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ABSTRACT

Objective: When patients develop acute respiratory failure (ARF), accurately identifying the underlying etiology

is essential for determining the best treatment. However, differentiating between common medical diagnoses

can be challenging in clinical practice. Machine learning models could improve medical diagnosis by aiding in

the diagnostic evaluation of these patients.

Materials and Methods: Machine learning models were trained to predict the common causes of ARF (pneumo-

nia, heart failure, and/or chronic obstructive pulmonary disease [COPD]). Models were trained using chest

radiographs and clinical data from the electronic health record (EHR) and applied to an internal and external co-

hort.

Results: The internal cohort of 1618 patients included 508 (31%) with pneumonia, 363 (22%) with heart failure,

and 137 (8%) with COPD based on physician chart review. A model combining chest radiographs and EHR data

outperformed models based on each modality alone. Models had similar or better performance compared to a

randomly selected physician reviewer. For pneumonia, the combined model area under the receiver operating

characteristic curve (AUROC) was 0.79 (0.77–0.79), image model AUROC was 0.74 (0.72–0.75), and EHR model

AUROC was 0.74 (0.70–0.76). For heart failure, combined: 0.83 (0.77–0.84), image: 0.80 (0.71–0.81), and EHR:

0.79 (0.75–0.82). For COPD, combined: AUROC¼0.88 (0.83–0.91), image: 0.83 (0.77–0.89), and EHR: 0.80 (0.76–

0.84). In the external cohort, performance was consistent for heart failure and increased for COPD, but declined

slightly for pneumonia.

Conclusions: Machine learning models combining chest radiographs and EHR data can accurately differentiate

between common causes of ARF. Further work is needed to determine how these models could act as a diag-

nostic aid to clinicians in clinical settings.
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INTRODUCTION

Acute respiratory failure (ARF) develops in over 3 million patients

hospitalized in the United States annually.1 Pneumonia, heart fail-

ure, and/or chronic obstructive pulmonary disease (COPD) are 3 of

the most common reasons for ARF,2 and these conditions are among

the top reasons for hospitalization in the United States.3 Determin-

ing the underlying causes of ARF is critically important for guiding

treatment decisions, but can be clinically challenging, as initial test-

ing such as brain natriuretic peptide (BNP) levels or chest radio-

graph results can be non-specific or difficult to interpret.4 This is

especially true for older adults,5 patients with comorbid illnesses,6

or more severe disease.7 Incorrect initial treatment often occurs,

resulting in worse patient outcomes or treatment delays.8 Artificial

intelligence technologies have been proposed as a strategy for im-

proving medical diagnosis by augmenting clinical decision-making,9

and could play a role in the diagnostic evaluation of patients with

ARF.

Convolutional neural networks (CNNs) are machine learning

models that can be trained to identify a wide range of relevant find-

ings on medical images, including chest radiographs.10 However, for

many conditions such as ARF, the underlying medical diagnosis is

not determined solely based on imaging findings. Patient symptoms,

physical exam findings, laboratory results, and radiologic results

when available are used in combination to determine the underlying

cause of ARF. Therefore, machine learning models that synthesize

chest radiographs findings with clinical data from the electronic

health record (EHR) may be best suited to aid clinicians in the diag-

nosis of these patients. However, efforts to synthesize EHR and im-

aging data for machine learning applications in healthcare have

been limited to date.11

We developed a machine learning model combining chest radio-

graphs and clinical data from the EHR to identify pneumonia, heart

failure, and COPD in patients hospitalized with ARF. We envisioned

that such a model could ultimately be used by bedside clinicians as a

diagnostic aid in the evaluation of patients with ARF, helping them

to synthesize multi-modal data and providing estimates of the likeli-

hood of these common conditions. We hypothesized that imaging

and clinical data would provide complementary information, result-

ing in a more accurate model that better replicates the diagnostic

process. Finally, we validated the models at an external medical cen-

ter to determine whether combining these data improves the general-

izability of the models.

METHODS

This study was approved by the Medical School Institutional Review

Board at the University of Michigan with a waiver of informed con-

sent among study patients. The study followed the Transparent

Reporting of Multivariable Prediction Model for Individual Progno-

sis or Diagnosis (TRI-POD) reporting guidelines.

