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Abstract
Pancreatic cancer is one of the most aggressive diseases among solid tumors. Most patients are diagnosed with 
advanced or metastatic disease and are characterized by poor chemosensitivity. Therefore, earlier diagnosis and 
novel therapeutic possibilities for pancreatic cancer patients are urgently needed. Liquid biopsy is an emerging 
technology that allows the noninvasive sampling of tumor material. Nowadays, liquid biopsy has shown promising 
results as diagnostic, prognostic and predictive biomarkers, but it has not yet been universally adopted into regular 
use by clinicians. In this review, we describe different components of liquid biopsy, especially circulating tumor 
cells, circulating tumor DNA and exosomes and their potential clinical utility for pancreatic cancer patients.

Keywords: Pancreatic cancer, liquid biopsy, CTC, ctDNA, exosomes

INTRODUCTION
The most common pancreatic neoplasm is pancreatic ductal adenocarcinoma (PDAC), occurring in more 
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than 85% of pancreatic tumor cases[1]. It is one of the most lethal types of human cancer with 5-year survival 
rate less than 10%[2-7]. Radical surgical resection remains the only potential curative option for PDAC 
patients; however, the probability of relapse is high. The average survival of resected patients ranges from 12 
to 20 months, and the 5-year survival rate after surgery and adjuvant systemic therapy is approximately 
20%[5-7]. Around half of PDAC patients are diagnosed with distant metastasis. Unfortunately, progress in the 
management advanced-stage disease has been very modest in the last decades. Actually, chemotherapy 
regimens (gemcitabine and abraxane or FOLFIRINOX) are gold standard in the treatment of locally 
advanced or metastatic PDAC, although providing only slight improvements in OS, reaching at best few 
months[8-10]. No target therapies and no immunotherapy approaches are nowadays clearly effective in 
PDAC. Only the implementation of genetic testing can change a very narrow treatment landscape for small 
subsets of patients with actionable aberrations: in particular, in BRCA1/2 mutated setting, olaparib (PARP 
inhibitor) might be proposed as maintenance strategy[11]. Therefore, only few different treatment 
combinations are currently available to metastatic PDAC patients, and it is important to switch between 
them wisely.

Pancreatic adenocarcinomas release their components into circulation through either the exocrine or 
endocrine system, and, for this reason, blood, pancreatic juice, stools, saliva and urine contain these 
biological markers and can be a source for their detection and analysis[12]. Blood is undoubtedly the most 
common fluid employed as source of tumor components, and “liquid biopsy” is a novel technology that 
allows the noninvasive sampling of tumor material. In particular, tumor components released in body fluids 
such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), vesicles and exosome (EVs) have 
been studied as predictors of chemoresistance in PDAC [Figure 1]. One of the potential clinical application 
of liquid biopsies is to identify specific tumor molecular characteristics that could improve the diagnostic 
process, have prognostic or predictive significance and might be used to determine the potential 
chemosensitivity or chemoresistance in PDAC patients. Different approaches for detection of DNA 
aberrations on liquid biopsy are depicted in Figure 2.

MOLECULAR PATHOLOGY OF PANCREATIC CANCER
In this section, we describe molecular classification of PDAC in order to understand genetic alterations that, 
together with tumor microenvironment, influence pancreatic tumor cell behavior.

