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Introduction
Sepsis is a life-threatening organ dysfunction 
associated with a dysregulated host response to 
infection.1 It is a leading cause of death due to 
multiple organ failure (MOF) in critically ill 
patients.2 Sepsis affects 300 million people annu-
ally and is a cause of death in more than 200,000 
patients, making it the tenth most common cause 
of death in the United States.3 The gut microbi-
ome is associated with the pathogenesis of sepsis. 
Figure 1(a) shows a schematic diagram of several 
variables involved in the mechanism underlying 
sepsis development. Both bacteria-associated and 
host-related factors contribute to the develop-
ment of gut barrier dysfunction and bacterial 
translocation (BT) in sepsis.4–7 In this review, we 
describe some of the recent advances in under-
standing the mechanisms through which the gut 
microbiome contributes to the pathogenesis of 
sepsis and discuss potential therapeutic measures 
for sepsis that target the microbiota.

Dysbiosis is an imbalance of the gut microbiota in 
which the composition or function of the normal 
bacteria colonizing the gut is disrupted.8

The cause of dysbiosis is multifactorial and 
involves a combination of genetic, dietary, stress, 
and disease factors (Figure 1(a)). Several genetic 
disorders were described in association with 
dysbiosis.9–11

Dysbiosis is associated with an impaired ability to 
maintain mucosal membrane function, contribut-
ing to systemic inflammation.12 When dysbiosis 
occurs, toxins, bacterial endotoxins, bacteria, or 
debris can leak from the gut, along with food par-
ticles containing proteotoxins, such as gluten, 
casein, and zein, and heat-induced molecules, 
such as advanced glycation end products and 
advanced lipoxidation end products.12

BT in sepsis
The gut is a source of systemic infection in criti-
cally ill patients due to increased BT associated 
with compromised barriers. Intestinal bacteria 
can be disseminated systemically via BT, moving 
through the mesenteric lymph nodes (MLNs) or 
activating the gut immune system.13,14 The intes-
tinal barrier and BT dysfunction are involved in 
MOF, a complication of sepsis due to activation 
of the immune system and the secretion of pro-
inflammatory cytokines.15–18 In BT, bacteria 
move through transcellular passages between 
enterocytes under the control of membrane 
pumps and via paracellular pathways due to the 
disruption of tight junctions.19,18 These mecha-
nisms are potentiated by the intestinal barrier 
dysfunction, which is composed of physical, bio-
chemical, and immunological factors. Endotoxins 
and antigens are transported from the gut into the 
circulation.20–22
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Gut-origin sepsis is a process in which bacteria 
and bacteria-associated products incite a sys-
temic response. These systemic responses are 
responsible for other clinical manifestations in 
critically ill patients with syndromes, such as 
acute respiratory distress syndrome (ARDS) 
and multiple organ dysfunction syndrome 
(MODS).23–25

BT can induce an inflammatory response, result-
ing in cytokine-mediated systemic inflammatory 
response syndrome (SIRS) and MODS.15 The 
mechanisms associated with the development of 
SIRS and MODS are linked with bacterial media-
tors leaving the gut termed ‘danger particles’ or 
pathogen-associated molecular patterns (PAMPs). 
PAMPs stimulate the innate immune system.26
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Figure 1.  (a) Variables associated with the development of sepsis. Bacterial factors, including bacteria 
and host factors, include age, ethnicity, the immune system, diet, background diseases, and medications. 
Each factor represents a potential target for therapeutic interventions. The roles of dysbiosis and BT in the 
pathogenesis of sepsis are highlighted. (b) A schematic presentation of several potential therapeutic measures 
for sepsis, focusing on gut dysbiosis. A shift between a normal/healthy/low sepsis risk microbiome and an 
altered microbiome and a sepsis microbiome or that the altered microbiome (‘dysbiosis’) increases the risk of 
sepsis.
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Both viable bacteria and PAMPs can translocate 
and exert immunomodulatory effects that lead to 
sepsis.27–33 These factors lead to increased expres-
sion of nuclear factor kappa light-chain enhancer 
of activated B cell (NF-κB)-associated inflamma-
tory transcription factors,34 and the excess pro-
duction of inflammatory cytokines associated 
with end-organ damage.35,36

Dysbiosis: malfunctioning of the gut  
microbiota and bacteria-dependent factors  
that determine virulence
Patients in the early stages of sepsis manifest dif-
ferences in their microbiome composition.12,37 
These patients show lower counts of 
Bifidobacterium and Lactobacillus species, which 
protect the normal gut microbiota, and higher 
counts of pathogenic facultative anaerobes, such 
as Staphylococcus sp. and Pseudomonas aeruginosa 
sp.38 Similar changes have been described in 
patients post laparotomy.38 Mice injected intra-
peritoneal with a fecal solution collected from 
C57BL/6 (B6) cecum developed polymicrobial 
sepsis, with a high mortality rate and significant 
bacterial dissemination. Hepatic dysfunction and 
systemic pro-inflammatory responses were noted, 
and their cytokine profiles, among them interleu-
kin (IL)-1β, IL-6, and tumor necrosis factor-
alpha (TNF-α), were correlated with the severity 
of sepsis.39