Study population
Models were trained using an internal cohort of patients admitted to

an academic medical center in the upper Midwest (Michigan Medi-

cine, MM) in 2017–2018 who developed ARF during the hospitali-

zation. Models were externally validated on patients admitted to an

academic medical center in the northeast (Beth Israel Deaconess

Medical Center, BIDMC) in 2014–2016, with clinical data available

in the MIMIC-IV dataset12,15 and chest radiographs in the MIMIC-

CXR dataset.13–15 In both cohorts, ARF was defined as patients

who required significant respiratory support (high flow nasal can-

nula, noninvasive mechanical ventilation, or invasive mechanical

ventilation) and had a chest radiograph performed. We excluded

patients who were admitted after routine surgery or a surgical re-

lated problem (see Supplementary Methods for additional details).

The time of ARF diagnosis was defined as when patients first re-

ceived significant respiratory support.

Determining the cause of ARF
To determine the underlying cause of ARF in the Michigan Medi-

cine cohort, physicians independently reviewed the entirety of each

patient’s hospitalization, including the patient’s medical history,

physical exam findings, laboratory, echocardiogram, chest imaging

results, and response to specific treatments. Patients could be

assigned multiple diagnoses if physicians designated multiple causes

of ARF, as previous research suggests that multiple concurrent etiol-

ogies may be possible.16 Thus, each physician provided independent

ratings of how likely each of the 3 diagnoses (pneumonia, heart fail-

ure, and COPD) was a primary reason for the patient’s ARF on a

scale of 1–4, with 1 being very likely and 4 being unlikely. For

patients with multiple reviews, scores were averaged across physi-

cians and patients were assigned the diagnosis if the score was less

than 2.5, since 2.5 is the midpoint of 1 and 4. Physician reviewers

were board certified in internal medicine (see Supplementary Meth-

ods for further details). We calculated Cohen’s kappa17 and raw

agreement rates between physicians due to the difficulty in interpret-

ing Cohen’s kappa in settings of low or high prevalence.18

Physician chart review was not performed in the external

BIDMC cohort because clinical notes are unavailable in MIMIC-IV.

Instead, the cause of ARF was determined based on a combination

of International Classification of Disease (ICD)-10 discharge diag-

nosis codes and medication administration records (Supplementary

Tables S6–S8). If a patient had a corresponding ICD-10 code and

was treated with medications for a given disease (pneumonia: antibi-

otics, heart failure: diuretics, and COPD: steroids) (Supplementary

Table S8), they were assigned the diagnosis as an etiology of ARF.

We also labeled the internal cohort in this manner for a more direct

comparison. Accuracy of this approach compared to retrospective

chart review was moderate (Supplementary Table S1).

Chest radiograph and EHR data extraction and

processing
We used chest radiographs nearest to the time of ARF onset (ie, be-

fore or after ARF) in the form of digital imaging and communica-

tions in medicine (DICOM) files. Each patient had a corresponding

study, containing one or more chest radiographs taken at the same

time. Images were preprocessed and downsized to 512 � 512 pixels,

as further described in the Supplementary Methods. EHR data in-

cluded vital signs, laboratory measurements, and demographic data

for which a mapping existed between the internal and external

cohorts (Supplementary Table S9). If ARF developed more than 24

h after admission, we extracted data up until the time of ARF. Be-

cause patients frequently present to the hospital with respiratory dis-

tress and rapidly develop ARF, clinicians are unable to make a

diagnosis until enough data are collected. Thus, to align with clinical

practice, if ARF developed during the first 24 h of admission, we

extracted 24 h of data to ensure sufficient data for modeling. To

avoid temporal information leakage, we excluding variables related

to patient treatment, such as medications. Additionally, we selected

flowsheet and laboratory data that are commonly performed on all
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patients with respiratory failure to avoid leaking outcomes. Comor-

bidity data in the context of diagnosing ARF is typically useful for

clinicians when making a diagnosis, but we did not include such

data as comorbidities are difficult to capture from EHR data in real-

time. In the case of multiple observations for the same variable, the

most recent observation to the time of ARF diagnosis was used.