Genetic alterations are acquired (or somatic) in most pancreatic cancers. However, in 10%-20% of PDAC 
the are hereditary (or germline) mutations, prominently regarding DNA mismatch repair (MMR) genes 
such as ATM, BRCA1, BRCA2 and PALB2[13]. PDAC is a heterogeneous molecular disease, showing a high 
level of inter-tumor genetic heterogeneity[14]. The intra-tumor heterogeneity is caused by unequal 
distribution of cancer cell subclones in the same tumor (spatial heterogeneity). Moreover, the tumor 
changes over the time: different genetic alterations are selected during tumor development (temporal 
heterogeneity)[15]. Studies analyzing genomic alterations in resected PDACs found near 2000 gene 
mutations, the four most commonly mutated being KRAS (90%), CDK2NA (90%), TP53 (75%-90%) and 
SMAD4 (50%)[16,17] [Table 1 and Figure 3]. Raphael et al.[18] performed a study with an integrated genomic, 
transcriptomic and proteomic characterization of 150 PDAC specimens. They confirmed the prevalence of 
KRAS mutations in 93% of PDAC samples. In the remaining 7% of PDAC samples, KRAS gene mutations 
were not identified. However, these KRAS wild tumors harbored molecular alterations in other oncogenic 
drivers. In addition, this integrated transcriptomic and proteomic profiling revealed RNA and protein 
subtypes that indicate clinically significant subsets of disease[18]. Analyzing signaling pathways involved in 
the process of PDAC tumorigenesis and progression, KRAS has emerged as dominant, but other multiple 
additional pathways are genetically altered including cell cycle progress, DNA damage control, TGF-β, 
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Table 1. The most frequent gene mutations and respective pathways involved in PDAC carcinogenesis, according to Bailey et al.[17]

Mutation Frequency Pathways Ref.

KRAS 92% MAPK [17]

G12D/G12V 82% PI3K [17]

G13 14% [17]

Q61 < 1% [17]

CDK2NA/TP53 78% G1/S checkpoint [17]

KDM6A/SETD2/MLL 24% Histone modification [17]

SMAD/TGFBR 47% TGF� [17]

ARID1A/PBRM1/SMARCA4 14% SWI/SNF [17]

BRCA1-2/ATM/PALB2 12% BRCA [17]

RNF43 5% WNT [17]

Figure 1. Detection of CTCs, exosomes and ctDNA by collecting blood samples from PDAC patients. PDAC: Pancreatic ductal 
adenocarcinoma; ctDNA: circulating tumor DNA.

Hedgehog and WNT/Notch[19-21].

The global gene expression profiling molecular approach has allowed identifying different PDAC expression 
subtypes. There are three principal classifications: Colisson with “classical”, “quasi-mesenchymal” and 
“exocrine”-like; Moffit with “normal” and “activated” stroma, “classical” and “basal-like” tumor subtypes; 
and Bailey with “squamous”, “pancreatic progenitor”, “immunogenic” and “ADEX”[17,22,23]. Different PDAC 
transcriptional subtypes show prognostic differences. Analyzing the three classifications, we can conclude 
that Collisson’s quasi-mesenchymal subtype has the worst survival, particularly compared to classical tumor 
subtype. The best prognosis is presented by the combination of classical tumor subtype and Moffitt’s 
normal stroma subtypes, in comparison to the association of basal-like subtype with activated stroma 
subtypes. Moreover, Bailey’s squamous subtype has a worse outcome than the other three subtypes[14]. In 
2015, Waddell et al.[24] identified four different PDAC subtypes based on a number of structural variation 
events contained in tumors: (1) a stable subtype with tumor genomes containing ≤ 50 structural variation 
events located randomly through the genome; (2) a locally rearranged subtype exhibiting intra-
chromosomal rearrangements clustered on one or few chromosomes; (3) a scattered subtype containing 50-
200 structural rearrangements scattered through the genome; and (4) an unstable subtype with > 200 
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Figure 2. Different approaches for detection of DNA aberrations on liquid biopsy[12,93].

Figure 3. TGF-β upregulates PD-L1 expression and inactivates CD8+ cytotoxic lymphocytes, thus resulting in a reduced immune-
response to PDAC. PDAC: Pancreatic ductal adenocarcinoma; TGF-β: transforming growth factor-β.

