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BACKGROUND AND STUDY 
RATIONALE
One of the intriguing characteristics of 
Systemic Lupus Erythematosus (SLE) 
is its tendency for increases in disease 
activity, also known as flares, which are 
often unpredictable. Indeed, in various 
patient cohorts, the frequency of SLE 

flares (or relapses) is approximately 
0.30–0.50 per patient-year, and despite 
available treatments, long-term disease 
quiescence occurs only in a small frac-
tion of patients.1 The clinical burden of 
lupus flares is remarkable, since about 
30–40% of exacerbations affect multiple 
or major organs (for instance, kidneys), 
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ABSTRACT
A remarkable, yet poorly explained feature of Systemic Lupus Erythematosus (SLE) is the propensity to 
flare following a preceding period of disease inactivity. The clinical burden of lupus flares is substantial 
since they often tend to involve multiple or major organs, and carry a near two-fold increased risk 
for accrual of irreversible organ damage. The cellular and molecular mechanisms underlying the 
progression of SLE from inactive to active state remain ill-defined. Application of novel sequencing 
technologies together with cellular immunology assays, have illustrated the important role of multiple 
types of both innate and adaptive cells and associated pathways. We have previously described 
significant differences in the blood transcriptome of SLE patients at active versus inactive disease, and 
we have also defined genome regions (domains) with co-ordinated expression of genes implicated in the 
disease. In the present study, we aim to decipher the cellular and molecular basis of SLE exacerbations 
by utilising novel single-cell sequencing approaches, which allow us to characterise the transcriptional 
and epigenetic landscapes of thousands of cells in the peripheral blood of patients. The significance of 
the study lies in the detailed characterisation of the molecular and regulatory program of immune cell 
subpopulations that underlie progression from inactive to active SLE. Accordingly, our results may be 
exploited to identify biomarkers for disease monitoring and novel therapeutic targets.
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they necessitate treatment escalation or switch (includ-
ing administration of high-dose glucocorticoids or other 
potent immunosuppressives), and are linked to almost 
2-fold increased risk for irreversible organ damage.2,3 
Importantly, treatment of SLE relapses remains empirical 
due to lack of randomised evidence and personalised 
options based on the underlying pathophysiology.
The cellular and molecular mechanisms implicated in SLE 
re-activation following a previous period of quiescence 
remain elusive.4 During recent decades, the advent 
of next-generation genome sequencing technologies 
coupled with focused cellular immunology studies, have 
provided unique insights regarding the role of specific cell 
types of both innate (eg, neutrophils) and adaptive (eg, 
follicular helper T-cells, long-lived plasmablasts) immunity 
as well as of pertinent pathways (eg, interferon-alpha, 
autoantibodies) in SLE pathogenesis.5-10

To this end, the gene expression and functional state of 
cells may be altered under the effect of exogenous or oth-
er (for instance, inflammatory cytokines) factors through 
epigenetic changes including histone and chromatin 
modifications.11,12 In fact, changes in the epigenetic and 
transcriptional program of tumour-surveilling immune 
cells have been linked to resistance to chemotherapy 
and progression of malignant disease.13,14

In a previous work using RNA-sequencing (RNA-seq), we 
identified widespread perturbations in gene expression in 
the peripheral blood of active SLE patients as compared 
to their counterparts at remission or low disease activity 
state.15 Α total of 693 genes showed differential expres-
sion in patients with active versus inactive or low disease 
activity, and these genes were enriched in pathways 
such as type I interferon, proteasome, and oxidative 
phosphorylation. Further analysis revealed that genomes 
of SLE patients are organised into distinct regions of 
co-expressed genes (known as Domains of Coordinated 
gene Expression [DCEs]), which seem to regulate import-
ant pathways, such as interferon.16 These DCEs varied 
according to the level of SLE activity and correlated with 
changes in chromatin accessibility. Notably, the genomes 
of patients at low disease activity or remission displayed 
co-expression of genes implicated in kidney disease and 
neutrophil activation, which suggests the persistence of 
genomic aberrations contributing to disease flare-up.  
Furthermore, other research groups have described 
alterations in chromatin accessibility and/or activation of 
gene enhancers in SLE patient-derived monocytes,17,18 
neutrophils19 and B-cells.20,21 Altogether, these data 
underscore a possible role of the chromatin environment 
and epigenetic factors on determining the transcriptional 
program and function of immune cells contributing to 
lupus. Still, the time-dynamics of the aforementioned 
molecular cues and the interaction between various 
immune cell types have not been studied in the context 
of SLE transition from inactive to active state. 

