory elements of gene expression to inactive heterochromatic 

regions (7, 8). Therefore, mutation events in different parts of the noncoding genome 

mirror separate biological processes, as revealed by recent studies such as the Pan-Cancer 

Analysis of Whole Genomes (PCAWG) (9). Although several mutation events represent 

possible noncoding drivers, such as those identified in the promoters and enhancers of 

cancer-relevant genes, others are less likely to be drivers, such as those resulting from 

mutagenic processes around tissue-specific genes (9, 10).

To address these specific challenges in noncoding regions, we implemented a genome-wide 

approach that identifies somatic mutation events in point mutations and in short insertions 

and deletions across the entire cancer genome irrespective of their positions in the genome 

or their effects on protein-coding sequences. This approach automatically stratifies mutation 

events based on their genomic locations, thus capturing their different propensities to 

represent possible drivers or localized passenger mutation patterns. By applying this strategy 

to a harmonized cohort of 3949 somatic whole cancer genomes and combining it with 

systematic computational and experimental follow-up, our study establishes a genome-wide 

compendium of mutation events in 19 major cancer types.

RESULTS

Genome-wide detection of somatic mutation events in whole cancer genomes

For genome-wide detection and classification of somatic mutation events, we proceeded in 

three steps (Fig. 1, A to C, and fig. S1). First, we tiled the genome with three interval 

sizes (1, 10, and 100 kb; see illustration in fig. S2) and performed three significance 

tests in each interval: test 1 to determine whether a genomic region contained more 

mutations than expected based on its epigenomic signal; test 2 to compare mutation counts 

between different cancer types in each region; and test 3 to determine whether more 

mutations clustered together than expected. Second, we integrated P values from these three 

tests and different interval lengths into a continuous genome-wide signal of significance 

based on Brown’s method (11), and then adjusted this signal by weighted multiple 

hypothesis correction based on cancer-specific expression data (12). Third, we identified 

all statistically significant events in this genome-wide signal [false discovery rate (FDR) < 

0.1] and automatically classified them based on their genomic locations into protein-coding 

regions (mutations in exons of oncogenes and tumor suppressor genes), regulatory regions 

[promoters and enhancers overlapping with signals of H3K4me3 and H3K27ac histone 

chromatin immunoprecipitation sequencing (ChIP-seq) (7)], or mutagenic processes around 

tissue-specific genes (genes exclusively expressed in a specific cancer type). In this way, we 

captured their different propensities to be possible drivers or passengers building on insights 

gained from prior studies (9). We excluded events with mutational hotspots in secondary 

DNA hairpin structures or low genomic mappability; events not meeting any of these criteria 

were labeled as “other” (Fig. 1, A to C).
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Q-Q plots demonstrated that the three significance tests and their combined P values were 

accurately calibrated to their background signals and exhibited no inflation of low P values 

(Fig. 1, D and E, and figs. S3 and S4). Histograms revealed that the background models 

of the three tests matched the observed distributions of mutation rates and positional 

clustering in the upper distribution tails (fig. S3). These results further suggested that the 

three tests did not rely on cancer-type-specific assumptions, and that our genome-wide 

analysis was applicable across a wide range of different cancer types. The materials and 

methods and supplementary text include a comprehensive explanation of the rationale 

behind our statistical framework in the context of prior approaches, additional analyses 

of the performance and accuracy of the three significance tests (figs. S5 to S11), the 

necessity of combining different tests (fig. S12) and interval sizes (fig. S2) to capture a 

broad spectrum of mutation events, and a comparison with alternative implementations (figs. 

S13 to S17).

A genome-wide compendium of mutation events in 19 cancer types

For a harmonized analysis of 6.12 × 107 somatic mutations in 3949 whole genomes from 19 

cancer types, we assembled high-confidence samples, regions, mutations, and cancer types 

from two sequencing consortia, PCAWG (9) and the Hartwig Medical Foundation [HMF 

(13)]. A detailed description of our filtering criteria and the cancer types included in this 

study is provided in the materials and methods and figs. S18 to S21. In 19 cancer types, 

our genome-wide approach detected 142 events in coding regions (average 7.5 per cancer 

type; 45 in oncogenes and 97 in tumor suppressors), 73 events in regulatory regions (average 

3.8 per cancer type; 49 in promoters and 24 in enhancers), 70 events around tissue-specific 

genes (average 3.7 per cancer type; 70 genes exclusively expressed in a specific cancer 

type, such as albumin in the liver), and 87 “other” events (average 4.6 per cancer type; the 

exact role of these findings was less clear) (Fig. 2, A and B; figs. S22 to S24; and tables 

S1 to 20). To refer to the genomic location of our findings, we annotated them by their 

closest genes (table S1). For confirmation, we used the activity-by-contact model (14) based 

on three-dimensional genomic distance, which returned the same genes for 91% of coding, 

regulatory, and tissue-specific findings (fig. S12, G to I).

Events in protein-coding regions—Findings in protein-coding regions largely captured 

well-established driver mutations, with 93.0% (132/142) involving canonical cancer genes 

(Fig. 2C) and 96.5% (137/142) matching the results obtained by two established methods 

for identifying coding drivers [MutSigCV (3) and dNdScv (4)] (fig. S25, A and B). This 

low rate of false positives in coding regions supports the robustness of our approach in the 

entire genome because it uses the same statistics in both coding and noncoding regions. 

Furthermore, significance values returned by our genome-wide approach in protein-coding 

regions correlated with the ratio of nonsynonymous to synonymous mutations (fig. S25C), 

an established marker of positive selection (4). We obtained a similar result in the rest 

of the genome by predicting the pathogenicity of noncoding mutations based on two 

bioinformatics scores (15, 16) (fig. S25, D to F).