structural rearrangements scattered through the genome. Most unstable tumors are those with BRCA 
signature associated with mutations of BRCA1/2 and PALBB2. Patients with BRCA mutational signature (a 
putative surrogate measure of deficiencies in DNA repair) had better response to platinum-based therapy. 
Recently, Sinkala et al.[25] used algorithms to identify sets of proteins, mRNAs, miRNAs and DNA 
methylation patterns, in order to identify biomarkers to differentiate pancreatic cancers subtypes. This 
approach can identify mRNA, protein or miRNA biomarkers and data regarding their concentrations can 
be matched with drug responses from either cancer patients or cell lines to predict drug responses of 
PDAC[25].
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To understand intrinsic characteristics of pancreatic cancer, it is necessary to analyze composition of tumor 
microenvironment (TME) that deeply interacts with cancer cells determining growth, invasion and 
metastasis of each neoplasm. Even these interactions are molecularly determined. Histologically, PDAC can 
be described as a “hypertrophic scar with sparse neoplastic cells” because it consists of cancer cells sparse 
among stromal cells which represent up to 85% of tumor mass. Stromal cells include different cell 
components, in particular pancreatic stellate cells (PSCs), regulatory T cells (Tregs), myeloid-derived 
suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). These stromal cells secrete 
extracellular components [e.g., extracellular matrix (ECM), matrix metalloproteinase (MMP), growth 
factors and transforming growth factor-β (TGFβ)]. All together, these components represent TME[19]. TME 
has two major characteristics: dense desmoplasia and extensive immunosuppression. Desmoplasia is an 
extensive fibrosis at the primary site that can establish a hypoxic microenvironment, which induces 
invasion, proliferation, inhibition of apoptosis and metabolic changes[26]. Pancreatic cancer cells are able to 
induce immunosuppression by inhibiting CD8+ T cells from playing an important role in killing tumor cells 
and upregulate the exiting regulatory immune cells[27]. Moreover, TME can induce angiogenesis for tumor 
blood supply, new lymphatic vessels growth that are vehicles for cancer cells spread and the process of 
epithelial-mesenchymal transition (EMT) by which cancer cells lose their cell-cell adhesion capacity with 
subsequent invasion through the basement membrane creating pre-metastatic niche formation, where 
circulating tumor cells can promote PDAC progression or induce tumor dormancy[28].

In conclusion, today, a universally accepted subtyping of pancreatic tumors (based on their mutations, 
expression transcription or protein profiles) has not been followed by success in increased effectiveness of 
available therapies or identifying tumor biomarkers for early diagnosis and therapeutic response monitoring 
in PDAC patients[29].

