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N E T W O R K  S C I E N C E

Flow stability for dynamic community detection
Alexandre Bovet1,2*, Jean-Charles Delvenne2,3, Renaud Lambiotte1

Many systems exhibit complex temporal dynamics due to the presence of different processes taking place simul-
taneously. An important task in these systems is to extract a simplified view of their time-dependent network of 
interactions. Community detection in temporal networks usually relies on aggregation over time windows or con-
sider sequences of different stationary epochs. For dynamics-based methods, attempts to generalize static-network 
methodologies also face the fundamental difficulty that a stationary state of the dynamics does not always exist. 
Here, we derive a method based on a dynamical process evolving on the temporal network. Our method allows 
dynamics that do not reach a steady state and uncovers two sets of communities for a given time interval that 
accounts for the ordering of edges in forward and backward time. We show that our method provides a natural 
way to disentangle the different dynamical scales present in a system with synthetic and real-world examples.

INTRODUCTION
Interactions in complex systems typically result from a multitude 
of temporal processes such as adaptation, cascading behavior, or cy-
clical patterns that all take place simultaneously but often at different 
spatial and temporal scales (1). The concept of temporal networks 
(2, 3, 4, 5) is used to study these time-dependent networks. The fun-
damental constituent of temporal networks are events, instead of 
edges in the case of static networks, that represent interactions be-
tween two nodes of a graph, delimited in time, and usually take the 
form of a quadruplet (u, v, si, ei), where u is the source node, v is the 
target node, si is the starting time of event i, and ei is its ending time. 
Nodes of a network may represent, for example, individuals, com-
panies, neurons, genes, or words, while events represent their rela-
tions that may refer to social interactions, economic transactions, 
activity correlation, regulation, or co-occurrence, depending on the 
context. Several representations of temporal networks exist, each 
associated to different algorithms and methods, for example, as a 
sequence of static graphs representing time windows over which the 
activity is aggregated (6), as contact sequences when events are in-
stantaneous in continuous time, or as interval graphs (7) or link 
streams (8,9) in continuous time with events that may have a duration. 
The study of the dynamics and structure of time-dependent networks 
has attracted many contributions from several fields such as sociology 
(10, 11, 12), computer science (8, 13, 14, 15, 16, 17), epidemiology 
(18, 19), mathematics, and network science (6, 20, 21, 22, 23, 24, 25) 
(references are not exhaustive).

Community detection in networks is the task of extracting a sim-
plified view of a network’s structure and is fundamental to under-
standing the functioning of the systems that they represent (26). 
Loosely speaking, a community is a relatively dense subgraph, and it 
may be called a module or a cluster depending on the field of appli-
cation. Within a temporal setting, Rossetti and Cazabet (27) classify 
dynamic community detection methods on the basis of how the dy-
namic communities that they find depend on time in three categories 
ranked in increasing degree of their temporal smoothness: (i) instant 
optimal, when the community structure at time t depends only on 
the topology of the network at that time [e.g., (23, 13)]; (ii) temporal 

trade-off, when the community structure at time t depends on 
the topology of the network at t and on the past topology or past 
community structure [e.g., (14, 15)]; and (iii) cross-time, when 
the community structure at time t depends on the entire network 
evolution [e.g., (24, 25, 17)].

Critically, most methods aggregate the temporal dimension over 
a sequence of time windows, transforming the network in a sequence 
of static networks defined on a discrete time grid, hence losing the 
precise ordering of the edge activations within each slice. This is nec-
essary as these approaches rely on a static concept of communities, 
i.e., defined as a group of nodes that are more densely connected 
with each other than with the rest of the network, and to be mean-
ingful in a temporal context, the notion of density of connections 
necessarily implies connections considered over some time interval. 
They then either apply standard community detection algorithms 
for static networks to each aggregated time slice and follow the evo-
lution of the communities across time slices with special algorithms 
(15, 28, 29) or consider each slice as a layer of a multilayer network 
and apply a community detection method to the entire multilayer 
network [e.g., (6, 30)], hence defining communities over extended 
periods of time. Methods based on an underlying dynamical pro-
cess (31, 32), taking place on each slice (33, 34) or on the entire 
multilayer network (6, 30), consider a process decoupled from the 
intrinsic time of the system under study to guarantee its station-
arity. Statistical approaches have also been developed; for example, 
Peixoto and Rosvall (20) have generalized the framework of sto-
chastic block model inference to a dynamical framework by includ-
ing a Markov chain in the inferred model. Their generative model 
approach takes into account continuous-time Markov chain and 
can capture the ordering of events; however, it requires that the 
Markov chains describing the system must be stationary on differ-
ent epochs.

Here, we propose a novel method that considers random walks 
(RWs) evolving on the network and restricted by the activation times 
of the edges. We consider the similarity of diffusion patterns over 
a given time interval as a way to cluster nodes together without re-
curring to temporal aggregation and while only considering time-
respecting paths. This approach generalizes the notion of cluster 
density used in static methods, such as Markov stability (32), to the 
temporal case. We derive quality functions that allow one to find 
partitions that best cluster the flow of random walkers and that do 
not need to be evaluated using the stationary state of the diffusion 
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process. This is necessary as the existence of such a state is not 
guaranteed when considering a process evolving with the temporal 
network.

We show that the temporal evolution of networks leads to po-
tentially asymmetrical relations between vertices that can be cap-
tured by using two network partitions for a given time interval: the 
forward partition and the backward partition that cluster nodes 
from the point of view of the beginning and end of the time interval, 
respectively. We leverage the novel possibility of our method to be 
used with nonstationary realizations of a diffusion process to find 
dynamic communities relating the temporal influence between a 
small group of nodes and the entire network. We also show that our 
method allows one to reveal different dynamical scales present in 
temporal networks by using an RW process evolving with the network 
and varying its rate of diffusion. When compared to methods that 
necessitate aggregating the network evolution in several static time 
windows, we find that our method can capture dynamical scales exist-
ing at rates that are lost in the aggregation procedure. Our framework 
generalizes the concept of Markov stability (32, 35) and dynamical 
embeddings (36) to the case of temporal networks without having to 
be evaluated at stationarity.

RESULTS
Temporal flow stability
We consider the general case of a temporal network with a set of N 
vertices V, a set of M events E, and two sets of M not necessarily dis-
tinct starting and ending times, Ts and Te. Here, the term event is 
used to represent the generalization of edges to the temporal case 
(4). Event i can be written as a tuple ​​e​ i​​  =  (u, v, ​t​i​ 

s​, ​t​i​ 
e​)​ where u and v 

are the source and target vertices, respectively, ​​t​i​ 
s​​ is the time at which 

the edge becomes active, and ​​t​i​ 
e​​ is time at which the event ends, with 

​​t​i​ 
e​  ≥ ​ t​i​ 

s​​. This definition is equivalent to the ones of interval graphs 
(7) or link streams (9) and can also be used to describe more restric-
tive definitions of temporal networks with instantaneous events or 
as sequences of static graphs. A more general model of temporal 
networks, the stream graph model (9), also takes into account nodes 
with specific activation times. Our framework does not distinguish 
nodes that are absent from nodes that are present but inactive. We 
want to find a partition of the network in c nonoverlapping com-
munities that describes well its structure. The N × c indicator ma-
trix, H, records which vertex belongs to which community; e.g., each 
row of H is all zeros except for a one indicating the cluster to which 
the vertex belongs.

We consider an RW process starting on all nodes of the network 
at time t1 with a density probability described by the 1 × N row vec-
tor p(t1) and ending at t2 (t1 < t2) with a density p(t2). The RW evo-
lution is restricted by the activation of the network’s edges, and the 
transition probability matrix of the RW, T(t1, t2), is such that p(t2) = 
p(t1)T(t1, t2) (see Materials and Methods). RWs are at the core of a 
variety of methods for community detection on static networks. 
However, their direct application to a temporal setting does not 
necessarily provide a satisfying answer. As an illustration, consider 
the framework of Markov stability, which clusters a network in groups 
of nodes where the random walkers are likely to remain for a given 
time. This can be achieved by clustering the covariance matrix of 
the process that encodes probabilities for walkers to start on a given 
node and end on another after a certain time minus the same prob-
ability for independent walkers (32). For a general, not necessarily 

stationary RW on a temporal network, the N × N covariance matrix 
between t1 and t2 is given by (see Methods and Materials)

	​ S(​t​ 1​​, ​t​ 2​​) = P(​t​ 1​​) T(​t​ 1​​, ​t​ 2​​) − p ​(​t​ 1​​)​​ T​ p(​t​ 2​​)​	 (1)

where P(t1) = diag (p(t1)). In the case of static networks, and taking 
p(t1) = p(t2) =  to be the stationary distribution of the RW process 
(which is defined if the graph is strongly connected), this expression 
reduces to the framework of Markov stability (32, 35).

In a temporal setting, a stationary state does not necessarily exist, 
and it is, in general, ill defined in the case of a network with a finite 
time window. For this reason, the initial distribution is not uniquely 
defined, and we argue that it can be chosen by the user depending 
on its purposes. This framework provides the ground to detect rele-
vant multiscale structures in temporal networks and opens the door 
for a more general understanding of clustering in networks with non-
stationary processes. However, constructing a quality function using 
Eq. 1 directly does not satisfyingly solve the temporal community 
detection problem, and this quality function needs some slight, yet 
conceptually important, modification.