Gram-negative bacteria release lipopolysaccha-
ride (LPS) and other virulence factors that induce 
an inflammatory response.40 They trigger the 
translocation of NF-κB to the nucleus, resulting 
in the upregulation of target adhesion molecules 
and cytokines, including IL-6, leading to leuko-
cyte recruitment via increased E-selectin and 
intercellular adhesion molecules.40 Immunogenic 
bacterial proteins, including proteins involved in 
cell adhesion, fimbria, oxidoreductase activity, 
proteolysis, antimicrobial resistance, and ion 
transport, were expressed in humans with 
Salmonella Paratyphi bacteremia and sepsis.41

The interplay between the gut microbiome  
and the gut immune system
Sepsis and MOF result from recognizing virulent 
species by the innate immune system.42 In sepsis, 
viable and non-viable pathological bacterial prod-
ucts translocate and promote a self-perpetuating 

circle of dysfunctional immune activation and 
systemic inflammation.43

The innate immune system plays a role in regulat-
ing the composition of the microbiome,44 and BT 
occurs more frequently in immunocompromised 
patients. Immune deficiencies and immunosup-
pressive therapies are associated with quantitative 
and qualitative changes in the intestinal microbi-
ota, mucosal barrier permeability, and BT.18,45 
Bloodstream infections that occur in patients with 
febrile neutropenia following cytotoxic chemo-
therapy are caused by BT.46 Common gastroin-
testinal organisms are more prevalent in patients 
with neutropenia, suggesting that the BT of gut 
organisms causes central line-associated blood-
stream infections in the setting of neutropenia.

In an animal model of sepsis, death was linked to 
a component of the innate immune system, the 
node-like receptor (NLR) apoptosis-inhibitory 
protein (Naip) 5-NLR4 (Naip5-Nlrc4) inflam-
masome.42 The immune system is activated via 
pathways involving toll-like receptors (TLRs) and 
NF-κB. TLRs are transmembrane proteins that 
recognize microbial pathogens via the motifs 
mentioned above and invoke an intracellular sign-
aling cascade that culminates in the activation of 
macrophages and the secretion of pro-inflamma-
tory cytokines, promoting MODS.47

In individuals with an impaired gastrointestinal 
barrier, LPS stimulates inflammatory reactions 
involved in the pathogenesis of sepsis.48,49 LPS 
originating in the intestinal lumen reaches the 
MLNs and circulatory system, causing endotox-
emia, which leads to systemic inflammation.50,51 
Immune suppression via a process in the MLNs 
affects the level of LPS in the abdominal aortic 
blood, thereby determining the degree of endo-
toxin translocation.50 LPS can be eliminated in 
humans by inactivating LPS via LPS-binding 
molecules, enzymes that degrade LPS, or modify-
ing the LPS-responding target cells.48,52,53 Primary 
or secondary defects in any of these can induce 
SIRS.

In mice with cecal ligation and perforation (CLP), 
a model of polymicrobial sepsis, perforation of the 
cecum allows the release of fecal material into the 
peritoneal cavity to generate an exacerbated 
immune response. In this model, LPS was posi-
tively correlated with the percentage of regulatory 
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T lymphocytes and negatively correlated with the 
ratio between pro- and anti-inflammatory cells.50 
LPS altered the mechanisms related to defective 
hepatic ammonia detoxification in sepsis.54 In 
LPS-treated rats, expression of the hepatocyte 
mitochondrial aquaporin-8 channel, the ammonia 
permeability of the inner mitochondrial mem-
branes of the liver, and basal and glucagon-induced 
ureagenesis from ammonia were downregulated.54

Within hours, the SIRS in sepsis shifts to an adap-
tive anti-inflammatory state with immunosup-
pression.55 This anti-inflammatory phenotype is 
characterized by diminished expression of pro-
inflammatory cytokine genes in response to TLR 
stimulation with bacterial LPS.55 Translation of 
TNFα and IL-6 mRNA in endotoxin-adapted 
human monocytes is suppressed by a microRNA 
(miRNA)-based mechanism. TLR4-induced 
miRNA-146 modifies the subcellular localization 
of RNA-binding motif protein 4 (RBM4), result-
ing in the assembly of a translation-suppressor 
complex that disrupts the synthesis of TNFα and 
IL-6. Knockout of miRNA-146a results in ser-
ine-309 phosphorylation of RBM4 and its nuclear 
re-localization, which restores the TLR4-
dependent synthesis of TNFα and IL-6, suggest-
ing that miRNA-146a has a role in limiting an 
excessive acute inflammatory reaction.55

