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Abstract

We introduce Video Transformer (VidTr) with separable-attention for video classification. 

Comparing with commonly used 3D networks, VidTr is able to aggregate spatio-temporal 

information via stacked attentions and provide better performance with higher efficiency. We 

first introduce the vanilla video transformer and show that transformer module is able to 

perform spatio-temporal modeling from raw pixels, but with heavy memory usage. We then 

present VidTr which reduces the memory cost by 3.3× while keeping the same performance. 

To further optimize the model, we propose the standard deviation based topK pooling for 

attention (pooltopK_std), which reduces the computation by dropping non-informative features 

along temporal dimension. VidTr achieves state-of-the-art performance on five commonly used 

datasets with lower computational requirement, showing both the efficiency and effectiveness 

of our design. Finally, error analysis and visualization show that VidTr is especially good at 

predicting actions that require long-term temporal reasoning.

1. Introduction

We introduce Video Transformer (VidTr) with separable-attention, one of the first 

transformer-based video action classification architecture that performs global spatio-

temporal feature aggregation. Convolution-based architectures have dominated the video 

classification literature in recent years [19, 32, 55], and although successful, the convolution-

based approaches have two drawbacks: 1. they have limited receptive field on each layer and 

2. information is slowly aggregated through stacked convolution layers, which is inefficient 

and might be ineffective [31, 55]. Attention is a potential candidate to overcome these 

limitations as it has a large receptive field which can be leveraged for spatio-temporal 

modeling. Previous works use attention to modeling long-range spatio-temporal features in 

videos but still rely on convoluational backbones [31, 55]. Inspired by recent successful 

applications of transformers on NLP [12, 52] and computer vision [14, 47], we propose 

a transformer-based video network that directly applies attentions on raw video pixels for 

video classification, aiming at higher efficiency and better performance.
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We first introduce a vanilla video transformer that directly learns spatio-temporal features 

from raw-pixel inputs via vision transformer [14], showing that it is possible to perform 

pixel-level spatio-temporal modeling. However, as discussed in [56], the transformer has 

O(n2) complexity with respect to the sequence length. The vanilla video transformer is 

memory consuming, as training on a 16-frame clip (224 × 224) with only batch size of 

1 requires more than 16GB GPU memory, which makes it infeasible on most commercial 

devices. Inspired by the R(2+1)D convolution that breaks down 3D convolution kernel to 

a spatial kernel and a temproal kernel [50], we further introduce our separable-attention, 

which performs spatial and temporal attention separately. This reduces the memory 

consumption by 3.3× with no drop in accuracy. We can further reduce the memory and 

computational requirements of our system by exploiting the fact that a large portion of 

many videos have redundant information temporally. This notion has been explored in the 

context of convolutional networks to reduce computation previously [32]. We build on this 

intuition and propose a standard deviation based topK pooling operation (topK_std pooling), 

which reduces the sequence length and encourages the transformer network to focus on 

representative frames.

We evaluated our VidTr on 6 most commonly used datasets, including Kinetics 400/700, 

Charades, Something-something V2, UCF-101 and HMDB-51. Our model achieved state-

of-the-art (SOTA) or comparable performance on five datasets with lower computational 

requirements and latency compared to previous SOTA approaches. Our error analysis and 

ablation experiments show that the VidTr works significantly better than I3D on activities 

that requires longer temporal reasoning (e.g. making a cake vs. eating a cake), which 

aligns well with our intuition. This also inspires us to ensemble the VidTr with the I3D 

convolutional network as features from global and local modeling methods should be 

complementary. We show that simply combining the VidTr with a I3D50 model (8 frames 

input) via ensemble can lead to roughly a 2% performance improvement on Kinetics 400. 

We further illustrate how and why the VidTr works by visualizing the separable-attention 

using attention rollout [1], and show that the spatial-attention is able to focus on informative 

patches while temporal attention is able to reduce the duplicated/non-informative temporal 

instances. Our contributions are:

1. Video transformer: We propose to efficiently and effectively aggregate spatio-

temporal information with stacked attentions as opposed to convolution based 

approaches. We introduce vanilla video transformer as proof of concept with 

SOTA comparable performance on video classification.

2. VidTr: We introduce VidTr and its permutations, including the VidTr with SOTA 

performance and the compact-VidTr with significantly reduced computational 

costs using the proposed standard deviation based pooling method.