To show so, we focus on the case of temporal networks with un-
directed events. Whether the events of the temporal networks have 
a direction or not, the transition matrix of the RW between two times 
is, in general, asymmetric. The time ordering of events can result in 
different probabilities for going from a particular node i at t1 to a 
node j at t2 than going from j at t1 to i at t2 (37), even if each event 
allows walkers to travel in both directions. As a consequence the 
covariance matrix S(t1, t2) is also asymmetric in general. For tempo-
ral network, the concept of community needs to take into account 
the temporal evolution of the network and the temporal asymmetry 
potentially arising from it. The element (i, j) of the covariance S(t1, t2) 
(Eq. 1) gives the probability that a walker is on node i at t1 and on 
node j at t2 minus the same probability for two independent walkers. 
Directly clustering S(t1, t2) in diagonal blocks would force a sym-
metric relation between nodes based on the RW state at two differ-
ent times, as rows of S(t1, t2) refer to the state in t1 and columns of 
S(t1, t2) to the state in t2. By construction, S(t1, t2) considers the posi-
tions of the RW at different times and thus builds communities across 
time that are not synchronous, i.e., that aggregate nodes by compar-
ing their states at different times.

To make the similarity between the nodes synchronous and, con-
currently, to capture the network evolution from t1 to t2, we propose 
to consider two partitions, effectively clustering the rows and col-
umns of covariances separately and grouping together nodes based 
on their simultaneous state time and on the forward or backward 
evolution of the RW process (see Supplementary Text, “Relations 
with coclustering” section). This idea builds on the concept of dy-
namical embeddings of network (36) but generalized to temporal 
networks. We consider that two nodes are in the same forward com-
munity if the random walkers starting on them at t1 tend to stay on 
the same nodes during the evolution of the network until t2. To cap-
ture the temporal asymmetry, we also consider backward com-
munities. A first possibility is to define backward communities by 
considering the random process that started at t1 and saying that 
two nodes are in the same backward community if the random walk-
ers that end on them at t2 tended to stay on the same nodes from 
t1 to t2. A second possibility is to consider the reverse evolution of 
the network, where random walkers start at t2 and diffuse until t1. 
In this case, the backward communities are defined as the forward 
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communities but by reversing the direction of time. Figure 1 illustrates 
the concept of the flow stability method on a simple example and com-
pares it with other temporal community detection methods.

To find nodes from which random walkers tend to end up on the 
same node, we consider the process following the evolution of the 
network from t1 to t > t1 and followed by the inverse process going 
from t to t1. The transition probability matrix corresponding to the in-
verse process, defined as the matrix Tinv(t, t1) satisfying p(t)Tinv(t, t1) = 
p(t1), is given by Bayes’ theorem as Tinv(t, t1) = P(t)−1T(t1, t)TP(t1) 
(38), where p(t) = p(t1)T(t1, t). The Tinv(t, t1) matrix encodes the 
transitions probabilities to go from a state p(t) of a specific process 
back to the initial condition of this same process p(t1), e.g., going 
backward in time in Fig. 1 (D or F). The corresponding covariance is

	​​
​S​ forw​​(​t​ 1​​, t ) = P(​t​ 1​​ ) T(​t​ 1​​, t ) ​T​​ inv​(t, ​t​ 1​​ ) − p ​(​t​ 1​​)​​ T​ p(​t​ 1​​ ) =

​    
P(​t​ 1​​ ) T(​t​ 1​​, t ) P ​(t)​​ −1​ T ​(​t​ 1​​, t)​​ T​ P(​t​ 1​​ ) − p ​(​t​ 1​​)​​ T​ p(​t​ 1​​)

 ​​	  (2)

which is symmetric by construction and has element (i, j) giving 
the probability that two random walkers starting in i and j at t1 finish 
on the same node at t minus the probability that two independent 

walkers start in i and j at t1. The matrix Sforw(t1, t) contains the pro
duct of T(t1, t) and T(t1, t)T and can be seen as a matrix measuring 
the similarity of the rows of T(t1, t). Our method can be seen as a 
way to perform a coclustering of the transition matrix (see Supple-
mentary Text, “Relations with coclustering” section). Moreover, this 
matrix is properly normalized; i.e., each row and column sum to 
zero, which is necessary for optimization method such as the Louvain 
algorithm (39).

Similarly, we can define a backward process by reversing time, 
which results in the following covariance matrix

	​​
​S​ back​​(​t​ 2​​, t ) = P(​t​ 2​​ ) ​T​ rev​​(​t​ 2​​, t ) ​T​rev​ inv​(t, ​t​ 2​​ ) − p ​(​t​ 2​​)​​ T​ p(​t​ 2​​ ) =

​    
P(​t​ 2​​ ) ​T​ rev​​(​t​ 2​​, t ) P ​(t)​​ −1​ ​T​ rev​​ ​(​t​ 2​​, t)​​ T​ P(​t​ 2​​ ) − p ​(​t​ 2​​)​​ T​ p(​t​ 2​​)

 ​​	 (3)

whose element (i, j) gives the probability that two random walkers 
starting in i and j at t2 and following the reversed evolution of the 
network finish on the same node at t1 minus the probability that 
two independent walkers start in i and j at t2. Here, Trev(t2, t) is com-
puted as T(t1, t) but by considering the reversed evolution of the 
network since t < t2 (see Materials and Methods). Figure 1E shows 

Fig. 1. Schematic representation of the flow stability compared to other temporal community detection methods. (A) Example of a temporal network with four 
nodes (a, b, c, and d) and events joining pairs of nodes for different durations in continuous time. (B) A representation of the temporal network as four static networks 
each representing the aggregated edge activity over the corresponding time window. The communities found by modularity optimization are overlayed. (C) Multilayer 
representation of the sequence of static networks with interlayer links added in-between layers. The communities found by optimizing the multilayer modularity (6) (in 
orange and purple) extend over several layers. (D to F) Schematic representation of a diffusion process starting on nodes a (purple) and b (green) in forward time (D) and 
backward time (E). The probability density of the process at time t, computed with the transition probability matrix T(t1, t) for the forward time and Trev(t2, t) for the back-
ward time, is represented by the transparency of the colors. Using a faster diffusion rate (F), the process explores larger areas faster, and earlier events become more im-
portant. The flow stability method groups nodes together on the basis of the similarity of the diffusion processes starting on them and takes into account the ordering of 
the events and the dynamics of the network. (G) Two representations of the forward and backward partitions found with the flow stability method: an alluvial diagram 
(left) showing how nodes move between communities and a graph (right) showing the communities as meta nodes and the transition probabilities of the RW process 
between them as directed edges. Even by varying the aggregation window length, the initial and final static partitions cannot fully reproduce the results of the flow sta-
bility (see table S1). (H) Using a faster diffusion rate, nodes a and b are clustered together in the forward partition.
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an example of this backward diffusion process. Similarly to the for-
ward case, ​​T​rev​ inv​(t, ​t​ 2​​)​ is given by Bayes’ theorem and encodes the 
transition probabilities to go from a state p(t) of a specific backward 
process back to the initial condition, p(t2), of this process. This can 
be seen as going forward in time in Fig. 1E.

In this study, we consider Sforw(t1, t) and Sback(t2, t) for t1 < t < t2 
with two corresponding initial conditions p(t1) and p(t2) taken as 
uniform distributions over all nodes, i.e., the maximum entropy dis-
tribution, for the general study of the dynamics of a temporal net-
work between t1 and t2. This allows one to consider the forward and 
backward partitions independently as they both depend on their own 
process. We also investigate an example of clustering of a specific 
random process defined by a nonuniform initial probability distri-
bution (see the “Uncovering the physical influences of network sci-
entists” section). We discuss in Supplementary Text (“Covariances 
of inverse processes” section) an alternative definition of the back-
ward covariance based on the same process than for the forward 
covariance.

We define the forward and backward flow stability functions as

	​​ ​I​forw​ flow ​(​t​ 1​​, ​t​ 2​​; ​H​ f​​) = ​  1 ─ ​t​ 2​​ − ​t​ 1​​ ​ trace​[​​ ​H​f​ 
T​ ​∫​t​ 1​​​ 

​t​ 2​​
 ​​ ​S​ forw​​(​t​ 1​​, t ) dt ​H​ f​​​]​​​​	 (4)

and

	​​ ​I​back​ flow ​(​t​ 1​​, ​t​ 2​​; ​H​ b​​) = ​  1 ─ ​t​ 2​​ − ​t​ 1​​ ​ trace​[​​ ​H​b​ T​ ​∫​t​ 2​​​ 
​t​ 1​​

 ​​ ​S​ back​​(​t​ 2​​, t ) dt ​H​ b​​​]​​​​	 (5)

The two partitions that maximize the forward and the backward 
flow stability functions, described by Hf and Hb, respectively, de-
scribe the temporal evolution of the network structure between t1 
and t2. By taking the integral of the covariance over t, we find the 
most persistent communities during the entire time interval and give 
more weight to early times for the forward stability, or late times in 
the case of the backward stability, assuring that the time ordering of 
events is captured by both partitions. The integration correctly cap-
tures the time ordering even when a different ordering of the events 
results in the same final transition matrix, i.e., when interevent tran-
sition matrices commute.