Matrix metalloproteinase 7 (MMP7) is associated 
with activating alpha-defensins and broad-spectrum 
antimicrobial, anti-inflammatory peptides produced 
by Paneth cells in the gut.49 MMP7 protects mice 
from LPS-induced intestinal permeability and mor-
tality. LPS induces the activation of MMP7 in the 
small intestine, degranulation of Paneth cells, and 
promotes intestinal permeability. MMP7(–/–) mice 
are resistant to LPS-induced death, which is corre-
lated with reduced cytokine levels and a decrease in 
LPS-induced BT to MLNs.56 Alpha-defensins 
stimulate IL-6 release from macrophages and ileum 
explants in a TLR4-independent manner.56

Follistatin-like protein 1 (FSTL-1) is overex-
pressed under inflammatory conditions character-
ized by elevated IL-1β.57 FSTL-1 activates the 
mitochondrial electron transport chain increasing 
adenosine triphosphate (ATP) production. 
It is an essential potentiator of the NOD-like 
receptor family pyrin domain containing 3 
(NLRP3) inflammasome.57 Serum concentrations 
of FSTL-1 are increased in patients with bacterial 
sepsis and mice administered LPS.57

Studies have shown that the microbiome affects 
the immune system. Dysbiosis was shown to be 
associated with elevated plasma endotoxin levels 
and a higher rate of BT in the liver in rats with 
acute rejection following orthotropic liver trans-
plantation.45 Acute rejection is accompanied by a 
shift in gut microbiota composition toward 
Bacteroides and Ruminococcus. Bacteremia is a fre-
quent complication of allogeneic hematopoietic 
stem cell transplantation.58 These patients 
develop a shift in the bacterial populations of the 
gut and reduced microbial diversity. Commonly 
encountered organisms, including Enterococcus, 
Streptococcus, and Proteobacteria, account for more 
than 30% of the microbiota. Enterococcal domi-
nation increased the risk of vancomycin-resistant 
Enterococcus bacteremia, and Proteobacterial dom-
ination increased the risk of Gram-negative rod 
bacteremia.58 The antibiotic treatment further 
affects the microbiota and the associated risk for 
sepsis. The risk of sepsis within 90 days after dis-
charge from a previous hospital stay by type of 
antibiotic received during the previous stay was 
recently determined. The study showed that the 
risk of sepsis-associated exposure to our high-risk 
antibiotics was 65% higher than those without 
antibiotic exposure and was higher with increased 
quantities of antibiotics during hospitalization.59

The interplay between the gut microbiome and 
the gut-associated nervous system affects BT
The enteric nervous system (ENS), which com-
prises multiple small ganglia that operate dis-
cretely but maintain the ability to communicate 
with each other to form the myenteric and sub-
mucosal neural plexuses,60 is crucial for the 
proper functioning of the intestine. Enteric neu-
rons express TLRs, suggesting that bacterial 
metabolites impact the ENS. Data from studies 
of neurodegenerative diseases and their relation-
ship with the ENS and microbiome showed that 
the ENS functions like a relay system between the 
immune system, brain, and microbiome. In addi-
tion, the microbiome was shown to support the 
postnatal establishment of the ENS and play a 
role in maintaining homeostasis.61

Altered gut motility contributes to BT, and intes-
tinal obstruction and ileus are risk factors for 
BT.16,62 Patients with diseases that affect the ENS, 
such as Hirschsprung’s disease, showed increased 
rates of BT.63 Multidirectional signaling between 
different components in the gut wall, spinal cord, 
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and central nervous system impacts inflamma-
tion2. The interplay among the epithelial cells, 
mast cells, residential macrophages, glial cells, 
neurons, and smooth muscle cells within the gut 
wall involves intracellular signaling pathways, 
TLRs, and neuroactive substances, such as nitric 
oxide, prostaglandins, cytokines, chemokines, 
growth factors, tryptases, and hormones.2

Intestinal ischemia and hyperdynamic 
circulation are associated with low systemic 
vascular resistance and altered gut 
permeability
Primary or secondary circulatory changes are 
associated with BT. During intestinal ischemia, 
inorganic phosphate, urea, and threonic acid were 
upregulated, while stearic acid, arabinose, xylose, 
glucose, and ribose acid were downregulated.64 
These molecular changes resulted from decreased 
gut microbiota metabolism, altered intestinal 
absorption, impaired renal function, and 
increased oxidative stress, which affected gut 
permeability.64