CIRCULATING TUMOR CELLS AS PREDICTORS OF CHEMORESISTANCE IN 
PANCREATIC CANCER
CTCs are tumor cells which enter the bloodstream by breaching the basement membrane of the pancreatic 
acinus and ducts, stroma and vessel walls. This transition is driven by two principal mechanisms: forces of 
interaction created internally to the tumor mass and the EMT program[30]. On the one side, some epithelial 
tumor cells undergo passive intravasation, escaping from the primary tumor[31]. On the other side, some 
tumor cells undergo EMT, secrete digestive enzymes, lose their polarity and cell-cell/matrix adhesion and 
gain migratory properties[32]. There are two models of CTCs intravasation: single CTCs detachment from 
tumor site or collective CTCs invasion[33]. This means that CTCs may travel as single cells or clusters[34,35]. 
CTCs which access the intravascular space have to overcome selection processes exerted by the 
hemodynamic stress of bloodstream and programmed cell death (termed “anoikis”) occurring when cells 
detach from the surrounding extracellular matrix[36] and immune cell attacks[12,30]. There is evidence that 
malignant cells possess specific characteristics that enable them to survive mechanical stresses. These 
properties allow CTCs to survive during their passage through the circulation[37]. Moreover, CTCs develop 
anoikis resistance by the EMT process, promoting proteins linked to anoikis resistance and cell-remodeling, 
thus modifying energy metabolism, growth factor receptors expression, membrane microdomains, reactive 
oxygen species and lipid rafts[38]. In the bloodstream, CTCs must evade immune system after leaving the 
immune privileged site of the primary tumor. CTCs have developed strategies to escape immune response, 
such as intracellular transcriptional changes leading to the upregulation of PD-L1 inhibiting T cell-mediated 
immunity[39]; production of inhibitor cytokines that negatively modulate NK cell anti-tumor activity[40]; 
EMT-related processes promoting epithelial cell plasticity leading to less immunogenicity[41]; and promotion 
of platelets number and activity that modulate NK activity, reduce CTCs shear stress in the bloodstream and 
increase CTCs extravasation[42]. CTCs traveling in the bloodstream are not a monolithic entity, but a 
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heterogeneous one. The CTCs population’s heterogeneity is induced by acquired genetic and epigenetic 
alterations, EMT events, clustering phenomenon and microenvironment-associated cues[43]. There is 
evidence of epithelial CTCs expressing epithelial markers such as epithelial cell adhesion molecule 
(EpCAM); mesenchymal-like CTCs expressing traditional mesenchymal markers such as vimentin; CTCs 
co-expressing epithelial and mesenchymal markers; and CTCs expressing positive stem cells (CSC) markers 
such as CD4 and CD133 [which are called circulating tumor stem cells (CTSCs)][44]. EMT promotes 
acquisition of mesenchymal and CSC markers[45], inducing so-called EMT-CTCs. CTSCs and mesenchymal-
like CTCs, derived from the EMT event, have higher invasion and migratory potentials. CTSCs demonstrate 
self-renewal and differentiation into multiple cell types, capacities that make them more capable of reaching 
and colonizing distant organs[46]. Further, CTSCs and mesenchymal-like CTCs contribute to promote 
resistance to conventional anticancer treatments by many mechanisms such as increasing drug efflux, 
promoting cell dormancy and increasing genomic DNA repair[33]. A fraction of CTCs, called disseminated 
tumor cells (DTCs), has the capacity of extravasation, entering distant sites (seeding process) and then 
interacting with new a microenvironment and progressing toward metastases[47]. DTCs undergo 
mesenchymal-to-epithelial transition (MET) with subsequent proliferation and dissemination, or, 
alternatively, they might enter in dormancy and generate metastasis a long time after their establishment in 
the distant site[48].

CTCs in pancreatic cancer are rare, around one CTC per 108 hematologic cells per mL of blood or even less 
in early-stage cancer[49]. In pancreatic tumors, CTCs entering the bloodstream are conducted to the liver 
through the portal vein. Thus, thoss in the portal vein might provide a better representation of the CTC 
population[50].

In pancreatic cancer, CTC detection was identified as a possible diagnostic biomarker and their 
enumeration correlates with staging, prognosis and tumor resectability[51]. A meta-analysis analyzing 623 
PDAC patients demonstrated that the patients with positive CTCs had poorer progression free survival 
(PFS) and overall survival (OS) than the group of PDAC patients without CTCs. This might suggest that 
CTCs could be a promising diagnostic and prognostic biomarker in PDAC patients[52]. In another study, 
Ren et al.[53] showed the presence of CTCs in 80.5% of stage III and IV PDAC patients before any therapy. 
Examining the CTCs at different time-points (prior to initiation of 5-fluorouracil-based chemotherapy and 
after seven days of treatment), the presence of CTCs decreased to 29.3%, suggesting a potential role of CTCs 
in early response to anticancer prediction[53]. Another recently published systematic review and meta-
analysis of 19 studies assessing 1320 PDAC patients showed that CTC positive patients had significantly 
shorter OS and PFS than CTC-negative patients[54]. This again suggests that CTCs may have a prognostic 
role in PDAC patients.

Referring to chemoresistance, in prostate and breast cancer, characterization of CTCs have shown capacity 
of early prediction of treatment response[55,56]. In small-cell lung cancer (SCLC), genomic analysis of CTCs 
with relative molecular classifier has allowed assigning patients into chemosensitive or chemorefractory 
group[57]. The possible prediction of therapy response based on CTCs is currently under evaluation in 
different cancer types, such as prostate, breast, colorectal, SCLC and gastric cancer, in both preclinical and 
animal models[58]. To our knowledge, the only study that evaluated CTCs as predictor biomarker of 
treatment response in PDAC was published by Yu et al.[59] The authors analyzed gene expression profile of 
CTCs in 50 patients with metastatic or locally advanced PDAC[59]. They created and validated 
Pharmacogenomic (PGx) modeling of tumor tissue to predict efficacy of chemotherapeutic agents in 
preclinical cancer models. CTCs isolated from patients’ blood were profiled and the PGx model was used to 
predict effective and ineffective chemotherapeutic regimens. The authors concluded that, using previously 
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created PGx models to predict chemotherapy efficacy, the clinical benefit was seen for PDAC patients 
treated with chemotherapy regimens predicted to be effective vs. chemotherapy regimens predicted to be 
ineffective with regard to PFS and OS.