Events in regulatory regions—Events in regulatory regions were significantly enriched 

for canonical cancer genes (P < 0.001, Fisher’s exact test), with 37.0% (27/73) of the 
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findings linked to genes in the Cancer Gene Census (17) or the Oncology Knowledge Base 

(18), compared with the 4.1% (the percentage of cancer genes among all genes) that would 

be expected to occur by chance (Fig. 2C). Because of the link between these regions and 

gene expression, some findings in this category have been discussed as plausible noncoding 

drivers in the literature (6, 9, 10, 19). This includes mutation events in the TERT promoter 

(telomere regulation), which we identified in bladder, brain, head and neck, kidney, liver, 

and thyroid cancer, and mutations at MIR21 (cancer-promoting microRNA gene), which we 

detected in breast, esophagus, gastric, and lung cancer. Furthermore, consistent with these 

prior studies (6, 9, 10, 19), we found noncoding mutations upstream of FOXA1 in breast 

cancer and downstream of FOXA1 in prostate cancer, in addition to many coding mutations 

in the same gene.

Our study expanded this category by 46 additional findings in promoters and enhancers 

of genes potentially relevant to cancer (Figs. 2, A and B, and 3A and figs. S22 and 

S23). For example, we identified recurrent events in the promoters of leukemia-related 

genes, including BACH2, BTG2, CXCR4, BCL6, BCL7A, and IRF8. Other mutations 

accumulated in promoters of the cancer-associated genes FGFR2 in bladder and lung cancer; 

B2M, KLF6, and SRCAP (chromatin remodeling complex) in lung cancer; and MDM4, 

PIK3C2B, CDCA4 (cell cycle gene), and BTG3 (antiproliferation factor) in bladder cancer. 

We found additional events in the promoters of MED16 (coactivator of RNA polymerase II 

transcription) in liver cancer, as well as STAG1 (cohesion of sister chromatids during the 

S-phase), SMC6 (maintenance of telomere length), and GEN1 (double-strand break repair) 

in breast cancer.

Other additional findings were in enhancers, including RAD51B (canonical cancer gene 

involved in double-strand break repair) in bladder and breast cancer, ETS2 (transcription 

factor related to proliferation, apoptosis, and telomere maintenance) in colorectal cancer, 

ST6GAL1 (glycosyltransferase inducing an invasive phenotype) in leukemia, and XBP1 
(established function as an estrogen-induced transcription factor) in breast cancer. Some 

mutations in this category recurred as hotspots in the same genomic position, including 

BTG3, FGFR2, MED16, PIK3C2B, SMC6, STAG1, and TERT (fig. S26A and table S21), 

although the occurrence of this mutation pattern was rare in noncoding regulatory regions 

compared with its high frequency in coding regions.

Events near tissue-specific genes—In contrast to protein-coding and regulatory 

regions, findings around tissue-specific genes are unlikely to represent candidate driver 

events themselves because of their reported link to localized mutagenic processes (9, 10) 

and lack of enrichment for known cancer genes (Fig. 2C). However, according to the 

MalaCards database (20), 42.9% (30/70) of tissue-specific genes linked to mutation events 

exhibited physiological roles in their associated normal tissues, compared with the 3.9% (the 

percentage of genes included in the MalaCards database) that would be expected to occur 

by chance (fig. S26, B and C). Therefore, mutation events in this category were significantly 

enriched around genes with reported physiological roles independent of cancer signaling (P 
< 0.001, Fisher’s exact test), concordant with their unique expression in a specific tissue 

type. Some of our findings near tissue-specific genes have been observed in previous studies, 

either as primary results (10) or as incidental findings annotated as nondrivers (9). These 
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included LIPF in gastroesophageal cancer, ALDOB in kidney and liver cancer, SFTPB and 

SFTPC in lung cancer, CPB1 and PNLIP in pancreatic cancer, TG in thyroid cancer, and 12 

tissue-specific genes in liver cancer (including ALB, CYP3A5, FGA, and MIR122).

Our study expanded this category by 54 additional findings (Figs. 2, A and B, and 3B 

and figs. S22 and S23), including TMEFF2 (survival factor for neurons) and HCN1 
(hyperpolarization-activated cation channel in neurons) in brain tumors, as well as 

STC2 (glycoprotein induced by estrogen), TRPS1 (repressor of GATA-regulated genes), 

ANKRD30A (serologically defined breast cancer antigen), and MGP (estrogen-regulated 

matrix protein involved in cellular differentiation) in breast cancer. Other additional events 

in this category included KLK3 (prostate-specific antigen, a serum marker for prostate 

cancer), PLPP1 (androgen-regulated phosphatase expressed on the cell surface), and 

TMPRSS2 (androgen-regulated serine protease) in prostate cancer, and GCG (glucagon, 

a pancreatic hormone) in neuroendocrine tumors. Furthermore, we identified tissue-specific 

events around SLC5A12 (lactate reabsorption in proximal tubules), KCNJ15 (potassium 

channel in the kidney), GLYAT (glycine-acyltransferase), and PCK1 (gluconeogenesis) 

in kidney cancer, as well as MUC6 (mucin; protects epithelium from gastric acid) and 

AGR2 (expressed in mucus-secreting tissues and overexpressed in Barrett’s esophagus) in 

gastroesophageal tumors. Moreover, liver cancer exhibited the largest number of additional 

mutation events in the tissue-specific category, including 18 genes encoding liver-specific 

proteins (including C3, CRP, and TF) and 17 genes associated with liver metabolism and 

detoxification (including AKR1C1, BAAT, CYP2E1, G6PC, and HEXB).

Other events—For some events, the status remained less clear. For example, in agreement 

with the prior literature, we identified events at the neighboring genes NEAT1 and NEAT2 
in breast, bladder, esophagus, kidney, and liver cancer. Our genome-wide approach placed 

them in the regulatory category (fig. S27), whereas PCAWG interpreted them as being the 

result of a transcription-related mutational process (9), and other studies arrived at different 

conclusions regarding their relevance in tumor signaling (19, 21).

Furthermore, some noncoding events did not fall into the protein-coding, regulatory, or 

tissue-specific categories. This “other” category exhibited mild enrichment for canonical 

cancer genes (Fig. 2C) and included MAD1L1 and MAD2L1 (mitotic spindle assembly 

checkpoint) in brain and ovarian tumors; NF1 (tumor suppressor) in breast tumors; DCC 
(known cancer gene) in esophageal cancer; KCNJ15 (potassium channel) in kidney cancer; 

TCL1A, BCR, and NFKBIE (known cancer genes) in leukemia; as well as ABHD5 (lipid 

binding), LIPG (lipase), FN1 (fibronectin), HNF4A (hepatocyte nuclear factor), MAP2K6 
(mitogen-activated kinase), and ERRFI1 (ERBB receptor feedback inhibitor) in liver cancer. 