Sepsis and cirrhosis are characterized by a hyper-
dynamic state of low systemic vascular resistance 
and the release of multiple mediators.65 The simi-
larity between the two conditions is related to the 
translocation of common bacterial products.65 
Permeability changes and BT influence intra-
abdominal hypertension (IAH),66 IAH-induced 
enterogenic endotoxemia, and subsequent 
MOF66,67 and alter the histology of the colonic 
mucosa, the expression of tight junction proteins, 
mucosal permeability, and the pro-oxidant–anti-
oxidant balance. Acute exposure to elevated intra-
abdominal pressure alters intestinal permeability 
and the pro-oxidant-antioxidant balance, intesti-
nal mucosal injury, and subsequent gut-derived 
sepsis.67 The gut-lymph hypothesis of MODS 
suggests that it occurs in high-risk patients due to 
gut injury and systemic spread of non-microbial, 
tissue-injurious factors that reach the systemic cir-
culation via the intestinal lymphatics.32

External factors impacting the gut microbiome

i.	 Various environmental insults alter the gut 
microbiome.68 Age, ethnicity, the immune 
system, and diet also regulate the intestinal 
microbiota.69 Mortality due to sepsis is 
linked to weak immune defense systems 

and an artificial environment associated 
with mechanical ventilation and the use of 
tubes, drains, intravascular lines, artificial 
nutrition, and extensive synthetic chemical 
drugs. These factors can reduce or elimi-
nate the gut microbiota, impair immune 
function, increase systemic inflammation, 
and contribute to poor outcomes.3,12

ii.	 The ‘gut-origin sepsis’ hypothesis evolves 
from the notion that under stress, such as 
sepsis, trauma, burn, or shock, infectious 
complications originate from the gut micro-
biota.68,70,71 Following surgical trauma, 
dysregulated metabolic reactions and infec-
tions can occur, including hyperglycemia, 
insulin resistance, increased hepatic glucose 
production, and muscle protein break-
down, and these changes can become self-
destructive, leading to further metabolic 
damage.72 In survivors of significant burns, 
the number of beneficial bacteria, such as 
obligate anaerobes and Bifidobacterium, ini-
tially decreased but increased as their con-
dition improved.70 In contrast, in 
non-survivors, these bacteria decreased as 
gut failure and sepsis progressed. Several 
pathogenic bacteria, such as Pseudomonas 
aeruginosa, and fungi, such as Candida, 
increased only in non-survivors, whereas 
short-chain fatty acids, such as propionic 
and butyric acids, decreased.70 Intestinal 
surgery in children disrupts the normal 
intestinal microbiota and barrier function, 
predisposing them to SIRS.73

iii.	Dietary patterns, including diets containing 
high fructose and high fat, and nutritional 
deficiencies affect intestinal permeability.74 
A western-style diet contributes to endo-
toxemia by causing changes in the intestinal 
barrier and altering the composition of the 
microbiota.75 Approximately, 75% of the 
food consumed in Western diets does not 
benefit the microbiota of the lower gut. 
Much of the Western diet include refined 
carbohydrates, which are absorbed in the 
upper part of the GI tract. Food that reaches 
the large intestine is of limited value and 
contains fewer minerals, vitamins, and 
other nutrients essential for maintaining the 
microbiota.12 Such a diet can lead to a 
microbiome of reduced size and diversit.12

There are characteristic differences in the compo-
sition and activity of the gut microbiota between 
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lean and obese individuals.76 In obese people, a 
high-fat diet contributes to low-grade inflamma-
tion and the development of non-alcoholic fatty 
liver disease.77,78 In obese animal models caused 
by feeding either a high-fructose or high-fat diet, 
increased gut permeability, low-grade endotox-
emia, and fatty liver were observed.77 Germ-free 
mice did not develop obesity and liver damage. 
Following a fat diet, LPS can translocate from the 
gut into the circulatory system via direct diffusion 
due to increased gut permeability or be absorbed 
by enterocytes.75 Obese patients with high post-
prandial hypertriglyceridemia increased serum 
LPS levels and chylomicron fraction following fat 
overload.78 Postprandial LPS levels correlate with 
triglyceride levels. LPS binding to TLR4 activates 
an inflammatory cascade that alters insulin sign-
aling. Chronic exposure to LPS contributes to 
weight gain and the development of type 2 diabe-
tes mellitus (T2DM),79 and obese and diabetic 
individuals had increased serum LPS levels. An 
increase in the number of gram-negative bacteria 
in the gut microbiota reduced gut mucosal integ-
rity, and consumption of a high-fat diet increased 
serum LPS levels.79

iv.	The gastrointestinal tract is affected by 
antibiotics. Antibiotic treatment damages 
several mechanisms related to maintaining 
the gut barrier and homeostasis. In animals, 
antibiotic use created histopathological 
lesions, such as desquamation and epithe-
lial tissue destruction.80 Prior antibiotic 
exposure was associated with increased 
mortality in Gram-negative bacteria-
induced sepsis.81 The bacterial communi-
ties inhabiting the gut exist in a delicate 
balance, and antibiotics damage this bal-
ance by eliminating several key communi-
ties and promoting the colonization of 
antibiotic-resistant bacteria by exerting 
stress and eliminating sensitive strains.82 
Antibiotic treatment is associated with 
intestinal colonization and dominance of 
orally acquired antibiotic-resistant E. coli.83 
The spread of antibiotic-resistant bacteria 
has been attributed to impaired innate 
mucosal defenses caused by antibiotics.84 
Antibiotics modify the host immune system 
by altering the gut bacterial metabolites 
used for signal transmission from the micro-
biome to the gut immune system. Short-
chain fatty acids (SCFAs), produced by 
bacteria through fermentation, have broad 