The confirmation that CTCs might function as biomarkers of chemoresponse is essential to identify “non-
responders” and therefore to avoid ineffective treatments[60]. Generally, CTCs represent blood available cells 
originating from primary tumor or metastatic lesions giving phenotypic and molecular tumor 
characterization in real time. Therefore, they might have importance in tumor diagnosis, staging and 
prognosis, as well as prediction of response to cancer treatment.

CTDNA AS CHEMORESISTANCE PREDICTORS IN PANCREATIC CANCER
Both benign and malignant cells undergo physiological processes such as apoptosis or necrosis with 
subsequent release of genetic material into circulation which might be detected peripherally as cell-free 
DNA (cfDNA)[61]. The portion of cfDNA which refers specifically to the tumor-derived portion is called 
circulating tumor DNA (ctDNA)[61]. Many studies have found a correlation between tumor aggressiveness 
and the quantity of the absolute amount of ctDNA[62]. As PDAC exhibits the highest frequency of KRAS 
mutations, KRAS is likely to be the best-characterized tumor-related gene that also occurs at an early stage 
of PDAC[61]. Therefore, several studies have focused on mutKRAS ctDNA detection (in particular, G12V, 
G12D and G12R mutations) and its potential role in PDAC development, extrapolating prognostic and 
predictive data. Kruger et al.[63] found KRAS mutated ctDNA in 75% of pancreatic tumors, slightly higher 
(79%) if only metastatic patients were considered. They also noticed that the quantity of mutKRAS ctDNA 
significantly differed between patients with non-progressive disease and progressive disease at time of first 
re-staging. They observed an early increase in mutKRAS ctDNA during the first two days after chemotherapy 
followed by a decrease in mutKRAS ctDNA, usually after the first or second week of chemotherapy. This 
trend was seen above all in PDAC patients with good response or disease stabilization at the time of 
radiological re-staging. An initial increase of mutKRAS ctDNA is observed in most patients, although an 
increase after two weeks might correlate with disease progression. Therefore, the authors suggested Day 14 
might be a crucial time point to evaluate early kinetics[63]. Hadano et al.[61] evaluated 105 patients who 
underwent surgery for resectable PDAC and identified KRAS mutation in both tumor and plasma samples 
before resection in 33 patients. KRAS status concordance between tumor specimens and matched plasma 
samples was 100%. Moreover, the presence of ctDNA, and in particular mutKRAS ctDNA, in plasma samples 
was significantly associated with poorer outcome in both disease-free survival (DFS) (6.1 months vs. 16.1 
months) and OS (13.6 month vs. 27.6 months) analyses. This study suggests a potential prognostic role of 
ctDNA at early stage PDAC: patients with high ctDNA levels at diagnosis may benefit from neoadjuvant 
chemotherapy before undergoing surgery. The changes in cDNA levels in pre-surgery and post-surgery 
liquid biopsy might provide a proof of therapeutic efficacy and management strategies of PDAC[61]. 
Wei et al.[64] explored application of cfDNA and ctDNA profiling in monitoring tumor burden change 
following FOLFIRINOX treatment in 38 PDAC patients. Their results show a high degree of concordance 
between radiologic therapy response and dynamics of ctDNA allele fraction[64]. Cheng et al.[65] collected 
plasma samples from 13 metastatic PDAC patients. They observed that the presence of mutKRAS ctDNA 
correlated with radiologic tumor responses[65]. Watanabe et al.[66] analyzed the importance of one-point 
determination of mutKRAS ctDNA levels before chemotherapy or surgery treatments, in order to predict 
treatment outcome. They did not prove any association between the presence of mutKRAS ctDNA before 
surgery and relapse-free survival. Nevertheless, the presence of mutKRAS ctDNA before chemotherapy start 
was correlated with worse prognosis (the median OS of PDAC patients with and without detection of mut