The weight of early times compared to later time in the forward 
partition, or late times compared to early times in the backward 
partition, can be controlled by varying the rate of the RW process. 
We illustrate this effect with an analytic example in Supplementary 
Text (“Importance of early and late times on the optimal partitions” 
section) and fig. S1. However, our method gives a simplified de-
scription of the entire evolution of a network during a time interval 
with only two partitions and from the point of view of the starting 
and ending times of the interval. Details about the structure and 
dynamics in the middle of the interval may therefore be lost in the 
coarse graining procedure. When details about the dynamics hap-
pening in the middle of the interval are wanted, the time interval can 
be divided in a series of time windows for each of which two parti-
tions are computed. In this case, compared to other methods that rep-
resent a temporal network as a sequence of static aggregated time 
windows (see Fig. 1, B and C), our approach has the advantage of 
preserving information about the dynamics inside each time win-
dow. We give an example of such an approach in the “Free-ranging 
house mice contact network” section. We also give results of the 
flow stability clustering applied on typical dynamic community events 
in fig. S2.

Example of temporal network with asymmetric 
temporal paths
As a simple model of temporal network where the time ordering of 
events leads to relations between nodes that could not be captured 
by a temporal aggregation in a static network, we consider the fol-
lowing network made of three groups of nine vertices each. Vertices 
are activated at random times drawn from an exponential distribu-
tion with parameter activ (Poisson process). When a vertex is acti-
vated, it chooses another vertex according to a certain rule, and the 
duration of the interaction is drawn from another exponential dis-
tribution with parameter inter. The system follows two types of suc-
cessive interactions: (I1) during t1, the vertices of two of the groups 
interact with one another with probability p1 > 1/2 and with any 
other vertices in the network with probability 1 − p1, while the ver-
tices of the third group only interact with each other; and (I2) during 
t2, each vertex interacts with other vertices of its group with a prob-
ability p2 > 1/2 and with any vertices in the network with probabil-
ity 1 − p2. We generate a realization of the temporal network by 
running a simulation composed of three phases of interactions I1 
separated by I2 phases as shown in Fig. 2A). During the first I1 
phase, groups 1 and 2 interact; during the second I1 phase, groups 2 
and 3 interact; and last, during the third I1 phase, groups 1 and 3 
interact. If it were not for the small probability to reach any node in 
the network (if p1 = p2 = 1), the temporal paths in this network would 
not all be transitive; i.e., the existence of time-respecting paths from 
a node i to a node j and from node j to a node k would not guarantee the 
existence of a time-respecting path from node i to k. With p1 < 1 and 
p2 < 1, the situation is less marked, but the ordering of interactions 
creates temporal paths with asymmetric probabilities: For example, 
there are many paths that start in group 1, are in group 2 at the end 
of the first I1 phase, and are in group 3 at the end of the second I1 
phase. However, there are almost no paths starting from group 3 
going to group 2 and group 1 during the same time lapse. Defining 
communities in this temporal network is not straightforward. If we 
were to discard the temporal dimension, we would find that nodes 
are more densely connected with other nodes of the same group; 
however, the temporal pattern of interactions between groups would 
be lost. A good temporal partition in communities should offer a 
simplified description of the network structure and its evolution. In this 
case, the three groups and the ordering of their interactions should 
be identified. We show that we are able to achieve this by defining 
communities in terms of the flow of random walkers restricted by the 
edges activations. We run a simulation with the following parameters: 
activ = 1, inter = 1, p1 = 0.95, p2 = 0.95, t1 = 120, and t2 = 40.

Figure 2B shows the transition matrix, T(t1, t2) computed from 
the resulting realization of the temporal network, between the start 
and the end of the three phases, using a continuous-time RW (CTRW) 
model (see Materials and Methods), and Fig. 2C shows the modu-
larity matrix obtained when aggregating the temporal dimension. 
As expected, when aggregating the temporal activity, the temporal 
pattern of interaction is lost, and only the three groups are visible. 
Figure 2D shows the covariance matrix S(t1, t2) (Eq. 12). The tem-
poral asymmetry of the system evolution is captured by the asym-
metry of S(t1, t2). The two symmetric matrices corresponding to the 
forward and backward integrals of the symmetrized covariances 
(Eqs. 2 and 3, respectively) are shown in Fig. 2 (E and F). They cap-
ture the similarities between the rows and columns of S(t1, t2), in-
tegrated over the entire system evolution. The partitions that best 
describe them are found by optimizing the forward and backward 
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flow stability functions (Eqs. 4 and 5, respectively) and are repre-
sented in Fig. 2G in an alluvial diagram (40). The forward and back 
partitions, and the relation between them, capture the three groups 
and the fact that groups 1 and 2 interact together at the beginning, 
groups 1 and 3 interact together at the end, while groups 2 and 3 
“exchange” their position with group 1 during the evolution of the 
network. Figure 2H shows the best partition found with our method 
by varying the starting and ending times of the considered interval. 
When tstart < tend (below the diagonal), the best partition is the for-
ward partition (Eq. 4), and when tstart > tend (above the diagonal), the 
best partition is the backward partition (Eq. 5). The alluvial diagram 
in Fig. 2G captures the global structure and dynamic of the system 
during its entire evolution, while Fig. 2H reveals the detailed timing 
of the interactions between groups.

Temporal multiscale community detection
An important point concerning community detection methods based 
on the optimization of a quality function, such as modularity opti-
mization, is that the quality function implicitly restrict the size of the 
communities maximizing it (41). Quality functions including an 
explicit resolution parameter permit to overcome this problem. For 
example, the time parameter of the Markov stability framework 
serves as a resolution parameter that generalizes the modularity 
(32, 35) and allows to find communities at all scales in the network 
(42). In the case of temporal network, the concept of scale must take 
into account both the speed at which the network changes and the 
different sizes of its structures.

Here, the rate at which random walkers jump from nodes to nodes 
serves as a natural resolution parameter that controls how far walkers 
move during a certain time window. We use a CTRW on networks, 

which can also be described as a continuous-time Markov chain 
(43, 3), and we assume that, when an edge is active, walkers have a 
constant probability of jumping per unit of time given by the rate , 
or equivalently an average waiting time w = 1/, even if the topology 
of the network is changing with time. The transition matrix there-
fore depends on the evolution of the network and on the RW waiting 
time; i.e., we have T(t1, t2) = T(t1, t2; w). In the case of a temporal 
network where all edges are constant in time, i.e., a homogeneous 
Markov Chain, we have

	​ T(​t​ 1​​, ​t​ 2​​; ​​ w​​) = ​e​​ −​​t​ 2​​−​t​ 1​​ _ ​​ w​​ ​ L​  =  I + ​ ∑ 
n=1

​ 
∞

 ​​ ​ ​(− ​​​ ⋆​ L)​​ 
n
​ ─ n !  ​​	 (6)

where L = I − D−1A is the RW Laplacian of the network (3) and ​​
​​ ⋆​  = ​ ​t​ 2​​ − ​t​ 1​​ _ ​​ w​​ ​​  is a normalized RW rate. When computing the adjacency 
matrix A, we add self-loops on isolated nodes to keep the transition 
matrix stochastic. In the case where the network topology is chang-
ing in time, the transition matrix is computed as the time-respecting 
product of interevent transition matrices (see the details in Materials 
and Methods). We observe that varying w in Eq. 6 allows to “zoom” 
in or out on the network. For ⋆ = 0 (or w → ∞), i.e., for extremely 
slow walkers, T(t1, t2; w) = I and walkers simply stay on their current 
nodes. When ⋆ = 1 (w = t2 − t1), on average, walkers will have had 
the time to only jump to their direct neighbors. For ⋆ ≫ 1 (w ≪ 
t2 − t1), i.e., for very fast walkers, the walker will have explored their 
entire reachable surroundings and, unless the RW is periodic, 
reached stationarity.

Figure 3 shows an example of the multiscale detection capabil-
ities of our method and a comparison of the results obtained 
using the matrix exponential formulation to compute the transition 

A B C D

E F G H

Fig. 2. Flow clustering of a synthetic network with asymmetric temporal paths. (A) Representation of the different phases of interactions between the three groups 
of nodes. (B) RW transition matrix computed between the start, t1, and the end of the three phases, t2. (C) Modularity matrix computed on the aggregated network 
(​B  =  A − ​​k​​ T​ k _ 2m ​​, where A is the aggregated adjacency matrix, k=A1, and 2m = ∑iki). (D) Covariance matrix, S(t1, t2), of the RW process defined in Eq. 12. (E) Integral of the 
forward process covariance matrix (Eq. 2). (F) Integral of the backward process covariance matrix (Eq. 3). (G) Representation of the forward and backward process in an 
alluvial diagram. (H) Best partitions found when varying the starting and ending times of the considered interval.
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matrices (Eq. 6) with the linearized version (see Materials and Meth-
ods, Eq. 14). For this example, we modeled temporal networks with 
81 nodes using the same principle than for previous example with 
parameters activ = 1/10 and inter = 1/10. At each activation time, a 
node selects another node to interact with given different proba-
bilities. The interaction probabilities, shown in Fig. 3A, define a 
hierarchical structure with a first level of 27 groups of 3 nodes, a 
second level with 9 groups of 9 nodes, and a third level with 
3 groups of 27 nodes. We choose the interaction probabilities such 
that p1/p2 = 10, p1/p3 = 100, and p4 = 0, where p1 is the probability of a 
node to interact with nodes of the same first-level group, p2 is the 
probability to interact with a node of the same second-level group, p3 
is the probability to interact with nodes of the same third-level group, 
and p4 is the probability to interact with any other nodes. Figure 3B 
displays the number of communities found by our method, with 
the computation using the matrix exponential and the linear ap-
proximation, for different values of the average RW waiting time (w) 
as a function of the time interval considered. We run 10 simulations 
and display the number of communities of the most common 
optimal partition found among the 10 simulations. To find the 
optimal partition, we run the Louvain algorithm (39) 50 times for 
each simulation and keep the partition maximizing the forward 
integral flow stability (Eq. 4). In this case, the network evolution is 
stationary, and therefore, using the backward integral flow stability 
gives similar results. The normalized variation of information (NVI) 
computed from the ensemble of partitions found by the Louvain 
algorithm is shown in Fig. 3C. Minima in NVI indicate the intrinsic 
scales of the system (35) and therefore allows to choose the rele-
vant resolution parameters, i.e., the RW characteristic waiting 
times. We observe that depending on the time interval considered, 
we are able to recover the three scales of the system using different 
combinations of the waiting time parameter and that they corre-
spond to minima in NVI. Figure 3D shows when the optimal parti-
tion found by our method corresponds exactly to one of three 
levels partition, measured by the normalized mutual information. 
For a given time interval, a slower RW discovers the finer level 