effects on enterocytes and play roles in vari-
ous processes, including maintaining epi-
thelial integrity, Treg differentiation, and 
the inflammatory response.84 Antibiotics 
hinder this.

The commensal microbiota is essential for keep-
ing an intact intestinal barrier and for gut expres-
sion of non-defensin proteins. The stimulation of 
TLR promotes the expression of non-defensin 
proteins and can reverse the antibiotic-related 
reduction of gut defense.81 Antibiotic-associated 
dysbiosis of the gut predisposes subjects to infec-
tions. It also underlies the systemic dissemination 
of antibiotic-resistant and commensal enterobac-
teria by promoting transcytosis across the layers 
of the gut epithelium.83

Antibiotic treatment reduced the bactericidal-
killing activity of the gut mucosa. It also amplified 
the translocation of Klebsiella pneumoniae and 
lowered the expression of non-defensin pro-
teins.81 TLR stimulation following antibiotic 
treatment increased the binding activity of NF-κB 
to DNA and the bactericidal activity in the gut 
mucosa.81 Germ-free mice showed significant 
decreases in non-defensin proteins and the intes-
tinal defense against pathogen translocation.81

Therapeutic measures that  
target the gut microbiome
Most systemic effects arising from dysbiosis are 
attributed to the metabolites produced by com-
mensal gut bacteria, which are essential for 
immune system function. Despite extensive 
research on this topic, no therapeutic intervention 
aimed at microbiome alteration has been imple-
mented to treat or prevent sepsis.85 However, sev-
eral therapeutic measures to alter the gut 
microbiome to improve the prognosis of patients 
with sepsis are being explored. Several measures 
used for affecting BT and gut dysbiosis are 
described below.

Figure 1(b) shows a schematic representation of 
several potential therapeutic measures for sepsis.

Antibiotics.  In sepsis, antibiotics act as a double-
edged sword. Although they are a cornerstone of 
sepsis treatment, their effect on the microbiome 
may have detrimental consequences.86 Targeted 
antibiotics that alter the microbiome have been 
studied. Azithromycin is a macrolide that inhibits 
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bacterial protein synthesis and reduces biofilm 
formation. This antibiotic accumulates in phago-
cytes and is delivered at high concentrations to 
sites of infection. In chronic inflammatory disor-
ders, it was shown to exert immunomodulatory 
effects on immune and epithelial cells by modu-
lating the NF-κB inflammatory pathway, mucin 
release, surface receptor expression, macrophage 
phenotypes, and autophagy.87 In a murine model 
of sepsis, azithromycin improved survival and 
attenuated the levels of various inflammatory 
cytokines, including IL-6, IL-1, and TNFα.88 In 
humans, azithromycin decreased mortality and 
ventilator dependency in patients with sepsis-
associated ARDS.89 In patients with severe sepsis, 
azithromycin increased intensive care unit (ICU)-
free days.90

Selective digestive tract decontamination (SDD) 
and selective oropharyngeal decontamination 
(SOD) using enteral non-absorbable antimicrobi-
als eradicated gram-negative bacteria, Staphylococcus 
aureus, and yeast colonization while leaving the 
anaerobic microbiome intact.91 Using SDD in ICU 
settings reduced the incidence of respiratory tract 
infections, colonization of antibiotic-resistant bac-
teria, and improved survival.92–94 Despite the evi-
dence of SDD efficacy, multiple studies have fueled 
controversy,95 and SDD is not used in clinical prac-
tice because it may promote the emergence of anti-
biotic-resistant strains.96 However, a Cochrane 
review suggested that a combination of topical and 
systemic prophylactic antibiotics reduces overall 
mortality and respiratory tract infections.97

Probiotic, prebiotic, and synbiotic treat-
ments.  Recovery of the microbiome is essential 
for preventing long-lasting immune suppression 
after the initial bout of sepsis has ended. Probi-
otic, prebiotic, and synbiotic treatments have 
been explored for maintaining and repairing the 
gut microbiota.68 These treatments may prevent 
and improve the prognosis of patients with 
sepsis.98