In addition, APC and SMAD4 in colorectal cancer harbored noncoding splice site mutations 

outside of canonical exon-intron boundaries (fig. S22D).

Altogether, our study establishes a genome-wide compendium of somatic mutation events 

for 19 cancer types, categorized by their genomic locations and different biology, including 

many findings from recent studies and several additional results (see table S1 for literature 

references). A complete list of our findings in each cancer type is provided in tables S2 to 
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S20, annotated by their genomic locations, mutation frequencies, status as known cancer 

genes, and significance values returned by our genome-wide approach.

Systematic follow-up on mutation events identified in our genome-wide analysis

We performed three systematic follow-up analyses to examine the ability of our approach to 

detect mutation events in the noncoding genome and evaluate the plausibility of our results.

Inspection of the genomic territory around mutation events—Although our 

genome-wide approach examined the entire genome, 76.6% (285/372) of the mutation 

events occurred in coding, regulatory, or tissue-specific regions (Fig. 2, A and B, and figs. 

S22 and S23), which account for 10.2% of the genome. Furthermore, they accumulated 

in regulatory and transcribed regions based on ChIP-seq data from normal tissue (7) (fig. 

S28A), and this enrichment was even more pronounced in chromatin accessibility data 

[assay for transposase-accessible chromatin using sequencing (ATAC-seq)] from the same 

type of tumor tissue, when available (8) (fig. S28B). Moreover, mutation events exhibited 

strong enrichment around the following four markers (figs. S29 and S30 and tables S2 to 

S20): (i) ATAC-seq peaks that existed in tumor but not in normal tissue (fig. S29, A and 

B), (ii) ATAC-seq peaks that correlated with the expression of their closest gene (fig. S29, 

C and D), (iii) methylation markers that correlated negatively with the expression of their 

associated genes (fig. S29, E and F), and (iv) genome-wide association study (GWAS) peaks 

from germline data (fig. S29, G and H).

The accumulation of events around these four markers prompted us to investigate whether 

the performance of our genome-wide analysis could be improved by restricting it to 

regions around these four markers. However, this restricted version missed a substantial 

number of findings (fig. S30H), including many events associated with known cancer genes. 

Furthermore, the applicability of the four markers varied between cancer types, depending 

on the availability of ATAC-seq data (8). Similar results were obtained when restricting our 

analysis to five databases of established promoter and enhancer regions (22–26) (fig. S30, C 

and D), illuminating the potential of a genome-wide approach.

Compatibility with prior findings and methods—Previous studies, including 

PCAWG, reported 30.1% (43/143) of the noncoding mutation events in the tissue-specific 

and regulatory categories observed herein (6, 9, 10, 19), compared with the 1.47% (the 

percentage of genes for which noncoding findings had been reported previously) that 

would be expected by chance (P < 0.001, Fisher’s exact test). Conversely, our genome-

wide analysis identified 39 of the noncoding findings from prior work (39/65 previous 

findings; 30/39 previous findings with an FDR < 10−4) (tables S22 and S23). Tissue-specific 

events in this comparison were interpreted differently in prior studies that either reported 

them as primary results (10) or incidental, nondriver findings (9). Furthermore, our WGS 

dataset overlapped with that of previous studies, so that shared findings affirm the general 

compatibility of our genome-wide approach in regions evaluated by both our study and prior 

work.

For further comparison, we ran four existing and available methods [DriverPower (27), 

Larva (28), MutSpot (29), and OncodriveFML (5)] on the entire WGS dataset. This revealed 
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that our genome-wide approach identified nearly all the noncoding events detected by 

these four methods in the genomic territory included in our analysis (figs. S31 and S32). 

This comparison further highlighted the importance of excluding low-quality mutations and 

low-coverage regions from our genome-wide analysis for technical considerations (figs. S18 

and S32), given that not all parts of the genome are amenable to WGS.

Analysis of the statistical power of our genome-wide approach to detect 
mutation events—This analysis demonstrated that the power of our approach varied 

substantially between cancer types, depending on their background mutation rates, the 

available number of samples, and the size of the genomic territory included in the analysis 

(fig. S33). Additional technical factors beyond those captured in this model may interfere 

with the statistical power (9). Although combining the HMF and PCAWG consortia 

increased the statistical power of our study considerably, the amount of whole-genome data 

was still smaller than the amount of whole-exome data generated over more than a decade 

and used to characterize mutations in coding regions (2). Therefore, there may be noncoding 

events in addition to those identifiable in the available data (fig. S33), as was concordantly 

concluded in a power analysis by the PCAWG study (9).

Characterization of mutation and expression patterns of tissue-specific genes

We next studied the pattern of mutation events near or within tissue-specific genes in more 

detail (fig. S34). We first focused on liver cancer, which contained the largest number 

of events in this category. Consistent with previous studies connecting this category of 

mutations with localized mutagenic processes (9, 10), noncoding regions around tissue-

specific genes were enriched for insertions and deletions (“indels”) (Fig. 4A). These indels 

were longer than those in the rest of the genome (83.2 versus 22.4% of deletions had 

target lengths >1 bp; 30.1 versus 15.5% for insertions) (Fig. 4, B and C, and fig. S34A). 

In addition, we observed that indels around tissue-specific genes accumulated in A/T-rich 

nucleotide contexts and resembled Catalogue of Somatic Mutations in Cancer (COSMIC) 

indel signatures ID4 and ID8 (30), a pattern that rarely occurred in the rest of the genome 

(fig. S34, B to H). Comparison of mutations around tissue-specific versus highly expressed 

genes yielded the same differences (fig. S34, I and J), suggesting that mutation events 

in this category only occurred around genes exhibiting unique expression in a particular 

tissue type and not around highly expressed genes in general. Concordantly, expression and 

mutation rates exhibited positive correlation in noncoding regions around tissue-specific 

genes, the opposite of their relationship in the rest of the genome (fig. S35, A and B). 

In addition to mutations, other recurrent events accumulated in proximity to tissue-specific 

genes, including hypermethylation (fig. S35, C and D) and copy number loss (fig. S35, E to 

H). We obtained similar results in cancer types other than liver (fig. S34K).