3. Results and model weights: We provide detailed results and analysis on 6 

commonly used datasets which can be used as reference for future research. Our 

pre-trained model can be used for many down-streaming tasks.
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2. Related Work

2.1. Action Classification

The early research on video based action recognition relies on 2D convolutions [28]. The 

LSTM [25] was later proposed to model the image feature based on ConvNet features [30, 

51, 63]. However, the combination of ConvNet and LSTM did not lead to significantly better 

performance. Instead of relying on RNNs, the segment based method TSN [54] and its 

permutations [22, 35, 64] were proposed with good performance.

Although 2D network was proved successful, the spatio-temporal modeling was still 

separated. Using 3D convolution for spatio-temporal modeling was initially proposed in [26] 

and further extended to the C3D network [48]. However, training 3D convnet from scratch 

was hard, initializing the 3D convnet weights by inflate from 2D networks was initially 

proposed in I3D [7] and soon proved applicable with different type of 2D network [10, 24, 

58]. The I3D was used as backbone for many following work including two-stream network 

[19, 55], the networks with focus on temporal modeling [31, 32, 59], and the 3D networks 

with refined 3D convolution kernels [27, 33, 39, 44].

The 3D networks are proved effective but often not efficient, the 3D networks with 

better performance often requires larger kernels or deeper structures. The recent research 

demonstrates that depth convolution significantly reduce the computation [49], but depth 

convolution also increase the network inference latency. TSM [37] and TAM [17] proposed 

a more efficient backbone for temporal modeling, however, such design couldn’t achieve 

SOTA performance on Kinetics dataset. The neural architecture search was proposed for 

action recognition [18, 43] recently with competitive performance, however, the high latency 

and limited generalizability remain to be improved.

The previous methods heavily rely on convolution to aggregate features spatio-temporally, 

which is not efficient. A few previous work tried to perform global spatio-temporal 

modeling [31, 55] but still limited by the convolution backbone. The proposed VidTr is 

fundamentally different from previous works based on convolutions, the VidTr doesn’t 

require heavily stacked convolutions [59] for feature aggregation but efficiently learn feature 

globally via attention from first layer. Besides, the VidTr don’t rely on sliding convolutions 

and depth convolutions, which runs at less FLOPs and lower latency compared with 3D 

convolutions [18, 59].

2.2. Vision Transformer

The transformers [52] was previously proposed for NLP tasks [13] and recently adopted 

for computer vision tasks. The transformers were roughly used in three different ways in 

previous works: 1.To bridge the gap between different modalities, e.g. video captioning [65], 

video retrieval [20] and dialog system [36]. 2. To aggregate convolutional features for down-

streaming tasks, e.g. object detection [5, 11], pose estimation [61], semantic segmentation 

[15] and action recognition [21]. 3. To perform feature learning on raw pixels, e.g. most 

recently image classification [14, 47].

Zhang et al. Page 3

Proc IEEE Int Conf Comput Vis. Author manuscript; available in PMC 2022 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Action recognition with self-attention on convolution features [21] is proved successful, 

however, convolution also generates local feature and gives redundant computations. 

Different from [21] and inspired by very recent work on applying transformer on raw 

pixels [14, 47], we pioneer the work on aggregating spatio-temporal feature from raw 

videos without relying on convolution features. Different from very recent work [41] that 

extract spatial feature with vision transformer on every video frames and then aggregate 

feature with attention, our proposed method jointly learns spatio-temporal feature with lower 

computational cost and higher performance. Our work differs from the concurrent work [4], 

we present a split attention with better performance without requiring larger video resolution 

nor extra long clip length. Some more recent work [2, 4, 4, 16, 40, 42] further studied the 

multi-scale and different attention factorization methods.

3. Video Transformer

We introduce the Video Transformer starting with the vanilla video transformer (section 3.1) 

which illustrates our idea of video action recognition without convolutions. We then present 

VidTr by first introducing separable-attention (section 3.2), and then the attention pooling to 

drop non-representative information temporally (section 3.2).

3.1. Vanilla Video Transformer

Following previous efforts in NLP [13] and image classification [14], we adopt the 

transformer [52] encoder structure for action recognition that operates on raw pixels. Given 

a video clip V ∈ ℝC × T × W × H, where T denotes the clip length, W and H denote the 

video frame width and height, and C denotes the number of channel, we first convert 

V to a sequence of s × s spatial patches, and apply a linear embedding to each patch, 

namely S ∈ ℝT H
s

W
s × C′, where C′ is the channel dimension after the linear embedding. We 

add a 1D learnable positional embedding [13, 14] to S and following previous work [13, 

14], append a class token as well, whose purpose is to aggregate features from the whole 

sequence for classification. This results in S′ ∈ ℝ(TW H
s2 + 1) × C′, where S0′ ∈ ℝ1 × C′ is the 

attached class token. S′ is feed into our transformer encoder structure detailed next.