Missing data were explicitly encoded as missing, as missingness is

likely not at random and has prognostic importance. For example,

the presence or absence of a laboratory value (eg, procalcitonin)

might indicate the level of suspicion a physician might have for a

particular diagnosis (eg, pneumonia). We analyze the correlation be-

tween missingness and each diagnosis in Supplementary Table S5.

We used FIDDLE, an open-source preprocessing pipeline that trans-

forms structured EHR data into features suitable for machine learn-

ing models.19 After preprocessing, the EHR data were represented

by 326 binary features (further described in the Supplementary

Methods).

Model training
We trained models to determine the likelihood that pneumonia,

heart failure, and/or COPD was an underlying cause of ARF based

on clinical data from either the EHR data (EHR model), chest radio-

graphs (image model), or both (combined model). The internal co-

hort was randomly split 5 times into train (60%), validation (20%),

and test (20%) sets. Partitions were made at the patient level such

that in each random split, data from the same patient were only in

one of the train, validation, and held-out test sets. Separate models

were trained on each data split. Additional technical details of

model training and architectures are described in Supplementary

Figure S1 and Supplementary Methods.

Model architectures
EHR model: We trained a logistic regression and 2-layer neural net-

work (1 hidden layer, size¼100) with a sigmoid activation to esti-

mate the probability of each diagnosis based on EHR data inputs,

treating model type as a hyperparameter. The best EHR model, ei-

ther logistic regression or 2-layer neural network, was chosen based

on validation area under the receiver operating characteristic curve

(AUROC) performance for each of the data splits.

Image model: A CNN with a DenseNet-12120 architecture was

used to estimate the probability of each diagnosis based on the chest

radiograph input. The model was first pretrained using chest radio-

graphs from the publicly available CheXpert10 and MIMIC-CXR13–

15 datasets (excluding patients in the BIDMC validation cohort) to

identify common radiographic findings annotated in radiology

reports. Then the last layer of the model was fine-tuned to determine

ARF diagnoses.21

Combined model: Chest radiographs were first passed through

the pretrained DenseNet-121 to extract image features. EHR inputs

were either passed through a neural network hidden layer or directly

concatenated with the extracted image-based features. The presence

or absence of the EHR input hidden layer prior to concatenation

was treated as a model hyperparameter. Finally, the concatenation

was passed through an output layer with a sigmoid activation to es-

timate the probability of each diagnosis. Like the image model,

parameters of the DenseNet-121 were frozen after pretraining.

Model evaluation
We evaluated the value of combining chest radiographs and EHR

data by comparing the combined model to the EHR and image mod-

els in terms of the individual and macro-average AUROC for pneu-

monia, heart failure, and COPD when applied to the internal MM

cohort test sets. The median and range of model performance on the

internal cohort test sets are reported across the 5 splits. We calcu-

lated the area under the precision recall curve (AUPR) in a similar

manner. We also measured calibration performance by calculating

the expected calibration error (ECE) and generated calibration

plots.22 We also calculated diagnostic test metrics for each model in-

cluding sensitivity, specificity, and the diagnostic odds ratio at a pos-

itive predictive value of 0.5 for each condition.

We compared model performance to that of a randomly selected

physician reviewer on patients that underwent 3 or more physician

chart reviews. This evaluation required that we change the “ground

truth” label so the randomly selected physician reviewer was not

used to generate the ground truth label. To calculate physician per-

formance, we compared a randomly selected physician to all the

other physicians who reviewed the same patient. The new “ground

truth” label was then calculated as the average of the remaining

reviews for each patient. The combined model was then compared

to a randomly selected physician in terms of individual and macro-

average AUROC.

To understand the generalizability of the models, we applied

each of the 5 models trained on MM to the external BIDMC cohort,

calculating performance in terms of the individual and macro-

average AUROC based on diagnosis codes and medications. To

compare performance across cohorts, we compared results based on

ICD-10 codes and medications in both cohorts.

Feature importance
Since large capacity models are known to pick up on spurious fea-

tures,23 we performed a feature importance analysis to understand

how our models used chest radiographs and EHR data to make pre-

dictions. For chest radiographs, heatmaps were generated to under-

stand which regions of the chest radiograph influenced the model

prediction.24 To highlight the most important regions in each image,

heatmaps were normalized on a per-image basis. We qualitatively

reviewed all heatmaps and identified high level patterns. Randomly

selected patients are shown for illustrative purposes from the group

where both the image and combined models either correctly classi-

fied or incorrectly classified the diagnosis and were most confident

in their predictions (ie, those patients whose predictions were in the

top 85th percentile of predictions in the internal cohort test set).