However, mutation events did not occur ubiquitously around all tissue-specific genes, with 

most cancer types harboring >100 tissue-specific genes but five or fewer tissue-specific 

events (fig. S36A). Furthermore, the number of events in this category differed greatly 

between cancer types (Fig. 2B and fig. S22, A and B), and the fraction of indels and their 

lengths varied considerably between individual tissue-specific genes (fig. S36, B and C). 

These observations suggest that some but not all tissue-specific genes harbor a mutation 

Dietlein et al. Page 9

Science. Author manuscript; available in PMC 2022 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pattern in their surrounding noncoding territory that deviates from the rest of the genome. 

These differences manifested as mutation events detected by our genome-wide approach and 

characterized the specific genomic regions and genes where this localized mutation pattern 

occurred.

Finally, we explored whether characterizing mutation events around tissue-specific genes 

could offer insights into tumor biology. We hypothesized that these events might be 

connected to the cell of origin from which a tumor developed, given that these genes 

exhibited (i) tissue-specific expression (Fig. 4D), (ii) lower expression in tumor cells than 

in normal cells (Fig. 4, E and F, and fig. S36, D to F), and (iii) physiological roles in their 

respective tissues (fig. S26, B and C). Consistent with this hypothesis, many tissue-specific 

genes were heterogeneously expressed in single-cell data from normal tissues (fig. S37, A 

and B), particularly those harboring mutation events (fig. S37, C and D). For instance, in 

single-cell expression data for liver (31), most tissue-specific genes with mutation events 

were differentially expressed (87.5%; 35/40) between cells from different histological zones 

(Fig. 4, G to I, and fig. S38, A to D) compared with 15.5% for arbitrary genes expressed in 

the liver (P < 0.001, Fisher’s exact test). Similarly, in single-cell expression data for kidney 

(32), all tissue-specific genes with mutation events were expressed in a specific cell type 

(proximal tubule cells, 100%; 5/5) (fig. S38, E and F) compared with 26.4% for arbitrary, 

heterogeneously expressed genes (P = 0.001, Fisher’s exact test). Likewise, papillary and 

clear-cell kidney tumors, which originate from proximal tubule cells, carried mutations 

around tissue-specific genes more frequently than chromophobe kidney tumors that originate 

from collecting-duct epithelial cells (33) (60.9 versus 14.0%; P < 0.001, Fisher’s exact test) 

(fig. S38G).

Our analyses thus established a general, reciprocal link among a localized mutation pattern 

in tumor genomes, tissue-specific expression in bulk expression data, and heterogeneous 

expression in single-cell data of the related normal tissue. Therefore, the localized mutation 

pattern around tissue-specific genes may reflect a potential imprint of the characteristic 

expression program of the cell type from which a tumor originated (Fig. 4, G to I, and figs. 

S37 and S38), which could be of use in diagnostics.

Evaluation of mutation events in promoter and enhancer regions

We next used the following analyses to further assess the noncoding mutation events in 

regulatory promoter and enhancer regions.

Transcription factor binding sites—We used a permutation test to identify recurrent 

mutations that changed transcription factor binding motifs in the JASPAR database (34) 

(see the materials and methods). This test revealed that mutations changed binding motifs 

in 15.1% (11/73) of our findings in the regulatory category (fig. S39A), mainly in two 

binding motifs (81.8%; 9/11): Mutations in the ELK4 motif produced two binding sites in 

the TERT promoter in many cancer types (35) (fig. S39A), whereas mutations in the EGR1 
motif (36) removed transcription factor binding sites from the promoters of antiproliferative 

genes such as BTG3 or STAG1 (fig. S39, A and B). We found an additional hotspot in 

the FOXA1 promoter that produced a binding site for E2F1 (19) (fig. S39A). In addition 
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to these single-gene analyses, we analyzed mutations across regulatory regions in aggregate 

and detected additional changes to transcription factor binding sites in regulatory regions 

(fig. S40).

Differential expression—Differential expression analysis required matched mutation and 

expression data from the same tumor samples, and the limited availability of such data 

restricted our search to 12 cancer types (fig. S41, A to C, and materials and methods). In 

addition, we identified potential confounders of differential expression (fig. S41, D to G), 

including copy number, methylation, and the positive correlation between expression and 

mutation rates around tissue-specific genes, which was opposite to their negative correlation 

in the rest of the genome (fig. S35, A and B). Keeping these intrinsic limitations in mind, 

the genes linked to 49 mutation events (23 coding, seven regulatory, 19 tissue specific) 

were associated with differential expression between mutated and nonmutated samples after 

multiple hypothesis correction (fig. S42). For seven of 12 cancer types, the number of 

differentially expressed genes was higher than would be expected by chance (fig. S43, A 

to D). In addition to evaluating differential expression for each mutation event separately, 

we performed two aggregate analyses and detected additional potential associations between 

noncoding mutations and differential expression (fig. S43, E and F).

Physical interactions—Noncoding mutation events involved many genes that exhibited 

direct physical interactions with established driver genes identified from analyses of coding 

regions, suggesting that they targeted the same pathway (37) (fig. S44A and materials and 

methods).

Differences in survival—We tested whether findings in the regulatory category were 

associated with differences in the survival of mutated and nonmutated cancer patients. Using 

a log-rank test, we detected significant differences for TERT in brain (P = 3 × 10−5) and 

thyroid (P = 5 × 10−2) cancer, B2M and FGFR2 in lung cancer (P = 9 × 10−4 and 1 × 

10−2, respectively), ARRDC3 in kidney cancer (P = 4 × 10−2), PIK3C2B in bladder cancer 

(P = 8 × 10−3), BCL6 in leukemia (P = 1 × 10−2), and XBP1 in breast cancer (P = 8 × 

10−4) (fig. S44B). These analyses provide additional support for the plausibility of some of 

the mutation events in this category, in addition to their location in regulatory regions and 

enrichment for canonical cancer genes (Fig. 2C).

Experimental evaluation of regulatory regions and noncoding mutations around XBP1

Although many events in the regulatory category fell into the promoter regions of known 

cancer genes (Figs. 2 and 3A), some events occurred outside of canonical regulatory regions. 