(27 communities), while faster RWs discover the coarser levels (9 and 
3 communities). As time progresses, RWs go from the first level to 
the second level (e.g., w = 1000 in Fig. 3) or from the second to the 
third level (e.g., w = 75 in Fig. 3), discovering coarser and coarser 
scales. Figure 3B also shows that the linear approximation (circles) 
agrees very well with the computation using the matrix exponential 
(dashed lines) and allows to detect the different scales similarly in 
both regimes of the approximation (Eq. 14). Here, the average 
duration between changes in the network is ≃0.1 time units, so on 
average, ⋆ < 1 for w > 0.1 and ⋆ > 1 for w < 0.1.

As the RW process is evolving with the temporal network, varying 
the rate of the RW can capture not only different coexisting struc-
tural scales but also gradual dynamic changes in structure. To demon-
strate this, we run 10 simulations of our synthetic temporal network 
model with eight nodes and interaction probabilities that change 
linearly from the structure in two communities (1, 2, 3, 4) and 
(5, 6, 7, 8) at t = 0 to a structure with the two communities (1, 2, 
7, 8) and (3, 4, 5, 6) at t = 100. Inside each community, the 
interaction probabilities are uniform. The activation rate of the 
nodes also change linearly between t = 0 and t = 100 from activ = 1 
to activ = 2 for nodes 1, 2, 3, and 4 and from activ = 2 to activ = 1 for 
nodes 5, 6, 7, and 8. The event duration distribution is kept constant 
at inter = 1. We apply the flow stability method over the entire time 
interval t = 0 to t = 100 and compare it with results obtained with 
the multilayer modularity (6) [optimized using the Leiden algorithm 
(44, 45)] applied to multilayer representations of the 10 networks 
with five layers containing the aggregated activity of the edges over 
five time windows. The interlayer coupling parameter is first fixed 
at ​​ 1 _ 10​​ of the global average edge weight. Figure 4 (A and C) shows 
the average and SD, taken across the 10 simulations, of the number 
of communities found by both methods as a function of the resolu-
tion parameter (i.e., the characteristic waiting time for the flow sta-
bility). For both methods, 50 runs of the optimization algorithm are 
performed, and the partition with the largest value of the objective 
function is kept. Figure 4 (B and D) shows the NVI of the 50 partitions 
as a function of the resolution. The NVI measures the variation in 

Fig. 3. Multiscale temporal network clustering with the flow stability. (A) Interaction probabilities of the synthetic temporal block model showing a hierarchical 
structure with three levels. (B) Number of clusters as a function of the time interval length for different values of the characteristic waiting time, w. (C) Average NVI 
as a function of the time interval duration. Minima of the NVI indicate when the solutions of the optimization are robust. The filled band show the SD computed across 
the 10 simulations. (D) Correspondence between the optimal partitions found and the different levels of the network hierarchical structure. NMI, normalized mutual 
information; a.u., arbitrary units.
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the set of 50 partitions found by the algorithms at each resolution. 
The average and SD are again computed across the 10 simulations. 
We see that the multilayer modularity shows a high value of the 
average NVI and of its SD for nontrivial partitions, while almost all 
the flow stability partitions have an average NVI of 0 with SD of 0. 
Two points have very small nonzero values. This indicates that the 
multilayer modularity has difficulties dealing with gradual changes 
and does not find consistent partitions when run several times on the 
same realization of the simulation. On the other hand, the flow stabil-
ity shows very consistent results across all resolutions. Figure 4 (E to H) 
shows partitions at two different resolutions for both methods. For 
the flow stability, the partitions are also consistent across simulations, 
for w = 10; the result displayed in Fig. 4E is found for all simula-
tions and correctly captures the large scale dynamic of the system. 
This solution stays the most frequent across simulations until w = 
27.14, where this forward partition is found in 8 of 10 of the simu-
lations and the backward partition in 5 of 10. The partitions shown 
in Fig. 4G, capturing the small-scale evolution, are found in 9 of 
10 simulations for the forward partition, 8 of 10 for the backward at 
w = 73.7, and 6 of 10 simulations for the forward and backward 
partitions at w = 102.8. The partitions found with the multilayer 
modularity shown in Fig. 4 (F and H) correspond to the two resolu-
tions with similar average NVI that are a local minima of the NVI 
curve. While Fig. 4F captures features of the evolution of the 

network structure, the multilayer modularity shows a large vari-
ability over repeated run of the optimization (large NVI) and over 
different realizations of the simulation. The partition shown in 
Fig. 4F is the most common among the different simulations and 
appears in 3 of 10 simulations. For the resolution shown in Fig. 4H, 
the 10 simulations result in 10 different optimal partitions (we show 
the one for the simulation that has the smallest NVI). Similar behav-
iors are observed by increasing or decreasing the number of time 
slices. When only two time slices are used, partitions with the initial 
and final configurations are found for the two slices, however still 
with a large NVI as the optimization hesitates between two configu-
rations [(1, 2, 3, 4) in the first slice connected to (1, 2, 7, 8) in the 
second slice or (1, 2, 3, 4) connected to (3, 4, 5, 6)] in unequal pro-
portions. In this case, a solution with a smaller NVI is given by the 
partition in four elongated communities similar to Fig. 4G. Increasing 
or decreasing the interslice coupling weight also results in high NVI 
until the same structure in four constant communities is found 
for large values of the interslice coupling. This example demonstrates 
that, without a priori knowledge of the real underlying dynamics, 
extracting the dynamic communities of continuously changing net-
works with multilayer methods is challenging. On the other hand, the 
flow stability method can consistently uncover dynamical changes in 
the structure of temporal networks within a single interval by only 
varying one parameter, the RW waiting time. Methods such as the 
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Fig. 4. Comparison of the flow stability method with the multilayer modularity on synthetic network with a continuously changing structure. The connections 
of the eight nodes change linearly from an initial structure in two communities: (1, 2, 3, 4) and (5, 6, 7, 8), to a final structure: (1, 2, 7, 8) and (3, 4, 5, 6). (A and C) Average 
and SD of the number of clusters as a function of the resolution parameter for the flow stability and multilayer modularity, respectively. (B and D) Average and SD of the 
NVI as a function of the resolution parameter for the flow stability and multilayer modularity, respectively. (E and G) Forward and backward partitions found with the flow 
stability for two different ranges of values of the resolution parameter that capture the two dynamic scales of the temporal network. (F and H) Partitions found with the 
multilayer modularity at two different values of the resolution parameter corresponding to local minima of the NVI.



Bovet, Sci. Adv. 8, eabj3063 (2022)     11 May 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 16

multilayer modularity have more difficulties finding robust solutions 
and require tuning many parameters (resolution, number of slices, 
and interslice coupling).

Real-world examples
Primary school contact network
As a first real-world application of our method, we use the high-
resolution measurements of face-to-face contact patterns recorded 
in a French primary school in the context of the sociopattern project 
(46). Face-to-face contacts between 232 children and 10 teachers were 
recorded for 2 days with the help of radio-frequency identification 
(RFID) devices, worn on the chests of participants, with a 20-s res-
olution. This dataset is well suited for validating temporal clustering 
method as the contacts are naturally restricted by the separation in 
five grades with two classes per grade. Each class has an assigned 
room and an assigned teacher; however, during morning, lunch, 
and afternoon breaks, children mix in the playground or in the can-
teen. As these common spaces do not have enough capacity to host 
all the students at the same time, only two or three classes have breaks 
at the same time, and lunches are taken in two consecutive turns (46).

We apply our method using the linear approximation of the tran-
sition matrices (Eq. 14) and perform 50 optimizations of the forward 
and backward flow stability functions with the Louvain algorithm for 
different RW characteristic waiting times. The NVI of the ensemble 
of partitions and the number of clusters of the best partition at each 

scale is shown in Fig. 5 (C and D, respectively). The NVI shows two 
minima, revealing the existence of two natural dynamical scales in 
the system, at w = 63 s and w = 1 hour. The forward and backward 
flow stability partitions corresponding to these two scales are shown 
in Fig. 5 (A and B) as alluvial diagrams.