KRAS ctDNA was 15.8 and 33.7 months, respectively). Furthermore, the emergence of mutKRAS ctDNA in 
PDAC patients was associated with poor prognosis. The emergence of mutKRAS ctDNA within six months of 
chemotherapy termination correlated with worse PFS. mutKRAS ctDNA in patients disappeared in response 
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to drug treatment[66]. Similar results were presented by Del Re et al.[67], who noticed that PDAC patients 
undergoing chemotherapy treatment and displaying mutKRAS ctDNA increase on the 15th day of therapy 
had disease progression; conversely, the early mutKRAS ctDNA modulation was not associated with tumor 
response. Therefore, mutKRAS ctDNA is a potential biomarker of chemosensitivity/chemoresistance to 
anticancer treatment in PDAC patients. Monitoring the levels or the emergence of tumor molecular 
alterations in mutKRAS ctDNA during anticancer treatment is a potential biomarker to monitor treatment 
resistance or response[67].

EXOSOMES AS PREDICTORS CHEMORESISTANCE IN PANCREATIC CANCER
Exosomes are extracellular vesicles that contain proteins, microRNAs (miRNAs) or messenger RNA 
(mRNA). They act as an important mediator of intercellular communication. They can regulate or even 
modify their surrounding microenvironment. The components of exosomes can therefore serve as cancer 
biomarkers. It is possible to detect exosomes by isolating them from various cell fluids including blood[68], 
serum[69], saliva[70]. In comparison to ctDNA, exosomes have a longer circulating half-life. As tumor cells 
produce exosomes without pause, their detection in peripheral blood is independent of certain events such 
as apoptosis or cell necrosis[71-73]. The components of exosomes were studied as diagnostic, prognostic and 
prognostic biomarkers in PDAC, as well as for novel therapeutic approaches. In one study, expression of 
exosomes containing miRNA-483-3p was higher in PDAC patients compared with patients with non-
malignant IPMN[74]. Goto et al.[75] studied serum miRNAs enclosed in exosomes in PDAC patients and 
patients with IPMN. They concluded that in particular three miRNAs (miR-191, miR-21 and miR-451a) 
showed elevated expression levels in patients with PDAC and IPMN and therefore might be used as 
biomarkers for early PDAC detection[75]. Further, expression of exosomal miR-191/21/451 was significantly 
elevated in patients with PDAC and IPMN compared to healthy controls[75]. In another study, the plasma 
levels of exosomes containing miR-196a and miR-1246 levels were significantly higher in PDAC patients as 
compared to the healthy population[76]. Su et al.[77] identified five miRNAs (miR-16-2-3p, miR-890, miR-
3201, miR-602 and miR-877) that have diagnostic potential of early PDAC diagnosis. Further, Zhu et al.[78] 
showed how different levels of microRNA expression might distinguish patients with PDAC and healthy 
volunteers, appearing to be diagnostic markers. The potential use of miRNA as predictors of response to 
chemotherapy has been widely studied in PDAC. For example, miR-21 increases cell proliferation and the 
expression of factors involved in metastasis formation[79]. The reduction of miR-21 levels has been shown to 
be predictive of response to gemcitabine therapy[80], while the reduction of miR-17-5p expression is 
predictive of response to nab-paclitaxel in PDAC patients[81]. Miyamae et al.[82] showed that upregulation of 
plasma miR-744 contributed to worse PFS of non-resectable PDAC patients who underwent gemcitabine-
based chemotherapy and therefore might be a useful tool to monitor chemoresistance in PDAC. In 
addition, the reduced tissue expression of MiR-10b represents a potential marker of response to 
neoadjuvant chemotherapy in PDAC patients[83]. In another study, it has been shown that reduction of miR-
181a-5p plasma levels correlated with response to therapy with FOLFIRINOX. Moreover, the reduction was 
associated with better PFS and OS[84]. Interestingly, it has been shown that chemotherapy can induce the 
increase of not previously present miRNAs. In the study of Xia et al.[85], chemotherapy with gemcitabine 
caused an increased expression of miR-155, a hypothesized acquired chemoresistance biomarker. In 
addition, several studies showed the diagnostic potential of microRNAs in PDAC. Unfortunately, even if 
numerous studies have been published, microRNAs have not been confirmed as universal biomarkers in 
PDAC patients. The use of different samples and studies involving different populations, as well as the 
attempt to use experimental elements, has been a limitation. The potential solution to this issue could be to 
carry out studies on as homogeneous as possible populations with defined tools, in order to reach a 
conclusive value.