For example, XBP1 mutations, which were present in ~6% of the breast cancer patients 

in our WGS cohort, did not primarily target the XBP1 promoter but rather clustered in a 

narrow, noncoding region downstream of XBP1 (Fig. 3A and fig. S45A), a pattern unlikely 

to occur by random chance (fig. S45B).

Previous studies have connected XBP1 to breast cancer (38, 39) and estrogen receptor 

signaling (40, 41). Concordantly, Gene Set Enrichment Analysis showed estrogen receptor–

dependent signaling to be the most differentially expressed pathway (FDR = 7 × 10−4) 
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between breast cancer samples with high versus low XBP1 expression (Fig. 5 and fig. S46). 

Furthermore, XBP1 was only expressed in prediction analysis of microarray 50 [PAM50 

(42)] expression types related to hormone receptor signaling (luminal A/B, HER2-enriched 

types) but not in other breast tumors (basal-like type) (fig. S47). In addition, the average 

ATAC-seq signal around XBP1 was 1.83-fold higher in receptor-positive versus receptor-

negative breast tumors (P < 0.001, basal-like versus non–basal-like PAM50 subtype, Mann-

Whitney U test) (fig. S46, D and E), suggesting that regulatory regions around XBP1 
exhibited primary activity in the hormone receptor–related subtype. We confirmed somatic 

mutations around XBP1 using Sanger sequencing in breast tumors from our WGS cohort 

(fig. S48).

We used two experimental assays to further assess mutations near XBP1 and to provide 

proof-of-principle support for the possible biological relevance of mutation events outside of 

canonical regulatory regions (Fig. 5 and figs. S49 to S55).

As a first experiment, we performed a CRISPR interference (CRISPRi) screen to localize 

positive regulatory regions around XBP1 (Fig. 5A). We tiled the genomic region around 

XBP1 with a library of 2923 single-guide RNAs (sgRNAs), including the territory 

outside of canonical promoters and enhancers, and repressed the target regions of these 

sgRNAs through Krüppel associated box (KRAB)–mediated silencing in breast cancer cells 

(CAMA1). We then used flow cytometry [CRISPRi-Flow fluorescence in situ hybridization 

(CRISPRi-FlowFISH)] to quantify to what extent repression of a candidate regulatory 

region down-regulated XBP1 expression (14) (Fig. 5A and fig. S49). This screen identified 

five positive regulatory regions (four upstream and one downstream of XBP1) in which 

KRAB-mediated repression down-regulated XBP1 expression (Fig. 5B). These regulatory 

regions were consistent between experimental replicates (Fig. 5, C to E), and CRISPRi-

FlowFISH screening results correlated with an independent experimental assay (quantitative 

polymerase chain reaction, R = 0.59; 29 sgRNAs tested in both assays) (fig. S50). In 

particular, many breast cancer mutations accumulated in the regulatory region that this 

experiment identified downstream of XBP1.

Companion analysis of ATAC-seq data from 74 breast tumors (8) confirmed the five 

regulatory regions from our screening experiment at a higher resolution, where they 

colocalized with five distinct ATAC-seq peaks around XBP1 (Fig. 5F). These peaks were 

exclusive to breast tumors with high XBP1 expression (Fig. 5F and fig. S46E), and their 

ATAC-seq signals correlated with XBP1 expression (fig. S51, A to C), with the highest 

correlation being observed in the ATAC-seq peak downstream of XBP1 (R = 0.80). In 

addition, regulatory regions physically interacted with the XBP1 promoter in the three-

dimensional structure of the MCF7 breast cancer genome (43) (Fig. 5F), and breast cancer–

specific transcription factors bound to upstream regulatory regions of XBP1 in breast cancer 

ChIP-seq data (fig. S51, D and E). Thus, our first experimental strategy demonstrated that 

important noncoding mutation events can occur outside of canonical regulatory regions, 

illuminating the potential of a genome-wide approach to capture somatic mutation events in 

both known and unknown elements of the noncoding genome.
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As a second experiment, we used a luciferase reporter assay to examine the effect of 

mutations observed in breast cancer genomes near XBP1 on transcriptional activity directly 

(figs. S52 and S53A). For this purpose, we cloned the mutated and nonmutated 193-bp 

sequences around 10 mutations near XBP1 that were observed in our WGS cohort into 

the regulatory region of a luciferase reporter plasmid. We measured their luciferase signal 

in breast cancer cells (CAMA1) as a marker of their effect on transcriptional activity. For 

five of 10 mutations, we obtained significantly higher luciferase activity (P < 0.05; Mann-

Whitney U test) for mutated sequences compared with their corresponding nonmutated 

sequences (fig. S52, A and B). For three mutations, we measured a >1.5-fold higher 

luciferase signal, which was similar to that reported for established noncoding mutations, 

including those in the TERT and FOXA1 promoters (~2-fold) (19, 35). Furthermore, despite 

variation between independent experiments, results correlated robustly between replicates 

(fig. S52C).

Differential expression analysis concordantly revealed that breast tumors with mutations 

around XBP1 were associated with elevated XBP1 expression relative to that observed in 

nonmutated tumors, both in tumor patients [PCAWG (9)] and in the Cancer Cell Line 

Encyclopedia [CCLE (44)] (Fig. 5, G to J, and fig. S42). Likewise, analysis of matched RNA 

sequencing (RNA-seq) and ATAC-seq data from two samples (three XBP1 mutations) in our 

WGS cohort revealed that XBP1 mutations correlated with increased fractions of mutated 

reads in RNA-seq and ATAC-seq data compared with their corresponding WGS data (two of 

three mutations examined) (fig. S53, B and C). In addition, mutations near XBP1 exhibited 

differential pathogenicity compared with mutations in the rest of the genome based on two 

bioinformatics scores (15, 16) (fig. S53, D and E). Thus, the second experimental strategy 

confirmed that specific mutations observed in breast cancer patients near XBP1 were 

associated with increased expression and activity of their downstream regulatory region.

The supplementary materials contain additional analyses related to the phenotypes 

associated with XBP1 mutations, including tumor cell proliferation (fig. S54), drug efficacy 

(fig. S55, A and B), the activity of related pathways (fig. S55, C and D), and patient survival 

(fig. S55E).

Discussion

Our study establishes a genome-wide compendium of somatic mutation events in 19 major 

cancer types and advances the field related to four major challenges.