As Figure 1 middle shows, we expand the previous successful ViT transformer architecture 

for 3D feature learning. Specifically, we stack 12 encoder layers, with each encoder layer 

consisting of an 8-head self-attention layer and two dense layers with 768 and 3072 

hidden units. Different from transformers for 2D images, each attention layer learns a 

spatio-temporal affinity map Attn ∈ ℝ(TW H
s2 + 1) × (TW H

s2 + 1).

3.2. VidTr

In Table 2 we show that this simple formulation is capable of learning 3D motion features 

on a sequence of local patches. However, as explained in [3], the affinity attention matrix 

Attn ∈ ℝ(TW H
s2 + 1) × TW H

s2 + 1  needs to be stored in memory for back propagating, and 

thus the memory consumption is quadratically related to the sequence length. We can 

see that the vanilla video transformer increases memory usage for the affinity map from 
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O(W 2H2) to O T 2W 2H2 , leading to T2× memory usage for training, which makes it 

impractical on most available GPU devices. We now address this inefficiency with a 

separable attention architecture.

3.2.1 Separable-Attention—To address these memory constraints, we introduce a 

multi-head separable-attention (MSA) by decoupling the 3D self-attention to a spatial 

attention MSAs and a temporal attention MSAt (Figure 1):

MSA(S) = MSAs MSAt(S) (1)

Different from the vanilla video transformer that applies 1D sequential modeling on S, we 

decouple S to a 2D sequence S ∈ ℝ(T + 1) × (W H
s2 + 1) × C′ with positional embedding and 

two types of class tokens that append additional tokens along the spatial and temporal 

dimensions. Here, the spatial class tokens gather information from spatial patches in a single 

frame using spatial attention, and the temporal class tokens gather information from patches 

across frames (at same location) using temporal attention. Then the intersection of the 

spatial and temporal class tokens S(0, 0, : ) is used for the final classification. To decouple 1D 

self-attention functions on 2D sequential features S, we first operate on each spatial location 

(i) independently, applying temporal attention as:

St
(: , i, : ) = MSAt(k = q = v = S(: , i, : )) (2)

= pool Attnt ⋅ vt (3)

= pool(Softmax(qt ⋅ kt
T)) ⋅ vt (4)

where St ∈ ℝ(τ + 1) × W H
s2 + 1 × C is the output of MSAt, pool denotes the down-sampling 

method to reduce temporal dimension (from T to τ, τ = T when no down-sampling is 

performed) that will be described later, qt, kt, and vt denote key, query, and value features 

after applying independent linear functions (LN) on S:

qt = LNq(S(: , i, : )); kt = LNk(S(: , i, : )); vt = LNv(S(: , i, : )) (5)

Moreover, Attnt ∈ ℝ(τ + 1) × (T + 1) represent a temporal attention obtained from matrix 

multiplication between qt and kt. Following MSAs, we apply a similar 1D sequential self-

attention MSAs on spatial dimension:

Sst
(i, : , : ) = MSAs(k = q = v = St

(i, : , : )) (6)

= Attns ⋅ vs (7)
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= Softmax(qs ⋅ ks
T) ⋅ vs (8)

where Sst ∈ ℝ(τ + 1) × (W H
s2 + 1) × C is the output of MSAs, qs, ks, and vs denotes 

key, query, and value features after applying independent linear functions on St. 

Attns ∈ ℝ(W H
s2 + 1) × (W H

s2 + 1) represent a spatial-wise affinity map. We do not apply 

down-sampling on the spatial attention as we saw a significant performance drop in our 

preliminary experiments.

Our spatio-temporal split attention decreased the memory usage of the transformer layer by 

reducing the affinity matrix from O(T 2W 2H2) to O(τ2 + W 2H2). This allows us to explore 

longer temporal sequence lengths that were infeasible on modern hardware with the vanilla 

transformer.

3.2.2 Temporal Down-sampling method—Video content usually contains redundant 

information [31], with multiple frames depicting near identical content over time. We 

introduce compact VidTr (C-VidTr) by applying temporal down-sampling within our 

transformer architecture to remove some of this redundancy. We study different temporal 

down-sampling methods (pool in Eq. 3) including temporal average pooling and 1D 

convolutions with stride 2, which reduce the temporal dimension by half (details in Table 

5d).

A limitation of these pooling the methods is that they uniformly aggregate information 

across time but often in video clips the informative frames are not uniformly distributed. 