The flow stability partitions found with an RW rate of (1 hour)−1 
(Fig. 5A) have 10 clusters for the forward partition and 10 clusters 
for the backward partition that mostly group children of the same 
grades together but with some additional details. Both partitions 
have also singleton clusters that correspond to children that were not 
present during the first day, for the forward partition, or second day, 
for the backward partition (see table S2). Classes 1A and 1B are 
clustered together in the forward partition but separately in the 
backward partition, indicating that they spent less time together 
near the end of the time interval than near the beginning. Classes 4A 
and 4B are separated in both the forward and backward partitions, 
revealing that they spent less time together than other classes of the 
same grade. All the other classes (2A, 2B, 3A, 3B, 5A, and 5B) are 
clustered in pairs, per grade, in both the forward and backward par-
titions. Figure 5E shows the static clustering of hourly aggregated 
interactions using standard modularity optimization (with a resolu-
tion parameter corresponding to the minimum NVI taken over all 
hourly slices). Although this method removes all the temporal de-
tails within each hourly slice, it allows to coarsely represent the in-
teractions among children during the 2 days because the structures 
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Fig. 5. Flow stability clustering of face-to-face contacts in a primary school. (A and B) Alluvial diagram representing the forward and backward partitions at two dif-
ferent scales corresponding to RW rates of (1 hour)−1 and (63 s)−1, respectively. (C and D) NVI and number of clusters of the best partition for different values of the char-
acteristic waiting time. (E) Static clustering of hourly aggregated interactions using standard modularity optimization. (F and G) NVI and number of clusters found with 
the generalized multilayer modularity (6) as a function of the resolution parameter. (H) Multilayer partition of the network corresponding to the minima in NVI in (F).
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in this dataset change according to the school hourly schedule. This 
hourly clustering allows to verify the consistency of the flow cluster-
ing obtained over the entire period. We see that, indeed, classes 1A 
and 1B had lunch together during the first day, they are in the same 
static cluster at 12, 13, and 14 hours on the first day, but they were 
separated during the lunch break of the second day. We also see that 
classes 4A and 4B are separated during the morning and afternoon 
breaks of the first day and the morning and lunch breaks of the 
second day. In terms of cumulative time of the contacts between all 
individuals of two different classes of the same grade, classes 4A and 
4B are indeed the classes in the grade with the lowest cumulative con-
tact time (439.3 min) followed by classes 1A and 1B (582.7 min) [see 
table 3 in (46)]. All other grades have cumulative contact time be-
tween their classes above 966.7 min.

Figure 5B shows the forward and backward partitions maximiz-
ing the flow stability with an RW rate of (63 s)−1 that capture changes 
happening at faster scales than in Fig. 5A. There are more forward 
and backward clusters with a small size than in Fig. 5A as they in-
clude not only children who missed the first or last day but also 
children, or small groups of children, who missed the morning of the 
first day or the afternoon of the second day (see table S3). The largest 
forward cluster contains classes 1A, 2A, 3A, and 4B. Figure 5E shows 
that these classes are often together during breaks of the first day, in 
particular during the morning break of the first day. The backward 
partition contains a similar cluster with the addition of classes 1B 
and 5A and without class 4B. Most of the children of class 4B leave 
after the lunch break of the second day, which is captured in the 
backward cluster 4 in Fig. 5B, with an average last contact time of 
12:52 PM, while the last contact time in cluster 1 is 05:07 PM (see 
table S3). Classes 1B and 5A join the largest cluster in the backward 
partition. Figure  5E shows that they are often clustered together 
during the second day and join the other classes of the first cluster 
during the last hour. We also see that, while class 4A is in cluster 
3 with classes 5A and 5B in the forward partition, it is split in two 
separated clusters (3 and 10) in the backward partition. Table S3 
shows that the average last contact times for backward clusters 3 and 
10 are 11:58 AM and 2:18 PM, respectively. The split in two clusters 
of class 4A is therefore due to the fact that a part of the class left be-
fore lunch, while the rest left after.

As a comparison to our method, we apply the generalization of 
the modularity to multilayer networks developed in (6). We create 
network layers corresponding to an aggregation in windows of 15 min, 
with edge weights equal to the cumulative contact times during each 
time window. The interslice weight is set to the average edge weight 
across all layers. Figure 5 (F and G) shows the NVI and the number 
of clusters found by running the Leiden (45) algorithm 50 times with 
the generalized multilayer modularity for each value of the resolu-
tion parameter. Here, only one minimum of the NVI is found, and 
the corresponding partition is shown in Fig. 5H. The partition cap-
tures the separation in grades and most of the separation in classes as 
well as some of the dynamics between classes. The scale and resolution 
in this case do not include the concept of time but consider the dif-
ferent layers as part of a larger static network. In our method, the dif-
ferent scales correspond to different speeds at which the network is 
traversed, and the two partitions correspond to the different direc-
tions of the temporal evolution of the network. We see that this al-
lows us to discover two natural scales that describe the temporal 
network at two different levels: At the scale of 1 hour, we find the 
separation in different grades, while at the scale of 63 s, we find a 

coarser scale describing the interactions in-between grades and classes. 
Community detection performed on the multilayer representation of 
the network is useful for detecting the timing of the changes during 
the time interval considered. In our method, the temporal dynamic 
is captured in the two covariance matrices (Eqs. 2 and 3) in terms of 
probabilities of following a given path, and the RW rate plays the role 
of a filtering parameter that controls which spatiotemporal scales 
are considered. However, two partitions cannot represent the entire 
dynamics in a time interval when the dynamics change multiple 
times. In this case, the interval can be sliced in several time windows 
and the flow stability applied on each slice. We show such an exam-
ple in the next section.
Free-ranging house mice contact network
As a second example of real-world application, we study an open 
population of house mice (Mus musculus domesticus) living freely 
in a barn of approximately 72 m2 near Zurich, Switzerland. The barn 
is equipped with 40 nest boxes for the mice to rest and breed. Water 
and food are provided at 12 feeding trays inside the barn. The activ-
ity of the mice is monitored thanks to subcutaneously implanted 
RFID transponders and antennas situated at the entrance of each 
nest box (47). The time of the entering and leaving of the nest boxes 
is recorded, along with the identity of the corresponding animal.

Male and female mice of at least 18 g are implanted with new 
transponders with a unique RFID tag. The presence of litters in the 
nest boxes is also monitored weekly. The experiment has been initi-
ated in 2002, and the continuous automatic reading and recording of 
the RFID transponders is in operation since 2007. We use a dataset 
recording the mice activity from 28 February to 1 May 2017, which 
captures the transition from winter to spring. A temporal network is 
reconstructed with 437 nodes representing all the mice recorded in 
the dataset and temporal events between two mice representing their 
simultaneous presence in the same nest box. There are more than 
5.75 million events recorded with a millisecond resolution. The dis-
tribution of event durations is very broad with a median at 64 s, a 
25 percentile at 7 s, and a 75 percentile at 6 hours and 25 min.

To observe the evolution of the community structure, we divide 
the period in nine intervals of 1 week each. For each week, we apply 
our method, using the linear approximation of the matrix exponen-
tial, and vary the RW rate to explore different dynamic scales. This 
results in nine pairs of forward and backward partitions that repre-
sent the evolution in each week. Figure 6 shows the nine backward 
and forward partitions represented as an alluvial diagram for the 
random rates of  = (1 s)−1 (Fig. 6A) and  = (24 hours)−1 (Fig. 6B). 
Figure 7 (A and B) shows the NVI of the partitions and the number 
of groups (i.e., communities) found with 50 runs of the Louvain al-
gorithm as a function of the RW characteristic waiting time (w = 
1/). The average and SD taken over the nine forward and back-
ward partitions is displayed. Minima in the NVI are visible for w 
values of 1 s, 60 s, and 24 hours. These values indicate robust optimal 
partitions that correspond to intrinsic dynamic scales of the system.

The community dynamics at a rate of (1 s)−1 (Fig. 6A) reveals the 
existence of large communities with a high proportion of males 
(Fig. 7E) during the first weeks corresponding to the end of February 
and beginning of March. As spring arrives, the large groups split in 
smaller communities (see Fig. 7C), and the proportion of females in 
groups increase as many males exit the system. In the mouse popu-
lation, the transition from winter to spring corresponds to a transi-
tion from low reproduction to high reproduction (48). In this case, 
there were no weaned pups sampled until April. The average daily 
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temperature in the barn also increased from freezing temperatures 
in February to temperatures around 20°C at the end of May. The 
presence of larger groups in winter may be explained by the benefit 
of thermoregulation (winter huddles) and by the lower competition 
for reproduction (49). At an RW rate of (24 hours)−1 (Fig. 6B), a 
finer description of the dynamics is revealed with the presence of 
smaller social groups with compositions and sizes that are very stable 
over the entire observation period (see Fig. 7C). While the average 
number of females per group stays extremely stable (see Fig. 7D), 
the proportion of males decreases similarly than for the coarser par-
tition (Fig. 7E), suggesting that the females are forming the cores of 
the different social groups.