Probiotics are viable, non-pathogenic microor-
ganisms that confer benefits to the host by modi-
fying the gut microbiota, promoting the local 
release of antimicrobial factors, maintaining gut 
barrier integrity, competing for epithelial adher-
ence, preventing BT, and modulating the local 
immune response.99 Probiotic-associated changes 
in the gut microbiota are correlated with disease 
outcomes.100 The properties of probiotics are 

strain-specific, and beneficial effects have been 
observed for certain strains of Lactobacillus, 
Bifidobacterium, Saccharomyces, Enterococcus sp., 
Streptococcus sp., Pediococcus sp., Leuconostoc, 
Bacillus, and E. coli.100 Probiotics are well toler-
ated and are believed to prevent disease progres-
sion by competing with native bacteria for 
nutrients and binding loci, producing bacterioc-
ins that kill pathogens, increasing the production 
of IgA, improving mucosal immunity, and sup-
pressing systemic inflammation.98 In an animal 
pancreatitis model, the host-specific ileal micro-
biota was replaced with an ‘acute pancreatitis-
associated microbiota’, which was reversed by 
administering probiotics. The microbiome of ani-
mals that received probiotics contained an abun-
dance of a bacterial phylotype related to 
Clostridium lituseburense, which was correlated 
with reduced bacterial overgrowth, improved 
pancreatic pathology, and reduced pro-inflam-
matory cytokine levels.101

The use of probiotics in critically ill patients has 
yielded mixed results. Several studies have shown 
that probiotics are associated with decreases in 
susceptibility to antibiotic-associated diarrhea, 
Clostridium difficile, ventilator-associated pneumo-
nia, necrotizing enterocolitis (NEC), sepsis, MOF 
syndrome, and a shortened infection duration.99 
However, a meta-analysis did not show a benefi-
cial effect on mortality or length of ICU stay.102 
Probiotic use in immunocompromised patients or 
patients with a leaky gut was associated with 
increased fungemia and bacteremia.85 The use of 
Lactobacillus rhamnosus decreased ventilator-asso-
ciated pneumonia in ICU patients.103,104 Probiotic 
administration prevented necrotizing enterocolitis 
(NEC) and decreased mortality in preterm infants; 
however, the level of evidence was deemed insuf-
ficient to recommend it as a routine treatment.105 
A recent large-scale multicenter trial did not show 
any benefit in using probiotics as a measure for 
decreasing ventilator-associated pneumonia or 
other infections among patients in ICU.106 
However, probiotics were beneficial in selected 
patient populations, requiring an individualized 
approach for sepsis.107

Prebiotics are nutrients degraded by the gut 
microbiota that alter the function and composi-
tion of the microbiome.108 These nutrients are 
non-digestible carbohydrates fermented by intes-
tinal microbes, resulting in energy transfer. 
Digestion of these nutrients produces signaling 
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metabolites, such as SCFAs and peptidoglycan, 
which affect the innate immune system.109 
Prebiotics can reduce inflammation, endotox-
emia, and cytokine levels, thereby improving insu-
lin resistance and glucose tolerance.69 A diet rich 
in prebiotics is beneficial for managing T2DM for 
its positive impact on intestinal microbiota modu-
lation.69 Prebiotics, such as fermentable dietary 
fiber, increase glucagon-like peptide-1 and pep-
tide YY and decrease ghrelin levels. In patients 
with T2DM, a macrobiotic diet improved fasting 
blood glucose, plasma lipid fractions, and plasma 
insulin levels. Different prebiotic molecules were 
tested in mouse models of sepsis, with positive 
results. Desaminotyrosine (DAT) maintained 
mucosal immune homeostasis and protected 
against barrier integrity. DAT attenuated dextran 
sodium sulfate-induced mucosal inflammation, 
and it protected mice treated with endotoxin to 
induce septic shock.110 In an animal model, 
Xuanbai Chengqi decoction (XBCQ), a tradi-
tional Chinese medicine formulation, was protec-
tive against pulmonary infections, improved gut 
barrier function by increasing the amounts of 
occludin, a mucosal protein, improved the diver-
sity of the gut microbiota, attenuated inflamma-
tory markers in the lungs, and improved survival.111 
Finger millet arabinoxylan (FM–AX), a non-
starch polysaccharide extracted from cereals, pre-
vented metagenomic alterations in the cecum and 
endotoxemia in mice fed a high-fat diet.112 In pre-
term infants, prebiotics decreased the incidence of 
sepsis, mortality, and length of hospital stay.113

Synbiotic therapy employs a combination of pro-
biotics and prebiotics and reduces septic compli-
cations.68 Perioperative use of synbiotics reduced 
the incidence of bacteria in MLNs and blood.114 
Synbiotic nutrition reduced the incidence of post-
operative sepsis in an elective general surgery set-
ting.115 A randomized controlled study in 
mechanically ventilated patients with sepsis 
showed that synbiotic treatment reduced ventila-
tion-associated pneumonia but had no effect on 
mortality.116 A meta-analysis of 13 randomized 
controlled trials including 962 patients who 
received synbiotics or probiotics showed a reduced 
incidence of postoperative sepsis in both groups. 
Subgroup analysis did not detect a reduction in 
the occurrence of urinary tract infections, pneu-
monia, or wound infections following surgery.115 
A randomized trial evaluating a synbiotic prepara-
tion of Lactobacillus plantarum and fructooligosac-
charide in 4,500 healthy term infants showed a 