We adopted the idea of non-uniform temporal feature aggregation from previous work 

[31]. Different from previous work [31] that directly down-sample the query using average 

pooling, we found that in our proposed network, the temporal attention highly activates 

on a small set of temporal features when the clip is informative, while the attention 

equally distributed over the length of the clip when the clip caries little additional semantic 

information. Building on this intuition, we propose a topK based pooling (topK_std pooling) 

that orders instances by the standard deviation of each row in the attention matrix:

pooltopK_std(Attnt
(1: , : )) = Attnt

(topK(σ(Attnt
(1: , : ))), : ) (9)

where σ ∈ ℝT  is row-wise standard deviation of Attnt
(1: , : ) as:

σ(i) = 1
T ∑

i = 1

T
(Attnt

(1: , : )) − μ)2
(10)

μ(i) = 1
T ∑

i = 1

T
Attnt

(i, : ) (11)
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where μ ∈ ℝT  is the mean of Attnt
(1: , : ). Note that the topK_std pooling was applied to the 

affinity matrix excludes the token (Attnt
(0: , : )) as we always preserve token for information 

aggregation. Our experiments show that topK_std pooling gives better performance than 

average pooling or convolution. The topK_std pooling can be intuitively understood as 

selecting the frames with strong localized attention and removing frames with uniform 

attention.

3.3. Implementation Details

Model Instantiating: Based on the input clip length and sample rate, we introduce three 

base VidTr models (VidTr-S, VidTr-M and VidTr-L). By applying the different pooling 

strategies we introduce two compact VidTr permutations (C-VidTr-S, and C-VidTr-M). To 

normalize the feature space, we apply layer normalization before and after the residual 

connection of each transformer layer and adopt the GELU activation as suggested in 

[14]. Detailed configurations can be found in Table 1. We empirically determined the 

configuration for different clip length to produce a set of models from low FLOPs and low 

latency to high accuracy (details in Ablations).

During training we initialize our model weights from ViT-B [14]. To avoid over fitting, 

we adopted the commonly used augmentation strategies including random crop, random 

horizontal flip (except for Something-something dataset). We trained the model using 64 

Tesla V100 GPUs, with batch size of 6 per-GPU (for VidTr-S) and weight decay of 1e-5. 

We adopted SGD as the optimizer but found the Adam optimizer also gives us the same 

performance. We trained our network for 50 epochs in total with initial learning rate of 0.01, 

and reduced it by 10 times after epochs 25 and 40. It takes about 12 hours for VidTr-S 

model to converge, the training process also scales well with fewer GPUs (e.g. 8 GPUs for 

4 days). During inference we adopted the commonly used 30-crop evaluation for VidTr and 

compact VidTr, with 10 uniformly sampled temporal segments and 3 uniformly sampled 

spatial crop on each temporal segment [55]. It is worth mentioning that we can further boost 

the inference speed of compact VidTr by adopting a single pass inference mechanise, this 

is because the attention mechanism captures global information more effectively than 3D 

convolution. We do this by training a model with frames sampled in TSN [54] style, and 

uniformly sampling N frames in inference (details in supplemental materials).

4. Experimental Results

4.1. Datasets

We evaluate our method on six of the most widely used datasets. Kinetics 400 [8] and 
Kinetics 700 [6] consists of approximately 240K/650K training videos and 20K/35K 

validation videos trimmed to 10 seconds from 400/700 human action categories. We 

report top-1 and top-5 classification accuracy on the validation sets. Something-Something 
V2 [23] dataset consists of 174 actions and contains 168.9K training videos and 24.7K 

evaluation videos. We report top-1 accuracy following previous works [37] evaluation 

setup. Charades [45] has 9.8k training videos and 1.8k validation videos spanning about 

30 seconds on average. Charades contains 157 multi-label classes with longer activities, 
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performance is measured in mean Average Precision (mAP). UCF-101 [46] and HMDB-51 
[29] are two smaller datasets. UCF-101 contains 13320 videos with an average length of 180 

frames per video and 101 action categories. The HMDB-51 has 6,766 videos and 51 action 

categories. We report the top-1 classification on the validation videos based on split 1 for 

both dataset.

4.2. Kinetics 400 Results

4.2.1 Comparison To SOTA—We report results on the validation set of Kinetics 400 in 

Table 2, including the top-1 and top-5 accuracy, GFLOPs (Giga Floating-Point Operations) 

and latency (ms) required to compute results on one view.