We compare these results with results obtained by two other dy-
namic community detection methods typically used in temporal net-
work. The first method consists of aggregating the activity over time 
windows to form a sequence of static networks. A static community 
detection method is then applied to each slice, and the evolution of 
the communities from slice to slice is tracked. Here, we use time 
windows of a half week to have the same number of partition than 
with the flow stability method, and we follow the methodology of 
Liechti et al. (49) who have studied the same mice population but 
over a different time frame. Communities are found at each slice 
with the hierarchical Infomap algorithm (50), and their evolution is 
tracked with an evolutionary clustering method (29). While this ap-
proach allows one to detect a coarse-grained and fine-grained evo-
lution of the system (see fig. S3), an issue arises as the method does 
not necessarily detect the same number of hierarchical level in all 

slices. This renders the comparison of communities from slice to slice 
unclear. When tracking the number of communities per slice (see 
fig. S3A), large variations are observed without knowing whether 
they are due to real variations in the system or to the fact that the 
method found hierarchical levels at different scales. The flow stability 
method, in addition to keeping temporal information within each 
time window, uses a resolution parameter with a physical meaning, 
the rate of the RW, which allows a principled comparison of slices 
at the same dynamical scale and results in a smooth variation of the 
number of communities per week (see fig. S3B). The second meth-
od we compare our results with is the multilayer Infomap method 
applied to temporal networks (30, 21). This approach allows one to 
perform a hierarchical clustering considering the entire network 
evolution and therefore find scales relevant across time points. We 
represent the contact network as a multilayer network with 18 lay-
ers being formed by the static aggregations with a window length of 
a half week. This approach detects five levels of hierarchy; however, 
the communities at each level are all elongated in time (see fig. S4), 
and the dynamics of splitting of the large communities into smaller 
communities is not recovered. Here, we show that by using the flow 
stability method, we are able to retain temporal information within 
each slice and detect relevant dynamical scales, revealing both the 
splitting of the communities in smaller groups at the arrival of spring 
and the existence of underlying smaller stable social groups.
Uncovering the physical influences of network scientists
As a last example, we demonstrate the possibility of our method to 
cluster nonstationary diffusion processes to investigate the diffusion 

A
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Fig. 6. Flow stability clustering of a contact network of free-ranging wild house mice. (A and B) Alluvial diagram representing the forward and backward partitions at 
two different scales corresponding to RW rates of (1 s)−1 and (24 hours)−1, respectively. The flow corresponding to females is indicated in green, and the one corresponding 
to males is in purple. The community dynamics at a rate of (1 s)−1 (A) reveals the existence of large communities during the first weeks corresponding to the end of 
February and beginning of March, which split in smaller communities as spring arrives. At an RW rate of (24 hours)−1 (B), a finer description of the dynamics is revealed 
with the presence of smaller social groups with compositions and sizes that are very stable over the entire observation period.
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of ideas in a network of coauthorship of articles published in journals 
of the American Physical Society (APS) between 1970 and 2010. 
Scientists from many disciplines, including sociology, computer 
science, and mathematics, contributed to the emergence of the aca-
demic discipline of network science. In the late 1990s to early 2000s, 
several physicists started to study complex networks and made a 
number of important contributions to the field. We are interested 
in finding the influences in the field of physics that led these scien-
tists to the study of complex networks. The collaboration network 
has 194,451 nodes that correspond to authors and 1,337,929 events 
corresponding to the coauthorship of two authors of the same arti-
cle (see Materials and Methods). We consider that events represent 
collaborations between two authors and set their length to 1 year and 
their ending times to the date of the article publication. The event 
times are set on a monthly grid, and we divide our investigation 
period in decades. We search all authors who have published an ar-
ticle in one of the APS journals between 2000 and 2010 with a key-
word related to complex networks in the title or the abstract (the list 
of keywords is given in table S5). We find 1108 authors, among 
which 1048 are in the largest connected component of the network. 
We compute an RW process with a homogeneous initial condition 
on the 1108 authors of complex network articles starting in 2010. 
The initial probability distribution is zero on all other nodes. We 
then let the RW diffuse backward in time until 1970 with a charac-
teristic waiting time of 10 years (Eq. 8). We compute the monthly 
interevent transition matrices using the matrix exponential of the 
interevent Laplacians. For each decade, we find the best backward 
flow stability partition (Eq. 5) using the probability distributions of 
the RW process starting in 2010. We assigned a main country based on 

most frequent country of their affiliations. As APS journals Physical 
Reviews (Phys. Rev.) A, B, C, D, and E are organized according to 
specific subjects in physics, we associate each author to the journal, 
among those five, in which they published the most articles and use 
it as an indication of their main specialty in physics. If an author 
only published in journals that cover the full scope of physics disci-
plines (e.g., Physical Review Letters and Review of Modern Physics), 
then we associate them with a category “other.” When considering 
the backward diffusion process, over an interval (t1, t2), t1 < t2, the 
covariance matrix is non-null only for the nodes where p(t2) > 0 
(Eq. 3). For each decade, we only consider authors who were active, 
i.e., who published at least one article during the decade, and who 
have a probability density at the end of the decade, i.e., t2, superior 
than zero.

Figure 8 (A and B) shows the number of nodes and communities 
for each decade, revealing a drastic increase in 1990s compared to 
the initial condition in the 2000s. Although the process is diffusive, 
and the support of the probability distribution expands as it evolves 
because the network size is decreasing as we go back in time, the num-
ber of nodes considered decreases in the ‘80s and ‘70s. Histograms 
of the community sizes for each decade are shown in Fig. 8 (E to H). 
We compute the total entropy of the clusterings with respect to the 
journal and country labels of each node, which reveals that the di-
versity of the communities peaked in the 1990s and that commu-
nities are, in general, more diverse in terms of country than journals 
(Fig. 8C). This may be expected because edges in this network link 
authors publishing in the same journal. To better understand how 
the diversity of the communities differ from each other, we com-
pute the Kullback-Leibler divergence (KLD) of the clustering as the 
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Fig. 7. Flow stability clustering statistics of the contact network of free-ranging wild house mice. (A) NVI of the set of partitions found by the stochastic optimization 
algorithm as a function of the RW characteristic waiting time. (B) Community sizes as a function of the RW characteristic waiting time. In (A) and (B), the average and SD 
computed across the nine pairs of forward and backward partitions are shown. (C) Group, or community, sizes as a function of the week. (D) Number of females in each 
group as a function of the week. (E) Proportion of females in each group as a function of the week. In (C) to (E), the average and SD across the forward and backward 
communities of each week are shown.
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weighted average of the KLD between the distribution of labels of 
each community and the distribution of labels of the union of all 
communities per decade (Fig. 8D). The average KLD reveals that 
the distribution of countries in the initial communities from the 
2000s is very different than the global distribution of countries of 
authors of complex network articles. On the other hand, the average 
KLD of the distribution of journals is much smaller. Most of the ini-
tial authors (71%) are associated to the journal Phys. Rev. E, and 
therefore, the communities do not show a large diversity in terms of 
journals; however, the large KLD reveals that they are very diverse in 
terms of country distribution (the most common author country is 
the United States, with 20% of the authors). As the diffusion process 
moves backward in time, the average KLD of the country distribu-
tions stays larger than the KLD of the journal distributions; however, 
their difference becomes smaller and smaller.

It is interesting to understand the relation between communities 
of different decades. Here, contrary to the previous examples, we are 
not interested in necessarily following the same nodes across intervals 
to understand how communities evolved but rather in following the 
diffusion process. We can link communities from one decade to an-
other by clustering the transition matrix computed between those 
two decades (see Materials and Methods) and following the tran-
sitions with the highest probabilities. To illustrate this process, we 
selected three initial communities from the 2000s that had different 
country distributions: community A (50% USA and 44% Hungary), 
community B (30% UK, 22% Finland, and 17% Spain), and com-
munity C (34% Italy, 22% USA, and 19% Spain). The names, coun-
tries, and journals of all authors in these communities are given in 

table S6. The list of “ancestor” communities of the 1990s is found as 
the communities toward which the transition probability of the RW 
process, starting from one of the three initial communities, is larger 
than 5%. Similarly, we find the ancestor communities of the 1980s 
and 1970s. Figure 9 shows the three initial communities and their 
ancestor communities at each decade along with the transition prob-
abilities between each community and the distribution of authors’ 
main journals in each community. Figure S5 shows the communities 
together with the distribution of authors’ main countries in each 
community. We discover that the three initial communities have 
different influence communities in the ‘90s (only communities B 
and C have one common ancestor at this stage) when considering 
transition probabilities larger than 5%. Community A has only 
three ancestors in the ‘90s, which are dominated by Phys. Rev. B 
(condensed matter and material physics) but with different distri-
butions of secondary journals. The most frequent pair of words in 
the articles’ titles reveals that two communities are mostly focused 
on quantum wells and the third one on laser pulses. Figure S5 shows 
that the two quantum well communities differ in their country dis-
tribution, one of them having a large portion of authors with affilia-
tions in the United Kingdom. Community B has the largest number 
of ancestors in the ‘90s, which are also the most diverse in terms of 
journal distributions. The main topics of each community are also 
very diverse, ranging from van der Waals forces to black holes. Last, 
community C also has a wide range of influences in the ‘90s, which is 
dominated by the journals Phys. Rev. B and E (statistical, nonlinear, 
biological, and soft matter physics), with topics such as diffusion 
processes, phase transitions, and Monte Carlo methods. As we fol-
low influences in the ‘80s and ‘70s, more common ancestor com-
munities are found that have a substantial proportion of Phys. Rev. 
B but focused on different topics. Three communities are found in 
the 1970s: Two have relatively similar journal compositions (domi-
nated by Phys. Rev. B) but focus on different topics (electronic struc-
ture and phase transitions), and the third one is dominated by Phys. 
Rev. C (nuclear physics) and the topic of cross sections. The third 
community is only a significant ancestor (probability of transition 
>5%) of community C. We note that the three communities of the 
‘70s are among the four largest communities of this decade (see 
Fig. 8H). This can be expected as larger communities have a higher 
probability of being on an RW, but this also reveals that there is 
another community, as important as those three, that does not have 
a significant influence on these three initial communities of net-
work scientists. Note also that to study the transmission of influences 
from the 1970s to the 2000s using the same diffusion process, one would 
use the inverse forward covariance (see the section “Covariances of 
inverse processes” in the Supplementary Text). With this example, we 
demonstrate an original usage of our method for clustering nonstationary 
processes in temporal networks that allows us to uncover new insights 
about the influences, in the field of physics, of network scientists.