To understand which EHR features were important in model

decisions, we measured permutation importance. We grouped highly

correlated variables together (Pearson’s correlation > 0.6). Features

were ranked from most to least important based on the drop in

AUROC when these features were randomly shuffled across exam-

ples in the test set.25 We averaged feature rankings across all 5 test

sets and report the 5 highest ranked features for each diagnosis.

RESULTS

Study population
The internal cohort included 1618 patients, with 666 (41%) females

and a median age of 63 years (interquartile range: 52–72). The ex-

ternal cohort demographics were similar, although there was a

higher percentage of patients in the other or unknown race catego-

ries (Table 1). In the internal cohort, 29% of patients were reviewed

by 3 or more physicians, 48% by 2 physicians, and 23% of patients

were reviewed by 1 physician. Based on chart review, there were

1062 Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 6

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac030#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac030#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac030#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac030#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac030#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac030#supplementary-data


508 (31%) patients with pneumonia, 363 (22%) with heart failure

and 137 (8%) with COPD as the underlying cause of ARF. More

than one of these diagnoses were present in 155 (10%) patients.

Raw agreement between reviewers was 0.78, 0.79, and 0.94 for

pneumonia, heart failure, and COPD, respectively and Cohen’s

kappa was 0.47, 0.48, and 0.56, respectively, which is slightly

higher than previous publications (Supplementary Table S2).27–29

The prevalence of pneumonia, heart failure, and COPD was lower

in the external cohort compared to the internal cohort when diagno-

ses were determined based solely on diagnosis codes and medication

administration records (Table 1).

Model performance on the internal cohort
The combined model demonstrated a higher macro-average AUROC

(AUROC¼0.82, range: 0.80–0.85) compared to the image model

(AUROC¼0.78, range: 0.75–0.81) and EHR model (AUROC¼0.77,

range: 0.76–0.80) (Figure 1, Table 2). The combined model was more

accurate than the image and EHR models for all 3 diagnoses. The

combined model also had a higher macro-average AUPR

(AUPR¼0.64, range: 0.55–0.67) compared to the image

(AUPR¼0.53, range: 0.46–0.57) and EHR models (AUPR¼0.51,

range: 0.48–0.53), and a higher AUPR for all individual diagnoses

(Supplementary Table S3). All models demonstrated fair calibration as

measured by the ECE (Supplementary Figure S3).

The combined model outperformed the image and EHR models

in terms of sensitivity and diagnostic odds ratio (Table 3). The com-

bined model’s diagnostic odds ratio was 5.79 (range: 4.90–6.42) for

pneumonia, 7.85 (range: 5.61–10.20) for heart failure, and 37.00

(20.50–54.80) for COPD (Table 3).

Model performance compared to a randomly selected

physician
The combined model demonstrated similar or better performance in

terms of individual and macro-average AUROC for all 3 diagnoses com-

pared to randomly selected physicians (Table 4). For pneumonia, the

combined model AUROC¼0.74 (range: 0.68–0.84) and the physician

AUROC¼0.75 (range: 0.73–0.83); for heart failure, the combined

model AUROC¼0.79 (range: 0.75–0.87) and physician AUROC¼0.77

(range: 0.73–0.84): for COPD, the combined model AUROC¼0.89

(range: 0.71–0.98) and physician AUROC¼0.78 (range: 0.72–0.88).

Model performance in the external cohort
The combined model was consistently more accurate than other

models in terms of AUROC (Figure 1, Table 2). The image model

consistently outperformed the EHR model for all 3 diagnoses. When

comparing the performance of the model across centers using diag-

nosis codes and medication administration as the “gold standard,”

there was no change in the combined model AUROC performance

for heart failure (median AUROC¼0.82), and an increase in perfor-

mance for COPD (median AUROC increasing from 0.76 to 0.86),

suggesting transferability. However, the decline for pneumonia was

more substantial (0.71 to 0.65).

