Skip to main content
. 2022 Apr 29;20(4):e3001627. doi: 10.1371/journal.pbio.3001627

Fig 3. Participant diversity is a major determinant for the classification accuracy of predictive models.

Fig 3

Results are based on the classification of ASD versus TD using functional connectivity profiles. For each dataset, results show prediction accuracy for each possible combination of 5 out of 10 strata for training and the remaining 5 strata as holdout. Prediction accuracy based on AUC (top) and F1 score (bottom) in 2 different cohorts: ABIDE (left) and HBN (right). For each cohort, the first column indicates the predictive model performance using a 10-fold CV strategy based solely on the training set, where diversity is computed as the average of all pairwise absolute differences in propensity scores (i.e., WD). The second column displays the performance for each single stratum in the holdout strata. Diversity denotes the mean absolute difference in propensity scores between the participants of the training set and those in the held-out strata with unseen participants (i.e., OOD). The strength of the association between performance and diversity is reported with Pearson correlation coefficient (r). Our empirical results show a strong relationship between predictive performance and diversity, although different correlation directions were found in ABIDE and HBN cohorts. Data underlying this figure can be found in S1 Data. ABIDE, Autism Brain Imaging Data Exchange; ASD, autism spectrum disorder; AUC, area under the curve; CV, cross-validation; HBN, Healthy Brain Network; OOD, out of distribution; TD, typically developing; WD, within distribution.