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Abstract
Background and Objectives  A quantitative evaluation of the PK of meropenem, a broad-spectrum β-lactam antibiotic, in 
plasma and interstitial space fluid (ISF) of subcutaneous adipose tissue of obese patients is lacking as of date. The objective 
of this study was the characterisation of meropenem population pharmacokinetics in plasma and ISF in obese and non-obese 
patients for identification of adequate dosing regimens via Monte-Carlo simulations.
Methods  We obtained plasma and microdialysate concentrations after administration of meropenem 1000 mg to 15 obese 
and 15 non-obese surgery patients from a prospective clinical trial. After characterizing plasma- and microdialysis-derived 
ISF pharmacokinetics via population pharmacokinetic analysis, we simulated thrice-daily (TID) meropenem short-term 
(0.5 h), prolonged (3.0 h), and continuous infusions. Adequacy of therapy was assessed by the probability of pharmacokinetic/
pharmacodynamic (PK/PD) target attainment (PTA) analysis based on time unbound concentrations exceeded minimum 
inhibitory concentrations (MIC) on treatment day 1 (%fT > MIC) and the sum of PTA weighted by relative frequency of MIC 
values for infections by pathogens commonly treated with meropenem. To avoid interstitial tissue fluid concentrations below 
MIC for the entire dosing interval during continuous infusions, a more conservative PK/PD index was selected (%fT > 4 × MIC).
Results  Adjusted body weight (ABW) and calculated creatinine clearance (CLCRCG_ABW) of all patients (body mass 
index [BMI] = 20.5–81.5 kg/m2) explained a considerable proportion of the between-patient pharmacokinetic variability  
(15.1–31.0% relative reduction). The ISF:plasma ratio of %fT > MIC was relatively similar for MIC ≤ 2 mg/L but decreased for 
MIC = 8 mg/L over ABW = 60–120 kg (0.50–0.20). Steady-state concentrations were 2.68 times (95% confidence interval 
[CI] = 2.11–3.37) higher in plasma than in ISF, supporting PK/PD targets related to four times the MIC during continuous 
infusions to avoid suspected ISF concentrations constantly below the MIC. A 3000 mg/24 h continuous infusion was sufficient 
at MIC = 2 mg/L for patients with CLCRCG_ABW ≤ 100 mL/min and ABW < 90 kg, whereas 2000 mg TID prolonged infu-
sions were adequate for those with CLCRCG_ABW ≤ 100 mL/min and ABW > 90 kg. For MIC = 2 mg/L and %fT> MIC = 95, 
PTA was adequate in patients over the entire investigated range of body mass and renal function using a 6000 mg continu-
ous infusion. A prolonged infusion of meropenem 2000 mg TID was sufficient for MIC ≤ 8 mg/L and all investigated ABW 
and CLCRCG_ABW when employing the PK/PD target %fT > MIC = 40. Short-term infusions of 1000 mg TID were sufficient 
for CLCRCG_ABW ≤ 130 mL/min and distributions of MIC values for Escherichia coli, Citrobacter freundii, and Klebsiella 
pneumoniae but not for Pseudomonas aeruginosa.
Conclusions  This analysis indicated a need for higher doses (≥ 2000 mg) and prolonged infusions (≥ 3 h) for obese and non-
obese patients at MIC ≥ 2 mg/L. Higher PTA was achieved with prolonged infusions in obese patients and with continuous 
infusions in non-obese patients.
Trial Registration  EudraCT: 2012-004383-22.
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1  Introduction

Optimizing anti-infective dosing regimens is imperative 
for therapeutic success and to prevent the development of 
resistance, especially regarding integral components of the 
antibiotic armamentarium, such as meropenem. Meropenem 
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Key Points 

This study aimed to characterize the interstitial tissue 
fluid and plasma pharmacokinetics of meropenem in 
obese and non-obese patients followed by evaluation of 
commonly used dosing regimens via probability of target 
attainment analysis.

Adequacy of pharmacokinetic/pharmacodynamic targets: 
four times the minimum inhibitory concentration in 
probability of target attainment analysis for continu-
ous infusions was corroborated in obese and non-obese 
patients based on lower meropenem interstitial tissue 
fluid versus plasma exposure.

