Skip to main content
. 2022 Apr 29;20(4):e3001627. doi: 10.1371/journal.pbio.3001627

Fig 6. Varying participant diversity is detrimental for consistency of model-derived predictive patterns.

Fig 6

Results are based on all possible combinations of 5 out of 10 strata for training and the remaining 5 strata as holdout. (A) Drifts in model coefficients when estimated repeatedly (rows) with increasing diversity, separately in ABIDE (top) and HBN (bottom) cohorts. Model coefficients were ranked according to diversity and grouped into 5 chunks. Coefficients averaged within each chunk are displayed with increasing diversity. Positive and negative coefficients are shown in separate brain renderings for visibility. For each node, positive/negative coefficients were computed by averaging the edges with only positive/negative coefficients. (B) From top to bottom, changes in predictive model coefficients with increasing diversity in ABIDE and HBN cohorts. Consistency of model coefficients, in terms of Pearson correlation, is obtained for each possible combination of training participants (5 strata combined for training), where diversity is computed as the mean absolute difference in the propensity scores of the training participants (i.e., WD). Each entry in the correlation matrices corresponds to the correlation between the coefficients obtained by 2 predictive models trained on different combinations of training strata. Model coefficients were sorted according to the diversity of their corresponding training observations (arranged from low to high). Each matrix shows correlations based on the model coefficients learned when using the raw data (lower triangular part) and the ComBat-deconfounded data (upper part). Our results show that the consistency of model-derived predictive patterns decays with increasing diversity of the training set, even under deconfounding. Data underlying this figure can be found in S1 Data. ABIDE, Autism Brain Imaging Data Exchange; HBN, Healthy Brain Network; WD, within distribution.