Understanding model decisions
Both the image and combined models focused on appropriate areas

on the chest radiograph when correctly diagnosing heart failure and

pneumonia, including the lungs and heart (Figure 2), as well as the

presence of pacemakers when diagnosing heart failure. When cor-

rectly diagnosing COPD, models appeared to focus on the trachea.

Table 1. Characteristics of the internal and external cohorts

Characteristic Internal cohort (n¼ 1618) External cohort (n¼ 1774)

Age, median (IQR) 63 (52–72) 63 (48–75)

Gender, n (%)

Male 952 (59) 1020 (57)

Female 666 (41) 754 (43)

Race, n (%)

White 1364 (84) 904 (51)

Black 159 (10) 151 (9)

Other/unknown 95 (6) 719 (41)

Acute respiratory failure etiology, n (%)

Pneumonia 508 (31) NA

Heart failure 363 (22) NA

COPD 137 (9) NA

Pneumonia and heart failure 82 (5) NA

Pneumonia and COPD 64 (4) NA

COPD and heart failure 35 (2) NA

All conditions 13 (1) NA

Diagnosis codes þ medications, n (%)

Pneumonia 650 (40) 322 (18)

Heart failure 413 (26) 204 (11)

COPD 244 (15) 70 (4)

Pneumonia and heart failure 185 (11) 103 (6)

Pneumonia and COPD 127 (8) 46 (3)

COPD and heart failure 106 (7) 29 (2)

All conditions 56 (3) 21 (1)

Note: Acute respiratory failure etiology was determined based on retrospective chart review performed by one or more physicians. Diagnosis codes are the In-

ternational Classification of Disease-10 diagnosis codes assigned to the hospitalization.

COPD: chronic obstructive pulmonary disease; IQR: interquartile range; NA: not available.
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Figure 1. Performance of the combined, image, EHR model for diagnosis of pneumonia, heart failure, and COPD in the internal and external cohorts. Model per-

formance evaluated based on the area under the receiver operator characteristic curve (AUROC). Black horizontal lines indicate median performance for each

model. When the models were evaluated using diagnosis based on chart reviews in the internal cohort, the combined model outperforms the image and EHR

models on most data splits in terms of AUROC for identifying pneumonia, heart failure, and COPD (A). Model performance decreased for pneumonia and COPD

when evaluated using discharge diagnosis codes and medications (B). Model performance on the external cohort was evaluated using discharge diagnosis codes

and medications (C) and was similar or better compared to the internal cohort (B) with the exception of pneumonia. The combined model consistently outper-

formed the other models across cohorts in terms of macro-average AUROC which combines model performance across all 3 diagnoses. COPD: chronic obstruc-

tive pulmonary disease.

Table 2. Performance of image, EHR and combined models on the internal held-out test set and external validation cohort in terms of

AUROC

Cohort and model Pneumonia Heart failure COPD Macro-average AUROC

Internal chart review (n [range], % pos [range]) 324 (322–324) 324 (322–324) 324 (322–324) —

32% (29–36) 21% (20–24) 8% (5–8)

Image 0.74 (0.72–0.75) 0.80 (0.71–0.81) 0.83 (0.77–0.89) 0.78 (0.75–0.81)

EHR 0.74 (0.70–0.76) 0.79 (0.75–0.82) 0.80 (0.76–0.84) 0.77 (0.76–0.80)

Combined 0.79 (0.77–0.79) 0.83 (0.77–0.84) 0.88 (0.83–0.91) 0.82 (0.80–0.85)

Internal diagnosis codes 1 meds (n [range], % pos [range]) 324 (322–324) 324 (322–324) 324 (322–324) —

45% (37–46) 26% (22–29) 15% (15–16)

Image 0.67 (0.62–0.71) 0.79 (0.78–0.80) 0.69 (0.68–0.71) 0.72 (0.70–0.73)

EHR 0.66 (0.64–0.74) 0.78 (0.77–0.83) 0.72 (0.70–0.80) 0.74 (0.71–0.76)

Combined 0.71 (0.65–0.75) 0.82 (0.81–0.83) 0.76 (0.73–0.79) 0.76 (0.75–0.78)