First, noncoding regions comprise a heterogeneous spectrum of genomic elements, and 

mutation events in different parts of the noncoding genome relate to diverse aspects 

of tumor biology. To capture these biological differences, our approach automatically 

stratified mutation events based on their genomic location: Events in protein-coding regions 

corresponded to established coding drivers that alter protein structures of cancer-related 

genes. Some mutations in regulatory regions have been discussed as plausible noncoding 

drivers that could change protein levels of cancer-related genes with low expression in 

normal tissue to recruit them for oncogenesis (6, 9, 10, 19). Events near tissue-specific 

genes characterized localized passenger mutation patterns linked to characteristic expression 
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programs and physiological processes in the tumor cell of origin and are unlikely to 

represent prototypical oncogenic drivers. Some noncoding events could not be associated 

with any of these categories, so their status remains less clear. In addition, although our 

classification was guided by the insights from prior studies (9, 10), the exact terminology 

and criteria differed between studies: Our category of tissue-specific genes (based on 

their expression pattern) was largely equivalent to PCAWG’s annotation of “transcriptional 

processes” (based on a review of their fraction of long indels), our category of regulatory 

regions was mostly labeled as “candidate drivers” by PCAWG, and our upfront filter of 

low-quality mutations and regions was consistent with the “technical artifacts” filter used 

by PCAWG. Despite broad overall consistency, these classifications diverged for individual 

results observed in both our study and prior work. Therefore, careful follow-up is required to 

determine the biology of individual mutation events in detail beyond their genomic location 

and capture the multifaceted functional effects of somatic mutations in noncoding regions.

Our second challenge was that the current understanding of regulatory regions and other 

functional elements in the noncoding cancer genome is likely incomplete given that their 

activity and location can vary between cell types, between tumor and normal tissue, 

and even between patients with the same tumor type (8, 45). Therefore, databases of 

regulatory regions (22–26) and ChIP-seq signals from normal tissue (7) may not capture 

the full diversity and versatility of functional elements in noncoding cancer genomes, and 

differences in the epigenomic structure of tumor and normal cells may be critical for 

characterizing mutation events in tumor-specific regulatory regions. Several analyses in our 

study, including experimental evaluation of XBP1 mutations, highlighted that important 

noncoding mutation events can occur outside of canonical regulatory elements. Although 

tumor-specific ATAC-seq and methylation data improved the enrichment for putative 

functional events, many mutation events linked to cancer genes still fell outside of these 

regions. To address this challenge, our genome-wide analysis locates mutation events across 

the entire genome instead of restricting its search to canonical functional regions. In contrast 

to previous annotation-unbiased approaches (9), our approach tiles the genome with multiple 

interval sizes. This proved critical for its use and performance in the noncoding genome, 

which harbors no predefined genomic boundaries and is ~50-fold larger than exons in 

coding regions. Our results may inform future experimental and clinical characterizations 

of tumor-specific regulatory elements, prioritize regions for hybrid-capture sequencing, and 

enable profiling of these mutation events at a higher read coverage.

The third challenge was that detecting somatic mutation events is technically more 

challenging in noncoding than in coding regions. To detect mutation events based on 

mutational excess, many established statistical concepts use synonymous mutations as a 

control of the regional background mutation rate in coding regions (3, 4). These concepts 

are inapplicable to the noncoding genome because synonymous mutations are available in 

coding regions only. Therefore, methods for identifying mutation events in the noncoding 

genome are required to use epigenomic features to calibrate their statistical models and 

detect mutational excess, which is a statistically more complex problem. Furthermore, the 

search for activating mutations in coding regions has been guided by hotspots of mutations 

that recur in the same position, and these are less frequently observed in noncoding regions 

(9), possibly because noncoding mutations might converge on similar biological effects 
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in independent genomic positions. The statistical power to detect noncoding mutation 

events is further limited by the large number of hypotheses resulting from the size of 

the noncoding genome and its lack of predefined genomic regions. In addition, although 

thousands of whole cancer genomes have been sequenced, the amount of WGS data that 

captures noncoding somatic mutations is still smaller than that available for mutations in 

protein-coding regions. To account for these technical difficulties, we harmonized data from 

two WGS consortia (9, 13) and implemented a statistical approach allowing us to detect 

mutation events irrespective of their effects on protein-coding sequences or location within 

predefined genomic regions. Our approach incorporates established principles from other 

fields and methods (4, 9–12, 46, 47) but differs in critical aspects from many existing 

methods. For example, instead of negative binomial regression, our genome-wide analysis 

is based on a segmented statistical model, which gives it greater flexibility to account 

for overdispersion of mutation counts and complex relationships between epigenomic and 

mutation data. Furthermore, instead of using synonymous mutations in coding regions for 

comparison, our analysis compares mutation counts of the tumor type being studied with 

epigenomics data and sequencing data from unrelated tumor types. Prospective histone 

modification ChIP-seq data from large cohorts of tumor samples could be integrated into our 

approach and might improve its calibration to tumor-specific background mutation rates.

The final challenge was that there is currently no consensus on which events in the 

noncoding genome represent genuine drivers (6). In coding regions, many statistical tools 

detect mutation events based on established markers of positive selection (such as the 

ratio of nonsynonymous to synonymous mutations or equivalent measures), and their 

findings thus uniformly harbor signs of positive selection by design (3, 4). In noncoding 

regions, positive selection markers have not been established, and mutation events are 

identified based on their deviations from a careful statistical background model, including 

events resulting from positive selection or localized mutagenic processes. Therefore, the 

performance of statistical models in noncoding regions cannot be evaluated by classifying 

findings into true versus false positives, which is a common procedure used in coding 

regions (2, 4). Furthermore, experimental validation of the “driverness” of mutation events 

identified by statistical methods remains a general limitation of the field, particularly 

in noncoding regions, because experimental assays to capture the oncogenic effects of 

noncoding mutations beyond expression changes are limited. To address these challenges, 

our study included multiple pan-cancer follow-up strategies, including literature support 

of the genes linked to noncoding mutation events, comparison with other methods, 

and analysis of statistical power. Furthermore, we benchmarked mutation events against 

orthogonal ChIP-seq, ATAC-seq, RNA-seq, drug response, transcription factor binding, 

protein interaction, and patient survival data. We also established four markers to identify 

events in candidate regulatory regions outside of traditional ChIP-seq signals and databases. 