Pietri et al. Cancer Drug Resist 2021;4:559-72 https://dx.doi.org/10.20517/cdr.2021.01                                               Page 567

Recently, the cell surface proteoglycan glypican-1 (GPC1) on tumor exosomes was identified. GPC1+ 
circulating exosomes (crExos) were analyzed in the serum of PDAC patients. The authors demonstrated 
that GPC1+ crExos were able to distinguish between healthy subjects and patients with a benign pancreas 
disease from patients with early- and late-stage PDAC[86]. Moreover, levels of GPC1+ crExos correlated with 
outcome in PDAC patients after radical surgery. The authors concluded that GPC1+ crExos might be 
considered as a diagnostic biomarker to detect early PDAC stages. However, the role of GPC1+ crExos is 
controversial. Frampton et al.[87] adopted ELISA to quantify GPC1 levels in PDAC tissues and crExos; they 
concluded that GPC1+ crExos levels may correlate with tumor burden and response to surgical resection, 
but they are not useful to distinguish between benign and malignant PDAC lesions preoperatively or to rate 
the aggressiveness of the tumor. The authors of the two cited papers used different techniques: Melo et al.[86] 
adopted techniques such as anti-GPC1 antibody labeled beads and subsequently flow cytometry, while 
Frampton et al.[87] used ELISA, which is more reproducible and clinically amenable in a standard hospital 
laboratory. Interestingly, Buscail et al.[88] combined quantification of GPC1+ crExos with CTC detection in 
order to increase their sensitivity and negative predictive value. They observed a negative predictive value of 
100% and an overall diagnostic accuracy of 91%. This result could be useful in early stages of PDAC when 
the tumor is likely releasing fewer circulating biomarkers such as CTCs and exosomes. It could be crucial to 
make more rapid and effective decisions about the treatment in the early setting of such an aggressive 
disease[88].

Some authors have provided evidence on the possible use of exosomes for therapeutic approaches. 
Aspe et al.[89] used exosomes for surviving delivery to pancreatic cancer cell line (MiaPaCa-2) with 
subsequent restoration of gemcitabine sensitivity in pancreatic cancer cell. Bernard et al.[90] investigated 
PDAC patients with potentially resectable tumors. They demonstrated that an exosomal DNA KRAS 
mutant allele fraction (MAF) peak of 1% was associated with PDAC progression, almost two months earlier 
than CT scan progression. Moreover, in borderline resectable PDAC patients who underwent systemic 
therapy with neoadjuvant intent, the exosomes DNA KRAS MAF kinetics before and after the completion 
of therapy correlated with disease progression and therefore an indication for no further surgical 
resection[90]. All these findings make exosomes a sensitive tool for early PDAC diagnosis, as well as possible 
prognostic and predictive biomarkers.