As shown in Table 2, the VidTr achieved the SOTA performance compared to previous 

I3D based SOTA architectures with lower GFLOPs and latency. The VidTr significantly 

outperform previous SOTA methods at roughly same computational budget, e.g. at 200 

GFLOPs, the VidTr-M outperform I3D50 by 3.6%, NL50 by 2.1%, and TPN50 by 0.9%. 

At similar accuracy levels, VidTr is significantly more computationally efficient than other 

works, e.g. at 78% top-1 accuracy, the VidTr-S has 6× fewer FLOPs than NL-101, 2× 

fewer FLOPs than TPN and 12% fewer FLOPs than Slowfast-101. We also see that our 

VidTr outperforms I3D based networks at higher sample rate (e.g. s = 8, TPN achieved 

76.1% top-1 accuracy), this denotes, the global attention learns temporal information more 

effectively than 3D convolutions. X3D-XXL from architecture search is the only network 

that outperforms our VidTr. We plan to use architecture search techniques for attention based 

architecture in future work.

4.2.2 Compact VidTr—We evaluate the effectiveness of our compact VidTr with the 

proposed temporal down-sampling method (Table 1). The results (Table 3) show that the 

proposed down-sampling strategy removes roughly 56% of the computation required by 

VidTr with only 2% performance drop in accuracy. The compact VidTr complete the VidTr 

family from small models (only 39GFLOPs) to high performance models (up to 79.1% 

accuracy). Compared with previous SOTA compact models [34, 39], our compact VidTr 

achieves better or similar performance with lower FLOPs and latency, including: TEA 

(+0.6% with 16% fewer FLOPs) and TEINet (+0.5% with 11% fewer FLOPs).

4.2.3 Error and Ensemble Analysis—We compare the errors made by VidTr-S and 

the I3D50 network to better understand the local networks’ (I3D) and global networks’ 

(VidTr) behavior. We provide the top-5 activities that our VidTr-S gain most significant 

improvement over the I3D50. We find that our VidTr-S outperformed the I3D on the 

activities that requires long-term video contexts to be recognized. For example, our VidTr-S 

outperformed the I3D50 on “making a cake” by 26% in accuracy. The I3D50 overfits to 

“cakes” and often recognize making a cake as eating a cake. We also analyze the top-5 

activities where I3D does better than our VidTr-S (Table 4). Our VidTr-S performs poorly on 

the activities that need to capture fast and local motions. For example, our VidTr-S performs 

21% worse in accuracy on “shaking head”.

Inspired by the findings in our error analysis, we ensembled our VidTr with a light weight 

I3D50 network by averaging the output values between the two networks. The results (Table 
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2) show that the the I3D model and transformer model complements each other and the 

ensemble model roughly lead to 2% performance improvement on Kinetics 400 with limited 

additional FLOPs (37G). The performance gained by ensembling the VidTr with I3D is 

significantly better than the improvement by combine two 3D networks (Table 2).

4.2.4 Ablations—We perform all ablation experiments with our VidTr-S model on 

Kinetics 400. We used 8 × 224 × 224 input with a frame sample rate of 8, and 30-view 

evaluation.

Patching strategies:  We first compare the cubic patch (4 × 162), where the video is 

represented as a sequence of spatio-temporal patches, with the square patch (1 × 162), where 

the video is represented as a sequence of spatial patches. Our results (Table 5a) show that 

the model using cubic patches with longer temporal size has fewer FLOPs but results in 

significant performance drop (73.1 vs. 75.5). The model using square patches significantly 

outperform all cubic patch based models, likely because the linear embedding is not enough 

to represent the shot-term temporal association in the cubic. We further compared the 

performance of using different patch sizes (1×162 vs. 1×322), using 322 patches lead to 4× 

decreasing of the sequence length, which decreases memory consumption of the affinity 

matrices by 16×, however, using 162 patches significantly outperform the model using 322 

patches (77.7 vs. 71.2). We did not evaluate the model using smaller patching sizes (e.g., 

8×8) because of the high memory consumption.

Attention Factorization:  We compare different factorization for attention design, including 

spatial modeling only (WH), jointly spatio-temporal modeling module (WHT, vanilla-Tr), 

spatio-temporal separable-attention (WH + T, VidTr), and axial separable-attention (W + 

H + T). We first evaluate an spatio-only transformer. We average the class token for each 

input frame for our final output. Our results (Table 5b) show that the spatio-only transformer 

requires less memory but has worse performance compare with spatio-temporal attention 

models. This shows that temporal modeling is critical for attention based architectures. The 

joint spatio-temporal transformer significantly outperforms the spatio-only transformer but 

requires a restrictive amount of memory (T2 times for the affinity matrices). Our VidTr using 

spatio-temporal separable-attention requires 3.3× less memory with no accuracy drop. We 

further evaluate the axial separable-attention (W + H + T), which requires the least memory. 