DISCUSSION
The classical static definition of communities as clusters of densely 
connected nodes does not generalize well to temporal networks with-
out resorting to temporal aggregations over some time windows to 
evaluate the “connectedness” of groups of nodes. In many cases, this 
aggregation does not prevent the detection of communities and their 
temporal evolution. However, many processes can be occurring simul-
taneously in a system described by a temporal network and each of 
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Fig. 8. Flow stability clustering statistics of the APS collaboration dataset. 
(A) Number of authors that were active and have a nonzero probability of partici-
pating in the diffusion process per decade. (B) Number of backward communities 
per decade. (C) Total entropy of the clustering. (D) Average KLD of the clustering 
compared to the label distribution of the active nodes per decade. (E to H) Histo-
grams of the communities’ sizes for each decade.
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them at different rates. We showed that the aggregation of temporal 
networks over time windows can lead to a loss of information at cer-
tain dynamical scales and render the detection of processes occur-
ring at certain scales impossible. Here, we propose a framework based 
on the clustering of the flow of random walkers evolving with the 
network that allows us to define communities in temporal networks 
while keeping temporal information of time-respecting paths with-
out resorting to temporal aggregation and without assuming the 
existence of a stationary state of the flow. To capture the asymmetric 
relations between nodes due to the temporal evolution of the net-
work, we describe the communities over a given time interval with 
two partitions: the forward partition, which groups nodes in the same 
community if the flow of random walkers starting on them tend to 
stay together until the end of the interval, and the backward partition, 
which groups nodes in the same community if the flow of random 
walkers that ends on them tended to stay together since the beginning 
of the interval. Time symmetry is an essential concept in theoretical 
physics, associated to energy conservation through Noether’s theo-
rem and to the emergence of an arrow of time through thermody-
namics. While this work does not aim at modeling a physical system 
directly, it provides an interesting viewpoint that should be explored 
further. We model systems that show time asymmetry at the micro-
scopic level, the RW process being diffusive and nonreversible in gen-
eral, yet that can capture time symmetry at the mesoscopic level of 
communities when the forward and backward partitions are similar.

Our framework provides a natural way to explore the different 
natural dynamical scales present in a system by varying the rate of 
the RW, which plays the role of a dynamical resolution parameter. 
In terms of the classification by Rossetti and Cazabet (27), each par-
tition taken alone could be classified in the temporal trade-off cate-
gory. The forward partition depends on the network topology at 
time t and also on the future topology, while the backward partition 
depends on the topology at time t and in the past. The two parti-
tions taken together could then be classified in the cross-time cate-
gory, depending on the entire evolution of the network in a given time 
interval. The temporal flow stability is also a natural generalization 
of static networks concepts such as modularity and Markov stability 
and draws links with clustering methods for directed networks (see 
Supplementary Text, “Relations with coclustering” section). An ad-
vantage of our method is that, for a given time interval, the method 
has only one parameter with a principled meaning, the RW rate, while 
other approaches may require the tuning of several parameters [e.g., 
slice resolution parameter and interslice coupling (6)]. In static net-
works, the concept of Markov stability has already been expressed 
in terms of a filtering process in the framework of graph signal pro-
cessing (51, 52). Here, the RW process can be seen as a spatiotem-
poral filter on the temporal network that weights the importance of 
interactions depending on their duration and frequency. Other types 
of filters could be designed to focus on particular processes such 
as cyclical activity, for example. The usage of different Laplacians, 
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Fig. 9. Influential communities of authors of articles published in the APS journals for three communities of network scientists in the 2000s. Each node rep-
resents a community, and its size is indicated in the center. The colors represent the distribution of journals inside each community where each author is associated to 
the journal in which they published the most (except large-scope journals). The pair of words next to each node indicate one of the most frequent pair of words of all the 
titles of the articles belonging to the community. Arrows between the communities represent probability transitions (>5%) from community to community of the diffu-
sive process starting in 2010 and finishing in 1970.
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defining different diffusion processes, or time kernels modulating the 
importance of different temporal patterns in the objective functions 
could be used to design new methods. Our framework opens the 
door for the definition of new concepts for temporal networks in 
terms of RW probabilities and flows that may help to disentangle the 
complex processes simultaneously occurring in systems described 
as temporal networks.

MATERIALS AND METHODS
Flow modeling
We consider the temporal network with N vertices and M undirected 
events defined in the “Temporal flow stability” section. We define 
the ordered set of distinct event times, T i, as the union of the sets of 
starting times, T s, and ending times, T e. The event times effectively 
defines new events at a higher-temporal resolution such that there 
is no change in the network between two consecutive times (e.g., in 
Fig. 1A, the event times are indicated by black dots). One can com-
pute the transition matrix between two arbitrary times from the 
product of the transition matrices for each interevent time interval. 
On this new temporal grid, one finds for the transition probability 
matrix between to arbitrary times t1 and t2 (t1 < t2)

	​​ T(​t​ 1​​, ​t​ 2​​ ) = ​  T​(​t​ 1​​, ​t​ m​​ ) ​[​​​ ∏ 
k=m

​ 
n−1

 ​​​  T​(​t​ k​​, ​t​ k+1​​ ) ​]​​​  T​(​t​ n​​, ​t​ 2​​)​​	 (7)

with m < n, tm ≥ t1 being the time of the first event after, or at, t1 and 
tn < t2 the time of the last event before t2. To compute the transition 
matrix corresponding to the time-reversed evolution of the network, 
from t2 to t1, we perform the matrix product in the reversed order

	​​ ​T​ rev​​(​t​ 2​​, ​t​ 1​​ ) = ​  T​(​t​ 2​​, ​t​ n​​ ) ​[​​​ ∏ 
k=n

​ 
m+1

​​​  T​(​t​ k​​, ​t​ k−1​​ ) ​]​​​  T​(​t​ m​​, ​t​ 1​​)​​	 (8)

To ensure that the transition probability matrix satisfies the 
Chapman-Kolmogorov equation T(t1, t3) = T(t1, t2)T(t2, t3) for arbi-
trary times t1 < t2 < t3, one must ensure that in particular, ​​  T​(​t​ k​​, ​t​ k+1​​ ) = ​
ˆ T​(​t​ k​​, ​t​ l​​ ) ​  T​(​t​ l​​, ​t​ k+1​​)​, where tk < tl < tk + 1 and tk and tk + 1 are consecutive 
times on the high-resolution temporal grid. Assuming that walkers 
have a constant probability of jumping per unit of time given by the 
rate , this is uniquely satisfied by the solution ​​  T​(​t​ k​​, ​t​ k+1​​ ) = ​e​​ −L(​t​ k​​)​​ k​​​​ 
with k = tk + 1 − tk and where L = I − D(t)−1(A(t) + S(t)) is the RW 
graph Laplacian at time t, A(t) is the adjacency matrix at time t, S(t) 
is the self-loops matrix at time t, with zeros everywhere except on the 
diagonal element i corresponding to nodes with zero out-degree, 
k(t)i, and D(t) is the diagonal matrix with D(t)ii = k(t)i if k(t)i > 0 and 
D(t)ii = 1 otherwise. The element (i, j) of L(t) is therefore given by

	​​ ​(L(t ) )​ ij​​  = ​
{

​​​−  ​ 
a ​(t)​ ij​​ ─ max (k ​(t)​ i​​, 1) ​​  if i  ≠  j,​  

1 − (k ​(t)​ i​​, 0)
​ 

if i  =  j
 ​​​	 (9)

We have L(t)1 = 0, i.e., ​​u​ 1​​  = ​  1 _ N​ 1​ is a right eigenvector of L asso-
ciated with the eigenvalue ϵ1 = 0. Note that for t > 0, e−L(tk)k may 
contain nonzero nondiagonal terms that are equal to zero in L (or A), 
i.e., e−L(tk)k takes into account trajectories with multiple steps.

Covariance of nonstationary RW
To find a relevant partition of the nodes between two time points 
t1 and t2 (t1 < t2), we consider the covariance of a flow of random 

walkers, performing a CTRW (53) on the network constrained by 
the activation of edges between the different clusters (32, 35). A 
partition that is well aligned with this flow will correspond to high 
values of the covariance inside each cluster.