AIMS OF THE STUDY
In this research study, we aim to investigate the cellu-
lar and molecular basis of flares in patients with SLE. 
Considering the complexity of the disease, we will utilise 
state-of-the-art single-cell sequencing technologies 
to obtain a detailed map of the transcriptional and 
epigenetic profiles in multiple subtypes of peripheral 
blood immune cells. Through a prospective biosampling 
protocol, we plan to simultaneously characterise gene 
expression and chromatin accessibility at single-cell 
resolution in the peripheral blood mononuclear cells (at 
least 3,000 to 5,000 cells per patient sample) from two 
(2) SLE patients assayed at three (3) consecutive time 
points: disease remission, flare and post-flare (after 
treatment modification). Our hypothesis is that specific 
epigenetic modifications (chromatin accessibility) direct 
the molecular reprogramming of specific immune cells 
thus contributing to SLE relapse. 

METHODS
This is a prospective, non-interventional, clinical-transla-
tional study with the following design and implementation 
plan.

Patient recruitment 
Patients diagnosed with SLE will be screened consecutive-
ly and recruited from the Connective Tissue Disease out-
patient clinic of the Rheumatology Department, University 
Hospital of Heraklion, Greece. Inclusion criteria will include: 
a) fulfilment of the 2019 EULAR/ACR (European Alliance 
of Associations for Rheumatology / American College 
of Rheumatology) classification criteria,22 b) age 18–40 
years, c) history of positive anti-dsDNA autoantibodies, d) 
relapsing-remitting disease pattern,23 and e) low disease 
activity or remission during the past 3 months according 
to the LLDAS24 and DORIS25 definitions, respectively. 
Exclusion criteria will include: a) coexistence of other sys-
temic autoimmune or inflammatory disease, b) pregnancy 
or planning for pregnancy, c) chronic infection, d) history 
of malignancy, e) treatment with cyclophosphamide 
during the previous 3 months or with rituximab during the 
previous 6 months. The study will receive approval by the 
Institutional Review Boards of the University Hospital of 
Heraklion and the University of Crete, and all participants 
will provide informed consent form. 

Sample size	
Considering that single-cell technologies enable the pro-
filing of thousands of individual cells (up to 10,000 cells 
per sample) from peripheral blood samples, a relatively 
small number of patients is adequate. Since this is a 
pilot study, only two (2) patients will be analysed, each 
patient sampled on three consecutive time points: during 
remission or low disease activity, at the time of flare, 3 
months post-flare and after treatment administration. 
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Patient samples of each time point will be combined and 
profiled in a separate 10x Multiome library. To identify 
two eligible patients, a total 20 SLE patients who meet 
the aforementioned inclusion criteria will be monitored 
clinically over a period of 12 months.

Clinical monitoring and bio-sampling protocol
Enrolled patients will be monitored every 3-4 months for 
a total period of 12 months. On each visit, routine labora-
tory, serological (C3/C4, anti-dsDNA) and urine tests will 
be performed, and disease activity will be quantified by 
the validated indices: a) SLE Disease Activity Index-2000 
(SLEDAI-2K)26 and b) Physician Global Assessment 
(PhGA; scale 0–3).27 For the detection and quantification 
of flares, the SELENA-SLEDAI Flare Index (SFI) will be 
employed,27 following minor modifications as outlined in 
Table 1. Patient history, physical examination and any 
relevant laboratory or imaging tests will be considered 
to exclude any flare-mimics such as infection or drug 
adverse effect. Administered medications and dosages 
will be recorded.
Upon inclusion to the study, all patients will donate a first 
blood sample (15 ml) obtained by venipuncture (low dis-
ease activity/remission stage). During follow-up, a sec-
ond blood sample will be obtained from two SLE patients 
who will develop moderate or severe flare according to 
the SFI (flare stage). Those patients will be managed for 
active disease at the discretion of the treating physician 
and in line with the EULAR recommendations.28 Three 
months after therapeutic intervention of the flare, a third 
blood sample will be collected (post-flare stage).

Isolation of peripheral blood mononuclear cells and 
single-cell RNA-seq/ATAC-seq
We will assay blood as a relevant and easily accessible 
tissue to define complex inflammatory signatures.29,30 
Venous samples (2 patients x 3 time-points, 6 in total) 
will undergo Ficoll density centrifugation for isolation of 
peripheral blood mononuclear cells (PBMCs). In SLE, the 
PBMCs fraction also includes circulating neutrophils,31 
which are relevant to disease pathogenesis. Single-cell 
suspensions will be prepared on microplates through 
the robotic Fluidigm C1 system, followed by purification 
of RNA and chromatin from the cell nuclei.32 Genomic 
material will be processed for library synthesis (DNA for 
chromatin, cDNA for gene expression) and analysis by 
the chromium-based (10x) single-cell multiome ATAC 
(Assay for Transposase-Accessible Chromatin) & gene 
expression.32-34 Next-generation sequencing will be car-
ried out at the Genomic Facility, IMBB-FORTH.