The results (Table 5b) show that the axial separable-attention has a significant performance 

drop likely due to breaking the X and Y spatial dimensions.

Sequence down-sampling comparison:  We compare different down-sampling strategy 

including temporal average pooling, 1D temporal convolution and the proposed STD-based 

topK pooling method. The results (Table 5d) show that our proposed STD-based down-

sampling method outperformed the temporal average pooling and the convolution-based 

down-sampling strategies that uniformly aggregate information over time.

Backbone generalization:  We evaluate our VidTr initialized with different models, 

including T2T [62], ViT-B, and ViT-L. The results on Table 5c show that our VidTr achieves 

reasonable performance across all backbones. The VidTr using T2T as the backbone has 

the lowest FLOPs but also the lowest accuracy. The Vit-L-based VidTr achieve similar 
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performance with the Vit-B-based VidTr even with 3× FLOPs. As showed in previous work 

[14], transformer-based network are more likely to over-fit and Kinetics-400 is relatively 

small for Vit-L-based VidTr.

Where to down-sample:  Finally we study where to perform temporal down-sampling. 

We perform temporal down-sampling at different layers (Table 5e). Our results (Table 5e) 

show that starting to perform down-sampling after the first encoder layer has the best 

trade-off between the performance and FLOPs. Starting to perform down-sampling at very 

beginning leads to the fewest FLOPs but has a significant performance drop (72.9 vs. 74.9). 

Performing down-sampling later only has slight performance improvement but requires 

higher FLOPs. We then analyze how many layers to skip between two down-sample layers. 

Based on the results in Table 5f, skipping one layer between two down-sample operations 

has the best trade-off. Performing down-sampling on consecutive layers (0 skip layers) has 

lowest FLOPs but the performance decreases (73.9 vs. 74.9). Skipping more layers did not 

show significant performance improvement but does have higher FLOPs.

4.2.5 Run-time Analysis—We further analyzed the trade-off between latency, FLOPs 

and accuracy. We note that the VidTr achieved the best balance between these factors 

(Figure 2). The VidTr-S achieve similar performance but significantly fewer FLOPs compare 

with I3D101-NL (5× fewer FLOPs), Slowfast101 8 × 8 (12% fewer FLOPs), TPN101 (2× 

fewer FLOPs), and CorrNet50 (20× fewer FLOPs). Note that the X3D has very low FLOPs 

but high latency due to the use of depth convolution. Our experiments show that the X3D-L 

has about 3.6× higher latency comparing with VidTr-S (Figure 2).

4.3. More Results

Kinetics-700 Results: Our experiments show a consistent performance trend on Kinetics 

700 (Table 6). The VidTr-S significantly outperformed the baseline I3D model (+9%), the 

VidTr-M achieved the performance comparable to Slowfast101 8 × 8 and the VidTr-L is 

comparable to previous SOTA slowfast101-nonlocal. There is a small performance gap 

between our model and Slowfast-NL [19], because Slowfast is pre-trained on both Kinetics 

400 and 600 while we only pre-trained on Kinetics 400. Previous findings that VidTr and 

I3D are being complementary is consistent on Kinetics 700, ensemble VidTr-L with I3D 

leads to +0.6% performance boost.

Charades Results: We compare our VidTr with previous SOTA models on Charades. 

Our VidTr-L outperformed previous SOTA methods LFB and NUTA101, and achieved 

the performance comparable to Slowfast101-NL (Table 6). The results on Charades 

demonstrates that our VidTr generalizes well to multi-label activity datasets. Our VidTr 

performs worse than the current SOTA networks (X3D-XL) on Charades likely due to 

overfitting. As discussed in previous work [14], the transformer-based networks overfit 

easier than convolution-based models, and Charades is relatively small. We observed a 

similar finding with our ensemble, ensembling our VidTr with a I3D network (40.3 mAP) 

achieved SOTA performance.
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Something-something V2 Results: We observe that the VidTr does not work well 

on the something-something dataset (Table 6), likely because pure transformer based 

approaches do not model local motion as well as convolutions. This aligns with our 

observation in our error analysis. Further improving local motion modeling ability is an 

area of future work.

UCF and HMDB Results: Finally we train our VidTr on two small dataset UCF-101 

and HMDB-51 to test if VidTr generalizes to smaller datasets. The VidTr achieved SOTA 

comparable performance with 6 epochs of training (96.6% on UCF and 74.4% on HMDB), 

showing that the model generalize well on small dataset (Table 6).