40% decrease in the composite outcome of lower 
respiratory tract infection, sepsis, and death.117

Several factors may have contributed to the lack 
of success of these approaches, including an 
unsuitable choice of probiotic species, low doses, 
and its use as a complement to antibiotic therapy 
rather than an alternative treatment.3 In such 
approaches, the supplemented lactic acid bacteria 
were killed before reaching their target organs. At 
present, the routine use of these methods in criti-
cally ill patients is not recommended.14,99

Fecal microbial transplantation.  Fecal microbial 
transplantation (FMT) is a method for altering the 
gut microbiota that may be superior to other meth-
ods due to the delivery of other organisms, viruses, 
fungi, and other metabolites in addition to com-
mensal bacteria. FMT has been proven efficacious 
in treating recurrent and refractory Clostridium 
difficile (CDI) and several other dysbiosis-related 
conditions.118 In a rat model of sepsis, FMT 
reduced mortality by 50%, prevented intestinal 
injury and mucosal atrophy, had antioxidant  
and anti-inflammatory effects, and inhibited 
NF-κB.119,120 Animal models restored bacterial 
communities in cecal crypts, replenished the gut 
epithelium, and protected gut stem cells.98 There 
are several barriers to using FMT in critically ill 
patients treated with broad-spectrum antibiotics, as 
the treatment can inhibit proliferation of the trans-
planted bacteria.14,121 Therefore, the use of FMT in 
human subjects to treat sepsis remains anecdotal.

Anti-LPS measures.  Endotoxin from gram-nega-
tive bacteria, LPS, activates TLRs and stimulates 
the inflammatory processes in sepsis and other con-
ditions.51–53 Several LPS-binding molecules have 
been studied for their potential to prevent or allevi-
ate excess inflammatory responses.98 The role of 
LPS in gut-derived sepsis was studied in neutrope-
nic rats fed a preparation of P. aeruginosa to induce 
sepsis. The animals were administered colostrum or 
hyperimmune colostrum produced by vaccinating 
pregnant cows against a conserved portion of LPS, 
which increased the levels of antibodies against 
LPS. The use of both regular and antibody-enriched 
colostrum was associated with increased survival 
and decreased amounts of bacteria in extra-intesti-
nal sites.122 Anti-LPS antibodies reduce the inflam-
matory response that induces metabolic disease by 
altering the ‘leaky’ mucosal membrane and remov-
ing endotoxin.123 Anti-inflammatory LPS (A-LPS), 
produced by certain microbes, such as Bacteroides, 
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was shown to help prevent and treat LPS-induced 
inflammatory response by altering the balance 
between A-LPS and pro-inflammatory LPS 
(P-LPS).124 The results of therapeutic interventions 
aimed at removing LPS by immunoglobulins or 
extracorporeal means are controversial,48 and 
human trials for sepsis have confirmed positive 
effects on several secondary parameters but not on 
morbidity or survival.48

Dietary measures.  Dietary adjustment is a rela-
tively simple way of altering the intestinal micro-
biota.125 Dietary changes can modulate the 
composition of the gut microbiota and improve gut 
mucosal integrity, decrease the occurrence of 
endotoxemia and postprandial inflammatory 
effects, and lead to adequate insulin signaling.74,79 
Parenteral nutrition, elemental enteral nutrition 
(EN), and eco-immuno-nutrition (EIN) hastened 
the recovery of patients with severe pancreatitis 
and alleviated the associated SIRS.126,127 EN 
decreased endotoxin, TNFα, IL-6, and BT levels 
and enhanced IL-10 expression.127 Pancreatic sep-
sis, MOF, and mortality were lower in the EN and 
EIN-treated groups. EN improved the intestinal 
mucosal barrier, promoted mucosal repair, and 
stabilized the intestinal microbiome. Early enteral 
nutrition (EEN) in patients with sepsis inhibited 
an excessive immune response, shortened the 
duration of mechanical ventilation, and the hospi-
tal stay, but had no effect on 28-day mortality.128

Dietary fiber has anti-inflammatory properties. 
Fiber supplementation improved outcomes by 
inducing microbial changes that regulate inflam-
matory metabolites.129 Fiber supplementation in 
critically ill patients increased the abundance of 
SCFA-producing bacteria without increasing the 
occurrence of diarrhea or abdominal disten-
tion.130 Immune cells utilize large amounts of glu-
tamine, most of which derives from the 
degradation of muscle protein.131 In a model 
using samples from healthy children, glutamine 
promoted HSP70 and TNFα release.132 The 
effects depend on the degree of inflammation, 
and glutamine administration to patients with 
sepsis enhanced immune competence and 
improved the catabolic phase of septic patients 
with malnutrition.131,133