Following the framework of the stability of a network partition 
(32) but in the case of a temporal network and without assuming an 
ergodic and reversible Markov chain with a stationarity distribu-
tion, we assign a different real value i (i = 1, …, c) to the vertices of 
each of the c clusters and consider the values i observed by a ran-
dom walker as a stochastic process (Xt)t ∈ ℝ, which is not necessarily 
Markovian and not necessarily stationary. The covariance of this 
process evaluated between t1 and t2 is given by

	​ cov [ X(​t​ 1​​ ) X(​t​ 2​​ ) ] = E [ X(​t​ 1​​ ) X(​t​ 2​​ ) ] − E [ X(​t​ 1​​ ) ] E [ X(​t​ 2​​ ) ]​	 (10)

where E[X(t)] represents the expectation of the random variable X(t).
Introducing p(t), the 1 × N row vector with element pi(t) equal 

to the probability of finding a random walker on node i at time t, 
and using the N × N transition matrix T(t1, t2) defined in Eq. 6, 
where element (i, j) is equal to the conditional probability for 
a random walker to be on node j at t2; if it was on node i at t1, 
then we find

	​​

cov [X(​t​ 1​​ ) X(​t​ 2​​ )] = ​ ∑ 
i=1

​ 
N

 ​​​ ∑ 
j=1

​ 
N

 ​​ ​α​ i​​ ​p​ i​​(​t​ 1​​) ​T​ i,j​​(​t​ 1​​, ​t​ 2​​) ​α​ j​​  −

​   (​ ∑ 
i=1

​ 
N

 ​​ ​α​ i​​ ​p​ i​​(​t​ 1​​ )) (​ ∑ 
i=1

​ 
M

 ​​ ​α​ i​​ ​p​ i​​(​t​ 2​​)) =
​   

​  ∑ 
𝓁,m=1

​ 
c
  ​​ ​α​ 𝓁​​ ​α​ m​​ ​ ∑ 

i,j=1
​ 

N
  ​​δ(𝓁, ​c​ i​​) (​p​ i​​(​t​ 1​​) ​T​ i,j​​(​t​ 1​​, ​t​ 2​​) −

​   

​p​ i​​(​t​ 1​​ ) ​p​ j​​(​t​ 2​​)) δ(​c​ j​​, m) = ​𝛂​​ T​ R(​t​ 1​​, ​t​ 2​​) 𝛂

  ​​	 (11)

where  is the 1 × c column vector of labels of the c com-
munities and

​R(​t​ 1​​, ​t​ 2​​; H ) = ​H​​ T​ [ P(​t​ 1​​ ) T(​t​ 1​​, ​t​ 2​​ ) − p ​(​t​ 1​​)​​ T​ p(​t​ 2​​ ) ] H  = ​ H​​ T​ S(​t​ 1​​, ​t​ 2​​ ) H​ 
		  (12)

is the c × c clustered covariance matrix between t1 and t2 with P(t) = 
diag (p(t)) ∀ t ∈ [t1, t2] and

	​ S(​t​ 1​​, ​t​ 2​​) = P(​t​ 1​​) T(​t​ 1​​, ​t​ 2​​) − p ​(​t​ 1​​)​​ T​ p(​t​ 2​​)​	 (13)

is the N × N covariance matrix between t1 and t2. R(t1, t2; H) only 
depends on the network and its partition, and not on the specific, 
yet arbitrary, values of .

This expression can then be used to find a partition clustering 
the covariance in blocks where the random walkers are likely to re-
main for a long time, i.e., where the covariance is high. In the case of 
static networks, this expression reduces to the framework of Markov 
stability (32, 35), where the random walkers eventually reach a sta-
tionary distribution. See Supplementary Text (“Relations with com-
munity detection in static networks,” “Relations with coclustering,” 
and “Special cases of the RW covariances in static networks” sections) 
as well as table S4 for the relations between our approach and well-
known static networks heuristics such as modularity optimization. 
In the case of temporal networks, the activity-driven model has 
been used to approximate a stationary distribution and generalize 
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the Markov stability framework (22). Another approach for tempo-
ral networks consists of treating them as multilayer networks and 
considering an RW that moves inside layers and in-between layers, 
effectively disregarding the direction of time and the causality of 
random walkers’ paths (6).

Linearization of the transition matrix and computation 
of the covariances
As the computation of the matrix exponential can be relatively time 
costly for large network, we introduce a linearization of Eq. 6 using 
two linear interpolations

	 ​​​ 
~

 T ​(​t​ 1​​, ​t​ 2​​; ​​ w​​ ) = ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩
​​​

(1 − ​​​ ⋆​ ) I + ​​​ ⋆​ ​T​ DT​​

​ 

 for 0  ≤ ​ ​​ ⋆​  ≤  1,

​     ​  1 ─ 
1 − ​​​ s​

 ​ [ (​​​ ⋆​ − ​​​ s​ ) ​T​ DT​​ + (1 − ​​​ ⋆​ ) W]​   for 1  < ​ ​​ ⋆​  ≤ ​ ​​ s​,​     

W

​ 

 for ​​​ ⋆​  > ​ ​​ s​

 ​​​

(14)

where TDT = I − L is the one-step discrete time RW transition matrix, 
​​​​ ⋆​  = ​ ​t​ 2​​ − ​t​ 1​​ _ ​​ w​​ ​​ , ​W  = ​ lim​ n→∞​​ ​T​DT​ n  ​​ is the limiting transition matrix, and 
s = ts/w, with ts the time taken by the RW to reach stationarity. In 
all the examples in this article, we use s = 10.

To compute the linear approximation of the transition matrix 
T(t1, t2) of a time-evolving network (Eq. 7), we first compute the 
linear approximation of each interevent transition matrix with Eq. 14. 
The limiting transition matrix W can be easily computed for undi-
rected network. The matrix W has nonzero values only in diagonal 
blocks that correspond to each connected component of the graph. 
The stationary distribution of the nth connected component is n, 
with element ni = ki/Nn, where ki is the degree of node i and Nn is the 
size of component n. The Nn rows of the nth block of W are then all 
copies of the vector n.

For large networks, our method is limited to cases where the num-
ber of edges being active simultaneously remains small, which is 
usually the case in temporal networks. In this case, we find that the com-
putations are greatly simplified by the fact that interevent Laplacians 
are usually extremely sparse, and one can compute the matrix expo-
nential of each connected component independently.

The integral of the forward covariance is obtained by perform-

ing the integral ​​∫​t​ 1​​​ 
​t​ 2​​

 ​​(T(t, ​t​ 1​​ ) P ​(t)​​ −1/2​ ) ​(T(t, ​t​ 1​​ ) P ​(t)​​ −1/2​)​​ 
T
​ dt​ and then 

multiplying its rows and columns by p(t1). The integrand can be 
efficiently computed as a sparse gram matrix, and only its upper (or 
lower) triangular values need to be computed and stored as it is 
symmetric. The outer product of p(t1) in Eq. 2 is a rank 1 matrix and 
therefore can be efficiently stored using only a vector.

The computational cost is small for network sizes N where N × N 
matrices can be stored in memory (e.g., ∼6 GB for a N = 4 × 104 
double-precision floats symmetric matrix). For large networks, the 
main limitation is the fact that the total transition matrix and the 
integral of the covariance may start to become less sparse. All ele-
ments of these matrices that are inside connected components have 
a nonzero value. As the integration interval increases, for very large 
networks, the connected components sizes increases, which slows 
down the matrix operations and may require large memory storage. 
This is a limit of our method and to scale it to larger networks, we 
keep the matrices sparse by neglecting RW paths with very low prob-
abilities. We keep only values of these matrices with probabilities 
above a certain value. We applied this strategy in the case of the phys-
ical influences of network scientists (see below).

Tracking scientific influences in the APS 
coauthorship dataset
Similarly to (54), we consider only articles having 10 or less authors 
in the APS dataset to exclude articles from “big science” projects that 
do not correspond to the concept of collaboration that we are inves-
tigating. We also consider only articles with at least two authors be-
cause we are interested in the diffusion of ideas between coauthors. 
We use the author name disambiguation provided in (54). The coun-
tries corresponding to the authors’ affiliations were extracted by first 
examining the affiliations’ most common trigrams and bigrams that 
contain names of known institutions and locations. This allows us to 
extract the countries corresponding to 96% of the affiliations. The 
countries of the remaining affiliations are extracted by using three 
approaches: with the named entity extraction library (https://github.
com/iwpnd/flashgeotext), by fuzzy matching the bigrams and tri-
grams (allowing the n-gram Jaro-Winkler similarity to be ≥0.95) to 
allow slight mispellings, and lastly by using the OpenStreetMap 
Nominatim geocoder (https://github.com/geopy/geopy). Over the 
initial 224,992 unique affiliations, we were unable to assign a country 
to only 89 affiliations. The full mapping and the code used to produce 
it are available at https://doi.org/10.7910/DVN/I87AXV.

We compute the interevent transition matrices without the lin-
ear approximation on a monthly resolution. We use sparse matrix 
representations and compute the matrix exponential on each con-
nected component of the Laplacian matrix in parallel to limit mem-
ory and computation time. Moreover, we threshold the transition 
matrices (values smaller than 1 × 10−6 of the maximum) and of co-
variance integrals (absolute values smaller than 1 × 10−9 of the maxi-
mum) to further limit memory usage.

The transition probabilities between the backward communities 
of decade d and the ones of the previous decade d − 1 are computed as

	​​ T​ d→d−1​​  = ​ C​b,d​ −1 ​ ​H​b,d​ T  ​ T(​t​ d​​, ​t​ d−1​​ ) ​H​ b,d−1​​​	 (15)

where Hb, d d∈ {‘00s, ‘90s, ‘80s, and ‘70s} are the indicator matrices 
encoding the backward communities and T(td, td − 1) is the transi-
tion matrix of the RW process starting at the end of the decade d 
and ending at the end of decade d-1, e.g., 2010 to 2000 for d=‘00s 
and d − 1=‘90s. The matrix ​​C​b,d​  ​  =  diag(1 ​H​ b,d​​)​ is the diagonal ma-
trix containing the sizes of each communities in Hb, d. Last, the 
transition probabilities between the ‘00s and all earlier decades 
are found by multiplying, in time-reversed order, the matrices for 
each decade.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj3063
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