External diagnosis codes 1 meds (n, % pos) n 5 1774 n 5 1774 n 5 1774 —

18% 11% 4%

Image 0.64 (0.63–0.65) 0.81 (0.80–0.82) 0.81 (0.78–0.82) 0.75 (0.75–0.76)

EHR 0.62 (0.60–0.63) 0.76 (0.70–0.77) 0.78 (0.74–0.79) 0.72 (0.69–0.73)

Combined 0.65 (0.64–0.66) 0.82 (0.81–0.84) 0.86 (0.86–0.86) 0.78 (0.77–0.78)

Note: Performance as determined based on the AUROC. The internal cohort was randomly split 5 times into train (60%), validation (20%), and test (20%)

sets. The median AUROC and AUROC range are reported for models trained on each split. The resulting 5 models were applied to the external cohort and the

median AUROC and AUROC range are reported for models.

AUROC: area under the receiver operating characteristic; COPD: chronic obstructive pulmonary disease.

Table 3. Sensitivity, specificity, and diagnostic odds ratio of all models in the internal cohort

Model and diagnosis Sensitivity % (range) Specificity % (range) Diagnostic odds ratio (range)

Combined

Pneumonia 81 (71–85) 60 (50–70) 5.79 (4.90–6.42)

Heart failure 62 (53–71) 83 (76–85) 7.85 (5.61–10.20)

COPD 68 (44–81) 94 (93–97) 37.00 (20.50–54.80)

Image

Pneumonia 65 (60–78) 69 (55–75) 4.28 (3.96–4.64)

Heart failure 52 (41–67) 86 (80–87) 6.71 (4.65–9.42)

COPD 41 (12–54) 97 (95–99) 21.60 (13.40–29.80)

EHR

Pneumonia 64 (63–84) 69 (56–73) 4.04 (3.42–6.83)

Heart failure 56 (45–67) 85 (79–88) 7.35 (5.91–7.74)

COPD 29 (4–48) 98 (96–100) 18.00 (10.90–25.00)

Note: Sensitivity, specificity, and diagnostic odd ratio are calculated at a PPV of 0.5 for the internal cohort based on physician chart review.

COPD: chronic obstructive pulmonary disease.
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In cases where models made incorrect diagnoses, they still focused

on appropriate anatomical areas (Supplementary Figure S2).

The EHR and combined models were influenced by similar clinical

features with some deviations (Table 5). In most cases, important clini-

cal features identified by the model aligned with the clinical under-

standing of diagnosis. For pneumonia, the oxygen saturation,

procalcitonin level, and troponin were important variables. For heart

failure, BNP, troponin, and patient age were important variables. In

contrast, variables identified as important for identifying COPD were

less closely aligned with clinical understanding of diagnosis for COPD,

such as mean corpuscular hemoglobin concentration or magnesium.

DISCUSSION

We developed and validated machine learning models combining

chest radiographs and clinical data to determine the underlying eti-

ology of patients with ARF. Overall, the models combining chest

radiographs and clinical data had better discriminative performance

on both internal and external validation cohorts compared to mod-

els analyzing each data type alone. They also demonstrated similar

or better performance compared to randomly selected physician

reviewers. Physician reviewers had access to substantially more in-

formation than the model, including patient history, physical exam

findings, and response to specific treatments. Thus, its notable that

the model can match physician performance. Given the diagnostic

challenges of determining the underlying etiology of ARF in prac-

tice, such models have the potential to aid clinicians in their diagno-

sis of these patients.

Many studies of machine learning applied to chest radiographs

have used a radiologist interpretation of chest radiology studies to

train models.10 However, for medical conditions including pneumo-

nia, heart failure, or COPD, a clinical diagnosis is not determined

solely based on chest radiographic findings. The underlying diagno-

sis is based on a combination of concordant clinical symptoms (eg,

productive cough), physical examination findings, laboratory

Table 4. Comparison of the combined model to a randomly selected physician

Pneumonia Heart failure COPD Macro-average AUROC

(n [range], % pos [range]) 98 (90–100) 98 (90–100) 98 (90–100) —

36% (33–42) 26% (20–38) 6% (4–11)

Randomly selected physician 0.75 (0.73–0.83) 0.77 (0.73–0.84) 0.78 (0.72–0.88) 0.79 (0.75–0.81)

Combined model 0.74 (0.68–0.84) 0.79 (0.75–0.87) 0.89 (0.71–0.98) 0.84 (0.76–0.85)

Note: Analysis performed in patients with 3 or more physician chart reviews. For each patient, one physician reviewer was randomly selected and compared to

the model. The “ground truth” label used was calculated as the average of the remaining reviewers for each patient. Median performance and ranges are reported

across 5 data splits.