Bioinformatics and data analysis 
We will create a single-cell transcriptomic and epig-
enomic atlas followed by modularity optimisation to 
detect immune cell clusters across patient groups and 

time-points.35,36 Differential gene expression between 
pertinent immune cell clusters, coupled with functional 
enrichment analysis, will characterise the cellular states 
and dedicated transcriptional programs predisposing to 
flares. Chromatin accessibility data will help to disentan-
gle the regulatory programs governing the transition to 
active SLE, guided by the cell-to-cell linkage between      
modalities (scRNA-seq, scATAC-seq) and the cell-
state annotations of the transcriptome atlas. Using the 
scATAC-seq data, we will characterise our immune cell 
clusters, and determine high resolution cell sub-clus-
ters with unique chromatin accessibility profiles. Open 
chromatin regions (OCRs) will be subjected to functional 
enrichment analysis (LOLA, GREAT tools) to infer their 
putative regulatory roles.37,38 Also, mapping of transcrip-
tion factor (TF) binding sites (TFBS) motifs39 will reveal 
enrichment of specific TFs involved in the acquisition of a 
primed state of immune cells. Correlation between gene 
expression, TF expression and motif accessibility will 
identify flares-predisposing Gene Regulatory Networks 

Table 1. Modified SELENA-SLEDAI Flare Index.27

Moderate flare Severe flare
Increase in SLEDAI by ≥3 
points (but not to >12)

 Increase in SLEDAI to 
>12 points

New or worse: discoid, 
photosensitive, profundus, 
cutaneous vasculitis 
or bullous lupus rash, 
nasopharyngeal ulcers, 
serositis, arthritis, fever

 New/worse: neurological 
lupus, vasculitis, 
nephritis, myositis, 
platelet <60.000/μL, 
haemolytic anaemia (Hb 
<7 g/L or ↓ Hb > 3 g/L)

Increase or added 
prednisone, but to a dose 
<30 mg/day

 Increase or added 
prednisone to a 
dose ≥30mg/day, or 
pulses of intravenous 
methylprednisolone

Added NSAID or 
antimalarials (for SLE 
activity)

 Added 
cyclophosphamide, 
azathioprine, 
methotrexate or 
mycophenolate, or 
new biological drugs 
(rituximab, belimumab) 
for SLE activity, or 
hospitalization

Increase in PhGA by ≥1 
(but not to >2.5)

 Increase in PhGA to 
>2.5

SLEDAI, SLE disease activity index; NSAID, non-
steroid anti-inflammatory drugs; PhGA, physician global 
assessment; Hb, haemoglobin.
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(TF-to-gene promoter/enhancer relationships). Finally, 
reconstruction of immune cell lineage differentiation 
and cell maturation trajectories will delineate the cellular 
dynamics and underlying states during SLE re-activa-
tion.35,40 Collectively, our analysis will decipher how gene 
regulatory reprogramming in immune cells triggers flare 
initiation. We will also test the reversibility of these molec-
ular/regulatory programs in the post-flare samples.

ANTICIPATED RESULTS AND PROJECT 
SIGNIFICANCE
Patients with SLE often manifest flares (relapses) of their 
disease, which contribute to substantial clinical, finan-
cial,41 and societal burden and tend to trigger treatment 
intensification including administration of glucocorticoids. 
The cellular and molecular mechanisms underlying tran-
sition of SLE from inactive to active state remain incom-
pletely understood. In view of the biological complexity of 
the disease, we hereby propose the utilisation of novel, 
high-resolution genomic technologies which enable the 
simultaneous profiling of gene expression and chromatin 
state (accessibility) in circulating blood cells of the lupus 
patients both during disease quiescence, flare-up, and 
following introduction of therapy. Through this approach, 
a detailed atlas of the genome will be obtained in thou-
sands of cells assayed across consecutive time points. 
We will be able to characterise specific immune cell sub-
populations that are altered in terms of frequency and/or 
functional state during SLE flare. In addition, chromatin 
analysis will provide novel insights into regulatory/epi-
genetic drivers of perturbed transcriptomes associated 
with disease re-activation. Altogether, our analysis could 
uncover novel and biologically-relevant biomarkers for 
disease remission and exacerbation, as well as putative 
targetable genes and pathways for flare prevention and 
treatment.
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