5. Visualization and Understanding VidTr

We first visualized the VidTr’s separable-attention with attention roll-out method [1] (Figure 

3a). We find that the spatial attention is able to focus on informative regions and temporal 

attention is able to skip the duplicated/non-representative information temporally. We then 

visualized the attention at 4th, 8th and 12th layer of VidTr (Figure 3b), we found the spatial 

attention is stronger on deeper layers. The attention does not capture meaningful temporal 

instances at early stages because the temporal feature relies on the spatial information to 

determine informative temporal instances. Finally we compared the I3D activation map and 

rollout attention from VidTr (Figure 3c). The I3D misclassified the catching fish as sailing, 

as the I3D attention focused on the people sitting behind and water. The VidTr is able to 

make the correct prediction and the attention showed that the VidTr is able to focus on the 

action related regions across time.

6. Conclusion

In this paper, we present video transformer with separable-attention, an novel stacked 

attention based architecture for video action recognition. Our experimental results show 

that the proposed VidTr achieves state-of-the-art or comparable performance on five public 

action recognition datasets. The experiments and error analysis show that the VidTr 

is especially good at modeling the actions that requires long-term reasoning. Further 

combining the advantage of VidTr and convolution for better local-global action modeling 

[38, 57] and adopt self-supervised training [9] on large-scaled data will be our future work.
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Figure 1: 
Spatio-temporal separable-attention video transformer (VidTr). The model takes pixels 

patches as input and learns the spatial temporal feature via proposed separable-attention. 

The green shaded block denotes the down-sample module which can be inserted into VidTr 

for higher efficiency. τ denotes the temporal dimension after downsampling.
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Figure 2: 
The comparison between different models on accuracy, FLOPs and latency.
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Figure 3: 
Visualization of spatial and temporal attention of VidTr and comparison with I3D activation.
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Table 1:

Detailed configuration of different VidTr permutations. clip_len denotes the sampled clip length and sr stands 

for the sample rate. We uniformly sample clip_len frames out of clip_len × sr consecutive frames. The 

configurations are empirically selected, details in Ablations.

Model clip_len sr Down-sample Layer τ

VidTr-S 8 8 - -

VidTr-M 16 4 - -

VidTr-L 32 2 - -

C-VidTr-S 8 8 [1,2,4] [6,4,2]

C-VidTr-M 16 4 [1,2,4] [8,4,2]
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Table 2:

Results on Kinetics-400 dataset. We report top-1 accuracy(%) on the validation set. The ‘Input’ column 

indicates what frames of the 64 frame clip are actually sent to the network. n × s input indicates we feed n 
frames to the network sampled every s frames. Lat. stands for the latency on single crop.

Model Input GFLOPs Lat. top-1 top-5

I3D50 [60] 32 × 2 167 74.4 75.0 92.2

I3D101 [60] 32 × 2 342 118.3 77.4 92.7

NL50 [55] 32 × 2 282 53.3 76.5 92.6

NL101 [55] 32 × 2 544 134.1 77.7 93.3

TEA50 [34] 16 × 2 70 - 76.1 92.5

TEINet [39] 16 × 2 66 49.5 76.2 92.5

CIDC [32] 32 × 2 101 82.3 75.5 92.1

SF50 8×8 [19] (32+8) × 2 66 49.3 77.0 92.6

SF101 8×8 [19] (32+8) × 2 106 71.9 77.5 92.3

SF101 16×8 [19] (64+16) × 2 213 124.3 78.9 93.5

TPN50 [60] 32 × 2 199 89.3 77.7 93.3

TPN101 [60] 32 × 2 374 133.4 78.9 93.9

CorrNet50 [53] 32 × 2 115 - 77.2 N/A

CorrNet101 [53] 32 × 2 187 - 78.5 N/A

X3D-XXL [18] 16 × 5 196 - 80.4 94.6

Vanilla-Tr 8 × 8 89 32.8 77.5 93.2

VidTr-S 8 × 8 89 36.2 77.7 93.3

VidTr-M 16 × 4 179 61.1 78.6 93.5

VidTr-L 32 × 2 351 110.2 79.1 93.9

En-I3D-50–101 32 × 2 509 192.7 77.7 93.2

En-I3D-TPN-101 32 × 2 541 207.8 79.1 94.0

En-VidTr-S 8 × 8 130 73.2 79.4 94.0

En-VidTr-M 16 × 4 220 98.1 79.7 94.2

En-VidTr-L 32 × 2 392 147.2 80.5 94.6
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Table 3:

Comparison of VidTr to other fast networks. We present the number of views used for evaluation and FLOPs 

required for each view. The latency denotes the total time required to get the reported top-1 score.1

Model Input Res. GFLOPs Latency(ms) top-1

TSM [37] 8fTSN 256 69 29 74.7

TEA [34] 16×4 256 70 - 76.1

3DEffi-B4 [18] 16×5 224 7 - 72.4

TEINet [39] 16×4 256 33 36 74.9

X3D-M [18] 16×5 224 5 40.9 74.6

X3D-L [18] 16×5 312 19 59.4 76.8

C-VidTr-S 8×8 224 39 17.5 75.7

C-VidTr-M 16×4 224 59 26.1 76.7

1we measure latency of X3D using the authors’ code and fast depth convolution patch: https://github.com/facebookresearch/SlowFast/
blob/master/projects/x3d/README.md, which only has models for X3D-M and X3D-L and not the XL and XXL variants
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Table 4:

Quantitative analysis on Kinetics-400 dataset. The performance gain is defined as the disparity of the top-1 

accuracy between VidTr network and that of I3D.

Top 5 (+) Acc. gain Top 5 (−) Acc. gain

making a cake +26.0% shaking head −21.7%

catching fish +21.2% dunking basketball −20.8%

catching baseball +20.8% lunge −19.9%

stretching arm +19.1% playing guitar −19.9%

spraying +18.0 % tap dancing −16.3%

(a) Top 5 classes that VidTr works better than I3D. (b) Top 5 classes that I3D works better than VidTr.
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Table 5:

Ablation studies on Kinetics 400 dataset. We use an VidTr-S backbone with 8 frames input for (a,b) and 

C-VidTr-S for (c,d). The evaluation is performed on 30 views with 8 frame input unless specified. FP. stands 

for FLOPs.

Model FP. top-1 Model Mem. top-1

Cubic (4×162) 23G 73.1 WH 2.1GB 74.7

Cubic (2×162) 45G 75.5 WHT 7.6GB 77.5

Square (1×162) 89G 77.7 WH + T 2.3GB 77.7

Square (1×322) 21G 71.2 W + H + T. 1.5GB 72.3

(a) Comparison between different patching 
strategies.

(b) Comparison between different factorization.

Init. from FP. top-1 Configurations top-1 top-5

T2T [62] 34G 76.3 Temp. Avg. Pool. 74.9 91.6

ViT-B [14] 89G 77.7 1D Conv. [62] 75.4 92.3

ViT-L [14] 358 77.5 STD Pool. 75.7 92.2

(c) Comparison between different backbones. (d) Comparison between different down-sample methods.

Layer τ FP. top-1 Layer τ FP. top-1

[0, 2] [4, 2] 26G 72.9 [1, 2] [4, 2] 30G 73.9

[1,3] [4, 2] 32G 74.9 [1,3] [4, 2] 32G 74.9

[2, 4] [4, 2] 47G 74.9 [1,4] [4, 2] 33G 75.0

[6, 8] [4, 2] 60G 75.3 [1,5] [4, 2] 34G 75.2

(e) Compact VidTr down-sampling twice at layer k and k + 2. (f) Compact VidTr down-sampling twice starting from layer 
1 and skipping different number of layers.
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Table 6:

Results on Kinetics-700 dataset (K700), Charades dataset (Chad), something-something-V2 dataset (SS), 

UCF-101 and HMDB (HM) dataset. The evaluation metrics are mean average precision (mAP) in percentage 

for Charades (32×4 input is used), top-1 accuracy for Kinetics 700, something-something-V2 (TSN styled 

dataloader is used), UCF and HMDB.

Model Input K700 Chad SS UCF HM

I3D [7] 32×2 58.7 32.9 50.0 95.1 74.3

TSM [37] 8(TSN) - - 59.3 94.5 70.7

I3D101 [59] 32 × 4 40.3 - - -

CSN152 [49] 32 × 2 70.1 - - - -

TEINet[39] 16 (TSN) - - 62.1 96.7 73.3

SF101 [19] 64×2 70.2 - 60.9 - -

SF101-NL [19] 64×2 70.6 45.2 - - -

X3D-XL [18] 16 × 5 - 47.1 - - -

VidTr-M 16 × 4 69.5 - 61.9 96.6 74.4

VidTr-L 32 × 2 70.2 43.5 63.0 96.7 74.4

En-VidTr-L 32 × 2 70.8 47.3 - - -
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