AUROC: area under the receiver operator characteristic curve; COPD: chronic obstructive pulmonary disease.

Figure 2. Chest radiograph heatmaps in patients where the model correctly diagnosed pneumonia, heart failure, or COPD with high probability. The overlaying

heatmap generated by Grad-CAM highlights the regions the model focused on when estimating the likely diagnosis (blue: low contribution, yellow: high contribu-

tion). For both the image and combined models, the model looked at the lungs and the heart when diagnosing pneumonia and heart failure, and the trachea

when diagnosing COPD. Heatmaps were normalized on individual images to highlight the most important areas of each image, therefore heatmap values should

not be compared across images. Image processing was performed, including histogram equalization to increase contrast in the original images, and then images

were resized to 512 � 512 pixels.
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results, and radiologic imaging findings when available. Our models

more closely resemble clinical practice, since they combine chest

radiographs and other clinical data, and were also trained using di-

agnoses determined by physicians who reviewed the entirety of each

patient’s hospitalization, rather than just chest radiographs alone.

Improving clinical diagnosis has been identified as important for

improving healthcare quality,9 and machine learning could support

the diagnostic process in several ways. First, clinicians may over fo-

cus on certain clinical data (eg, BNP value when diagnosing heart

failure) or may be prone to other cognitive errors.29 Models may

provide more consistent estimates of disease probabilities based on

the same data (though may be prone to other errors as discussed be-

low). Second, models may identify features not typically considered

by clinicians. For example, when diagnosing COPD, our models fre-

quently focused on the tracheal region, whereas clinical references

do not emphasize radiology findings.30 Yet, tracheal narrowing (ie,

“saber-sheath” trachea) can be a marker of severe air-flow obstruc-

tion,31 so training clinicians to look for this feature might also be

useful. Radiologists may only apply criteria for reporting a saber-

sheath trachea in severe cases, with milder transverse narrowing on

front chest radiographs not considered specific enough for a diagno-

sis of COPD.

Importantly, the machine learning models presented in this paper

are not envisioned to replace clinicians, but rather to serve as a diag-

nostic aid: providing additional information similar to diagnostic

tests which could result in quicker diagnosis and treatment. Clini-

cians have access to important diagnostic data such as subjective pa-

tient complaints or physical exam findings that are not readily

available as model inputs. Thus, collaborations between clinicians

and models, where clinicians consider model results in the full con-

text of the patient’s hospitalization, could be an optimal use of such

models. One caveat is that models may also use shortcuts,23 ie, take

advantage of spurious correlations in the training data that might

not hold across populations. Clinicians might be able to recognize

when a model is taking a shortcut and discount the model’s output

in such settings. For example, we noted that our model focused on

the presence of pacemakers for heart failure (similar to Seah et al32),

which may lead it to perform poorly in heart failure subpopulations

without pacemakers, or to overestimate the probability of heart fail-

ure when other data would suggest an alternative diagnosis. Simi-

larly, since there are no established EHR markers for COPD, the

clinical variables the model identified as important in COPD might

not align with clinical intuition and could be noise in the data. Fur-

ther investigation of these identified COPD features is needed for

confirmation.

However, there are still several scenarios where this model

may provide clinical benefit. While the model identifies many fea-

tures that are already well-known to bedside clinicians for diagno-

sis, it is also capable of synthesizing many more features than a

clinician can. Thus, it may be useful in straightforward diagnostic

cases where a clinician might be busy, distracted, or unable to ef-

fectively synthesize the entirety of all available information at

once. Additionally, the model may also improve diagnostic accu-

racy in difficult cases. Clinicians may make diagnostic and treat-

ment errors in up to 30% of patients.33 The combined model

exhibits similar or improved performance compared to a ran-

domly selected physician for all 3 diagnoses. Nonetheless, such a

model would need to be carefully integrated into clinical work-

flows to support the diagnostic process. Studying the implementa-

tion of models combining chest radiographs and EHR data is

important and necessary future work.