In addition to these computational strategies, our study combined two experimental assays 

to further assess XBP1 by characterizing regulatory regions of gene expression (CRISPRi 

screen) and assessing the effects of noncoding mutations in these regions on expression 

(luciferase reporter assay). These assays gauge orthogonal effects because point mutations 

in luciferase reporter experiments change only a few nucleotides, whereas sgRNAs in 

CRISPRi experiments can affect up to several kilobases around their target regions through 
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KRAB-mediated silencing (48) and thus do not mimic the effect of point mutations. In 

particular, this combined strategy enables experimental follow-up irrespective of the location 

of mutations in canonical regulatory regions, and could therefore guide future experimental 

endeavors.

Moving forward, our findings could be further evaluated in prospective multiomics datasets 

derived from the same patients as mutation sequencing data. These data would allow a 

deeper characterization of our findings in the context of differential expression (matched 

expression data), tumor-specific, long-distance promoter-enhancer interactions (matched 

chromosome conformation capture data), and changes in transcription factor binding 

(matched transcription factor ChIP-seq data). Furthermore, some of our noncoding findings 

may be of direct clinical interest because they converge on genes that have been previously 

explored as direct or indirect targets of cancer therapies, such as TERT and imetelstat, 

FOXA1 and fulvestrant, FGFR2 and infigratinib, BCR and ibrutinib, or RAD51B, GEN1, 

or STAG1 and olaparib. Additionally, our study revealed that XBP1 mutations potentially 

created additional therapeutic avenues. However, many other noncoding findings were 

linked to genes that have not been nominated as drug targets. These could provide critical 

starting points for the development of personalized therapies based on noncoding cancer 

genomes, particularly for patients with resistance to primary treatment or no druggable 

options in protein-coding regions.

Broadly, given the growing use of somatic WGS in the clinical setting and in biobank-scale 

datasets, our study establishes a critical step toward expanding our understanding of somatic 

mutations from protein-coding regions to the remaining ~98% of the genome. It also 

provides a blueprint for prioritizing noncoding mutations for translational investigation and 

therapeutic development.

Materials and methods summary

We combined three complementary significance tests for the genome-wide detection of 

somatic mutation events, which are local accumulations or clusters of somatic mutations that 

deviate from the pattern observed in the rest of the genome. These three tests integrated 

and extended principles established in other fields or methods (4, 9–12, 46, 47), as outlined 

below.

Significance test 1 models the mutational background based on epigenomic signals, taking 

into account differences in mutation rates between euchromatic and heterochromatic regions 

(47) (see section 1.2 of the materials and methods). Using this background model, test 1 

identifies genomic regions with larger numbers of mutations than would be expected by 

chance. A similar principle to that of test 1 had been applied in some previous studies that 

accounted for epigenomic signals by using negative binomial regression to detect mutational 

significance in coding (4) or noncoding (10) regions. Significance test 1 generalizes these 

approaches by using a four-component mixture model [H3K4me1, H3K9me3, H3K27me3, 

and H3K36me3 histone ChIP-seq data (7)] that allows for nonexponential relationships 

between mutation rates and epigenomic signals.
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Significance test 2 compares the number of mutations per genomic interval between 

unrelated cancer types and identifies genomic regions with an unusually large number of 

mutations in a particular cancer type (see section 1.2 of the materials and methods). In this 

way, test 2 detects accumulations of mutations that are specific to a certain cancer type 

and could reflect a specific biology in that type of tumor tissue. To take into consideration 

nonlinear dependencies of mutation counts between cancer types, test 2 uses a segmented 

statistical model to arrange genomic regions into bins and estimate the background mutation 

rate within each bin separately. Furthermore, it accounts for differences in mutation rates 

between tumor types using regional distribution variance. Although test 1 used epigenomic 

data from normal tissue, test 2 serves as a proxy for tumor-specific epigenomic data given 

that the epigenomic structure differs between tumor and normal tissue. The importance 

of these differences has been highlighted in the context of somatic mutations by previous 

studies (8, 45).

Significance test 3 detects positional clustering of mutations around biologically relevant 

positions in the cancer genome (see section 1.3 of the materials and methods). In addition 

to the biological function of genomic positions, other factors, including nucleotide contexts, 

coverage fluctuation, read mappability, and kataegis events, affect positional clustering. 

Concepts similar to those of test 3 have been used in other methods for analyzing coding 

and noncoding regions (9, 29). Therefore, test 3 examines whether mutations occur in 

different positions than expected by chance, but it does not analyze whether the total number 

of mutations deviates from the expectation and thus does not require calibration against 

regional fluctuations of the background mutation rates.

To combine signals from tests 1 through 3, we tiled the genome into 1-, 10-, and 100-kb 

intervals with 25% overlap and performed the three tests in each of these intervals (all 

mutations and indels only). This strategy of an unbiased, genome-wide analysis builds on 

established principles from noncancer germline studies (46) and an annotation-unbiased 

strategy in PCAWG that analyzes 2-kb intervals (9). For each 10- and 100-kb interval, 

we obtained multiple P values from the interval and its subintervals (linked P values of 

its consecutive, nonoverlapping 1- and 10-kb subintervals; see sections 1.2 and 1.4 of the 

materials and methods). We then combined them using Brown’s method (11), which was 

also used in previous cancer genomics studies, including PCAWG (9), and then adjusted 

them using weighted multiple hypothesis correction (12). To derive a genome-wide signal 

of significance, we selected maximally significant, nonoverlapping intervals, as described 

previously (10), and favored 10- over 100-kb intervals because they allowed us to optimize 

the resolution of our signal (see section 1.4 of the materials and methods). In this genome-

wide signal, we identified mutation events as significant regions with an FDR < 0.1 (peak 

value < 0.05).

To classify mutation events, we annotated them based on their closest gene and their putative 

function (see section 1.5 of the materials and methods): coding regions [regions with the 

most mutations in exons or splice sites in exon-intron boundaries and findings detected 

by MutSigCV (3) or dNdScv (4)]; regulatory regions [regions with the most mutations in 

H3K4me3 or H3K27ac ChIP-seq peaks from Roadmap (7)]; tissue-specific genes (mutations 

around genes that are expressed in a particular tumor type); and “other” findings (mutations 
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with unclear functions that fit no other criteria). We excluded regions with low-alignability 

mutations or hotspots in DNA loops (see section 1.5 of the materials and methods).