Liquid biopsy offers the possibility to analyze other cancer biomarkers: serum proteases comprising matrix 
metalloproteinase (MMPs) 1, 3 and 9; urokinase plasminogen activator (UpA); cathepsin-B and -E; and 
arginase. These proteases are over- or under-expressed in solid tumors and have a role in malignant 
progression (including tumor angiogenesis, invasion and metastasis) and immune dysregulation in cancer. 
These proteases take part in a proteolysis signal network of proteolysis interaction which in turn interacts 
with other signal networks such as chemokines, cytokines and kinases co-opted to promote tumor 
progression[91]. Arginase, cathepsin-B and -E, MMP-1 and -3 and UpA have been established as suitable 
serum markers of PDAC patients. Therefore, analysis of this panel of enzymes by means of a liquid biopsy is 
promising for early PDAC detection[92,93].

FUTURE DIRECTIONS AND CONCLUSIONS
Nowadays, pancreatic cancer is among the deadliest solid tumors. There is also a lack of personalized 
therapeutic approaches because pancreatic cancer biopsies are often inadequate for molecular 
characterization[62]. In this review, we give an overview of the current literature on CTCs, ctDNA and 
exosomes in pancreatic cancer (see also Table 2). Unfortunately, in a clinical context, no liquid biopsy is 
actually used in pancreatic cancer, in any setting. This is due to the lack of standardization of detection 
methods, as well as insufficient sensitivity and specificity of the possible biomarkers. Liquid biopsy has the 
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Table 2. The prognostic performance of different circulating markers in different studies

Study Type of study Number of 
patients Outcome Findings

Wang et al.[54] Systemic review 
and meta-
analysis

1320 OS and PFS Shorter OS and PFS in CTC positive PDAC pts

Meijer et al.[84] Biological 
prospective 
study

54 OS and PFS miR-18a-5p declined levels are correlated with improved 
OS and PFS

Abue et al.[74] Biological 
prospective 
study

32 Compare miR-483-3p, miR-21 
plasma samples of PDAC, 
IPMN and healthy control

miR-483-3p discrimines PDAC from IPMN; miR-21 
associated with potential metastatic

Miyamae et al.[82] Biological 
prospective 
study

94 Compare miR-615-5p, -744, -
575, -557, -675, and -550a 
plasma samples of PDAC and 
healthy control

miR-744 is related to poor PFS

Preis et al.[83] Biological 
prospective 
study

155 Evaluate the expression of 
miR-10b, miR-21, miR-155, 
miR-196a and miR-210 in 
PDAC samples

miR-10b associated with a improved response to 
neoadjuvant therapy

Bernard et al.[90] Biological 
prospective 
study

425 Clinical utility of ctDNA and 
exoDNA

KRAS mutant allele fraction 
(MAF) marker of progression; the exoDNA KRAS MAF 
related to progression

Kruger et al.[63] Exploratory 
study

83 Response prediction of mut
KRAS ctDNA

mutKRAS ctDNA predictive of early response and therapy 
surveillance

Hadano et al.[61] Exploratory 
study

105 OS Shorter OS in ctDNA+ PDAC patients

Watanabe et al.[66] Exploratory 
study

78 RFS, PFS, OS mutKRAS ctDNA predictive of prognosis and therapeutic 
responses; mutKRAS ctDNA not associated with 
recurrence or prognosis if detected before surgery or 
chemotherapy

Del Re et al.[67] Exploratory 
study

27 OS, DCR mutKRAS ctDNA potential 
biomarker of chemosensitivity/chemoresistance

OS: Overall survival; PFS: progression free survival; CTC: circulating tumor cell; PDAC: pancreatic ductal adenocarcinoma; ctDNA: circulating 
tumor DNA.

potential to be incorporated into different phases of PDAC patients care. It would definitely be helpful as a 
diagnostic tool because the pancreas is hardly accessible to tissue biopsy due to its retroperitoneal position. 
Another valuable area in which liquid biopsy can be utilized is as a guide for resectable tumors in order to 
decide between immediate surgery or neoadjuvant treatment. In particular, detection of ctDNA, typically by 
the presence of mutated KRAS, might be a signal of microscopic metastases that could spare the futile major 
surgery. Another field where liquid biopsy might be helpful is their utility for monitoring response to 
different treatments. In conclusion, the implementation of liquid biopsies in clinical context represents a 
new hope for precision medicine and personalized treatments for PDAC patients.
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