Immune modulatory and anti-inflammatory thera-
pies.  Immunomodulatory drugs indirectly affect 
the gut microbiota, contributing to their 

beneficial effects on sepsis.134 In germ-free mice 
subjected to inflammatory stimulation, mice 
treated with gut microbiome samples collected 
from patients treated successfully with metho-
trexate for rheumatoid arthritis showed a lessor 
immune response.135 However, the clinical use of 
steroids and other immunosuppressive agents in 
patients with sepsis is controversial.136,137 Immune 
modulatory therapy with a combination of dexa-
methasone and thymosin alpha1 altered dendritic 
cell (DC) function and enhanced the resistance of 
endotoxemic mice to BT and secondary infec-
tions, improving their outcomes.138 Mice treated 
with this combination showed improved survival, 
a decrease in BT to extra-intestinal organs, and 
an enhanced ability to eradicate secondary infec-
tions by reversing changes in DC during endotox-
emia.138 Failure to respond to steroid therapy in 
sepsis is caused by decreased expression and 
function of glucocorticoid receptors (GRs), and 
GR expression and translocation were decreased 
in septic animals.139 Leflunomide has immuno-
modulatory and anti-inflammatory effects, which 
mitigate the host response to BT, and lefluno-
mide-mediated prevention of protein and lipid 
peroxidation was observed in septic bowel tissue 
in rats.140

Thymic stromal lymphopoietin (TSLP), a mem-
ber of the IL-2 cytokine family, has multiple 
effects on immune cells.141 The short form of 
TLSP is linked to the homeostasis of the gut bar-
rier in a healthy state. However, its long form is 
overexpressed in an inflammatory state, whereas 
the short form is downregulated.142 Most studies 
showed a decreased inflammatory response, the 
clinical outcomes varied.143

Amino-procalcitonin (NPCT) is a peptide derived 
from the prohormone procalcitonin. NPCT 
underlies the pathogenesis of acute lung injury in 
sepsis and is a risk factor for mortality. Treatment 
with anti-NPCT reduced the inflammatory 
cytokine expression during sepsis and prevented 
the nuclear NF-κB translocation in tissues while 
increasing the anti-inflammatory cytokine IL-10 
in mice.144 The humanized anti-PcrV IgG anti-
gen-binding fragment KB001 inhibited toxin 
translocation, with demonstrated safety and a 
favorable pharmacokinetic profile, and thus has 
potential as a nonantibiotic strategy to reduce 
inflammation and damage in P. aeruginosa-related 
pneumonia.145
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Colchicine, an anti-inflammatory drug, is an 
inhibitor of mitosis and microtubule assem-
bly.146–149 By binding to soluble non-polymer-
ized tubulin heterodimers, it forms tight 
colchicine-tubulin complexes, thereby inhibit-
ing the polymerization of microtubules.150 
Microtubules are involved in the function of 
both adaptive and innate immune systems, mak-
ing them potential therapeutic targets for 
immune modulation.149 Colchicine inhibits 
microtubule rearrangement and interferes with 
the function of the immune system. It inhibits 
the recruitment, migration, and chemotaxis of 
neutrophils. Colchicine reduces neutrophil 
deformability by lowering microtubule levels, 
thus altering the ability of neutrophils to migrate 
via small pores, which is crucial for extravasa-
tion in response to inflammatory signals.151 The 
colchicine-tubulin complex attenuates mac-
rophage NLRP inflammasome arrangement and 
activation.152

A new artificial intelligence-based system is being 
developed for analyzing data on the function of 
microtubules of gut cells and data on microbiota 
metabolites, ENS, and the gut immune cells. The 
system will provide a method for improving the 
response to the currently used measures targeting 
BT and dysbiosis to reduce the hyperinflamma-
tory response associated with sepsis, similar to 
other disorders.153–160

Summary
The human gut is a complex organ involved in 
multiple physiological processes. The gut immune 
system and microbiota play essential roles in 
health and disease,51,154,161–167 and their roles in 
sepsis have been established. BT and several 
other microbiota-linked mechanisms contribute 
to sepsis and subsequent MOF development. 
Bacterial-associated, host and environment-
dependent mechanisms are involved in the patho-
genesis of sepsis. These findings provide potential 
new therapeutic approaches for sepsis. In these 
types of therapies, the microbiome is targeted, 
directly or indirectly, to restore its homeostatic 
states, thus reducing the damage caused by the 
aggravated inflammatory processes that ensue. 
Since the treatment for sepsis has not changed 
dramatically in recent years, and the morbidity 
and mortality rates remain high, there is a need 
for new therapeutic targets.
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