A more detailed description of the significance tests and statistical framework can be found 

in the materials and methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Genome-wide analysis of somatic mutation events in whole cancer genomes. (A) Genome-

wide detection of somatic mutation events in whole cancer genome sequencing data. Step 

1 combines three complementary test strategies. Step 2 integrates the results of tests 1 to 3 

into a joint, genome-wide signal and identifies significant mutation events. Step 3 classifies 

mutation events according to their genomic location. (B and C) Top: Boxplots comparing 

mutation rates of a representative cancer type (lung cancer) against epigenomic signals 

[(B), the rationale of test 1] and mutation rates of other cancer types [(C), the rationale 

of test 2]. Boxes indicate 25/75% interquartile ranges, vertical lines extend to 10/90% 

percentiles, and horizontal lines reflect distribution medians. Bottom: Observed (teal dots) 

and predicted (continuous line) mutation rates (10-kb intervals) plotted against their position 

on chromosome 1 (function smoothed by Gaussian kernel). (D and E) Q-Q plots comparing 

observed (y-axis) and expected (x-axis) P values for test 1 (D) and test 2 (E).
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FIG. 2. 
Mutation events identified in a genome-wide analysis of the PCAWG and HMF consortia. 

(A and B) Top: Pie charts showing the number of mutation events per category (purple: 

coding, orange: regulatory, teal: tissue-specific, gray: other) in aggregate (A) and individual 

cancer types (B). Bottom: Genomic positions (y-axis) plotted against their significance in 

a genome-wide analysis (x-axis) and colored by categories (B). The position (y-axis) of 

findings recurring in more than one cancer type is plotted against the number of cancer types 

(x-axis) (A). NEAT1 and MALAT1 are marked by asterisks because their classification was 
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ambiguous. (C) Mutation events sorted by their significance in a genome-wide analysis 

(x-axis, orange) and plotted against the number of findings involving known cancer genes 

(y-axis, top). Random overlap between findings and cancer genes serves as a negative 

control (purple).
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FIG. 3. 
Categories of mutation events exhibit different mutation patterns. Positional clustering of 

mutations (y-axis, percentage of maximum) is plotted against genomic positions (x-axis) 

around mutation events that fall into regulatory regions [(A), orange] or overlap with tissue-

specific genes [(B), teal]. Genomic boundaries of the closest gene are marked at the bottom 

of each plot, and white arrowheads mark the direction of its transcription.
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FIG. 4. 
Characterization of the expression and mutation patterns of tissue-specific genes. (A and 

B) Box plots comparing the ratio of the number of indels to single-nucleotide variants 

(SNVs) (A) and the ratio of the number of long to short indels (B) between tissue-specific 

genes (orange) and other genes (purple). (C) Mutation rates of SNVs (black), short indels 

(purple), and long indels (orange) (y-axis, percentage of maximum) plotted against their 

genomic position around ALB (x-axis). (D and E) Box plots comparing the expression (D) 

and expression ratio in tumor versus normal tissue (E) of tissue-specific genes (orange) and 

other genes (purple). (F) Box plots comparing ALB expression (y-axis) between samples 

from tumor tissue (orange) and normal tissue (purple). (G and H) Box plots comparing 

heterogeneous expression of tissue-specific genes (orange) and other genes (purple) in 

single-cell data of hepatocytes (left) and endothelial cells (right) based on an analysis of 

variance (ANOVA) test (G) and the expression ratio between cell types (H). (I) Box plots 

comparing ALB expression in cells from different histological zones of the liver (x-axis). 

Boxes in (A) to (I) indicate the 25/75% interquartile range, vertical lines extend to 10/90% 

percentiles, and horizontal lines reflect distribution medians. Significant differences (Mann-

Whitney U test) are marked with asterisks: *P < 0.05, **P < 0.01, ***P < 0.001.
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FIG. 5. 
Noncoding somatic mutations occur in regulatory regions around XBP1. (A) CRISPRi 

screening of regions around XBP1 using a library of 2923 sgRNAs in breast cancer cells 

(CAMA1). Regulatory regions were localized based on sgRNAs, for which KRAB-mediated 

silencing of their target region led to decreased XBP1 expression in flow cytometry 

(orange). (B) Fractions of effective sgRNAs (y-axis) plotted against their position around 

XBP1 (x-axis). Positions of ATAC-seq peaks (teal, bottom), noncoding mutations (purple, 

bottom), and target regions of the sgRNAs (top) are annotated. (C and D) Efficacies 

of sgRNAs (sliding window of 10 adjacent sgRNAs) compared between experimental 

replicates [x-axis versus y-axis (C)] and the ATAC-seq signal of their target regions in 

breast cancer [y-axis (D)]. (E) Bar graphs displaying the XBP1 expression ratio before 

and after CRISPRi in regulatory regions (orange) and nonregulatory regions (gray) for 

individual sgRNAs. Error bars reflect the SD across cells. (F) Mutation densities (purple), 

ATAC-seq signals (teal), and three-dimensional interactions in the breast cancer genome 

of MCF7 (ChIA-PET, black) plotted against their genomic position around XBP1 (x-axis). 

(G) XBP1 expression compared between breast tumors with [purple, mutated (mut)] and 

without [gray, wild-type (wt)] mutations around XBP1 in PCAWG (left) and CCLE (right). 

Boxes indicate the 25/75% interquartile range, vertical lines extend to 10/90% percentiles, 

and horizontal lines reflect distribution medians of XBP1 expression. Significant differences 

(Mann-Whitney U test) are annotated with asterisks: *P < 0.05, **P < 0.01, ***P < 0.001. 

(H) Gene Set Enrichment Analysis analyzing expression differences in tumors with high 

versus low XBP1 expression by computing an enrichment score (x-axis) and a significance 

value (y-axis) for each hallmark signature. For (I) and (J), gene ranks (x-axis) are plotted 
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against enrichment scores (y-axis) for early (I) and late (J) estrogen response signatures 

(black).
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