Skip to main content
. 2022 Apr 27;13:844283. doi: 10.3389/fmicb.2022.844283

Table 4.

Summary of receiver operating characteristics (ROC) curve metrics discrimination of non-severe and severe COVID−19 disease condition based on the metabolic profile.

AUC VIP score Severe Non-severe Non-severe
and severe
Performance All Top 5 Top 10 >1.5 ≥1.0 p-value p-value ≤0.01 p-value p-value ≤0.01 p-value ≤0.01
markers <0.01 log2(FC) > |2.0| <0.01 log2(FC) > |2.0| log2(FC) > |2.0|
Metabolites (n) 43 5 10 5 15 10 7 18 2 9
AUC-ROC (100 CV) 0.877 0.860 0.882 0.866 0.865 0.861 0.859 0.883 0.818 0.865
CI 95% (100 CV) 0.827–0.946 0.805–0.908 0.824–0.932 0.801–0.929 0.803–0.921 0.801–0.926 0.794–0.918 0.824–0.939 0.738–0.897 0.791–0.927
AUC-ROC (25% holdout sample) 0.894 0.889 0.899 0.875 0.853 0.875 0.850 0.919 0.792 0.870
Sensitivity (%) 86.11 80.56 83.33 83.33 88.89 83.33 80.56 91.67 94.44 88.89
Specificity (%) 76.92 73.08 80.77 76.92 76.92 80.77 76.92 73.08 57.69 69.23
Accuracy (%) 81.52 76.82 82.05 80.13 82.91 82.05 78.74 82.37 76.07 79.06
Precision (%) 83.78 80.56 85.71 83.33 84.21 85.71 82.86 82.50 75.56 80.00

FC, fold change; AUC, area under curve; SEN, sensitivity; SPE, specificity; PRE, precision; ACC, accuracy; CI, confidence interval; Best score in each ROC metric (sensitivity, specificity, precision and accuracy).

The metrics were obtained using different sets of metabolite biomarkers.