Our study has limitations. We used a limited set of EHR inputs

that are commonly collected in all patients with respiratory failure

and easily transferred across institutions, and excluded variables re-

lated to patient treatment decisions to limit the model’s ability to

learn the underlying diagnosis of ARF by learning clinician actions.

However, we are unable to fully exclude the possibility that some

variables used could indirectly allude to patient treatment. We also

designed the model to use EHR data that is readily available in real-

time. Since analysis of comorbidity data is most often based on hos-

pital diagnosis codes which are generated after the hospitalization

and are inconsistent across institutions, we did not include comor-

bidity in the model.34,35 Knowledge of comorbidities (eg, prior his-

tory of COPD) is useful to for diagnosis, therefore, future efforts to

make comorbidity data available to models when running in real-

time is warranted.

Table 5. Top 5 important clinical features used by the EHR and combined models to identify etiologies of acute respiratory failure

Diagnosis EHR model Combined model

Pneumonia Oxygen saturation or PaO2 Oxygen saturation or PaO2

Procalcitonin Procalcitonin

Troponin-I Troponin-I

Absolute lymphocyte count Plateau pressurea

Plateau pressurea BNP

Heart failure BUN or creatinine BUN or creatinine

BNP Troponin-I

Troponin-I BNP

Tidal volumea Tidal volumea

Age Age

COPD MCHC MCHC

Oxygen saturation or PaO2 Total bilirubin

Lymphocytes % or neutrophils % Bicarbonate

Bicarbonate Magnesium

Age Alkaline phosphate

Note: Top features identified by permutation importance. Highly correlated features (>0.6) were grouped together during the permutation importance analysis

and reported together (eg, BUN or Creatinine).
aPlateau pressure and tidal volume measured during invasive mechanical ventilation.

BNP: brain natriuretic peptide; BUN: blood urea nitrogen; MCHC: mean corpuscular hemoglobin concentration; PaO2: partial pressure of oxygen.
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We made other modeling choices and make our code available so

others can investigate alternative approaches. We used a simple ar-

chitecture that concatenated EHR and image features, which may

prevent the network from using the EHR data as guidance when

extracting features from the chest radiographs earlier in the network.

However, introducing EHR data at the beginning of the network

requires retraining the large DenseNet-121 network, which is likely

infeasible given the limited training data in the current study. While

pretraining was used to enhance model performance, this does not

rule out the possibility of negative transfer.36 More pretraining data

specific to the diagnostic task could improve performance as well as

model pretraining that includes both structured clinical and imaging

data. We also ignore the temporal ordering of the EHR data (ie, us-

ing only the most recent, rather than all measurements), which may

miss some relevant diagnostic information or trends.

Finally, we used 2 different methods of determining patient diag-

noses to evaluate model performance. First, chart reviews performed

by multiple physicians were used to determine the ground truth di-

agnosis of patients in the internal cohort. While such labeling is im-

perfect, multiple reviews were averaged when available to improve

diagnostic accuracy. In this way, the model can be thought of as be-

ing trained to learn the collective expertise of multiple physicians.

Second, because diagnosis codes may only be moderately aligned

with the actual clinical diagnosis,35 we used both diagnosis codes

and medications which may be a better proxy for diagnoses in the

external cohort since we did not have access to clinical notes to con-

duct chart review. Despite the potential for differences in diagnosis

labels across institutions, model performance did not drop for heart

failure and COPD. Ultimately, prospective model validation will be

needed to determine the model’s performance in practice and its

ability to support clinicians in the diagnostic process.

In summary, machine learning models leveraging both chest

radiographs and EHR data can accurately differentiate between

common causes of ARF (pneumonia, heart failure, and/or COPD)

and generalize better to another institution compared to models us-

ing only radiographic or EHR data alone. These findings highlight

the potential of machine learning to aid in the clinical diagnoses of

pneumonia, heart failure, and COPD. Combined with the expertise

of clinicians, such models could improve the diagnostic accuracy of

clinicians in this challenging clinical problem.
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