Treatment optimization: higher probability of target 
attainment of meropenem was achieved with prolonged 
infusions in obese patients and with continuous infusions 
in non-obese patients.

plasma [9, 10]. Similarly, it is unclear whether the defined 
PK/PD targets apply to obese patients, who have higher rates 
of antibiotic therapy failure [11, 12], possibly due to reduced 
anti-infective exposure in ISF with large body mass [13, 14]. 
Knowledge of meropenem ISF exposure in obese individuals 
is urgently needed to answer these questions. Microdialysis 
is an established tool to measure unbound drug concentra-
tions in ISF of tissues and organs [15].

Wittau et al. [16] integrated meropenem plasma and ISF 
concentrations obtained from microdialysis in a population 
pharmacokinetic model followed by probability of target 
attainment (PTA) analysis as recommended by the European 
Medicines Agency to support the selection of appropriate 
dosing regimens [15]. Yet, the low number of patients and 
lack of a control group compromised the PK/PD analysis 
and prevented the quantification of the effect of a body size 
descriptor on meropenem pharmacokinetics.

The current study aimed to investigate (1) whether 
reported PK/PD targets apply to obese patients by compar-
ing ISF penetration over a wide range of body mass and (2) 
whether meropenem dosing regimens achieve effective con-
centrations in obese and non-obese patients and to identify 
patients at risk for not achieving effective concentrations. 
For this, data from a controlled clinical trial were analyzed 
in a population pharmacokinetic model to characterize 
plasma and ISF pharmacokinetics of meropenem after a sin-
gle short-term intravenous infusion in obese and non-obese 
patients. Subsequently, we evaluated six clinically relevant 
dosing regimens of three different infusion lengths regarding 
the achievement of effective exposure using PTA analysis.

2 � Methods

2.1 � Study Population

Detailed information about study design, procedures, and 
data collection in this prospective, parallel-group, open-
label, controlled single-center trial (EudraCT No. 2012-
004383-22) have been described elsewhere [17]. Inclusion 
criteria were abdominal surgery, age ≥ 18 years, body mass 
index (BMI) = 18.5–30 kg/m2 for non-obese and BMI ≥ 35 
kg/m2 for obese patients. Exclusion criteria comprised liver 
cirrhosis. Non-obese patients were age and sex matched to 
those in the obese patient group.

2.2 � Meropenem Dosing and Pharmacokinetic 
Sampling

Patients received a standard (weight-independent) single 
intravenous infusion of meropenem 1000 mg after induc-
tion of anesthesia through an additional venous access over 
30 min (60–30 min before incision).

is a carbapenem antibiotic with activity against a broad 
spectrum of Gram-positive and Gram-negative bacteria, 
including Pseudomonas aeruginosa and extended-spectrum 
β-lactamase-producing pathogens [1, 2]. Meropenem exhib-
its time-dependent bactericidal activity, and the pharmacoki-
netic/pharmacodynamic (PK/PD) parameter best predicting 
clinical and microbiological outcomes is the fraction of time 
that unbound (i.e., “free”) meropenem concentrations exceed 
the minimum inhibitory concentration (MIC) for a given 
pathogen during the dosing interval (%fT > MIC) [3].

MIC values cover non-species-related (when species 
information is not available in the clinical setting) and 
species-related susceptibility and resistance breakpoints 
of relevant pathogens defined by the European Committee 
on Antimicrobial Susceptibility Testing (EUCAST), e.g. 
Enterobacter spp., P. aeruginosa, Neisseria meningitidis 
[4]. A broad range of time-dependent PK/PD targets linking 
%fT > MIC to bactericidal activity and clinical cure has been 
discussed for β-lactams covering %fT > MIC = 40 for bacte-
ricidal effect (murine thigh-infection model) to %fT > MIC 
= 100 (severe bacterial infections in critical illness) [5, 6].

To date, two clinical studies have investigated the phar-
macokinetic differences of meropenem in the plasma or 
serum of obese and non-obese patients [7, 8]. However, 
these studies lacked data on meropenem exposure at the site 
of infection, which is mostly outside of the systemic circula-
tion. For example, whether stricter PK/PD targets related to 
multiples of MIC are needed to avoid concentrations con-
tinuously below MIC at the site of infection for continuous 
infusions is under debate, e.g. in the interstitial space fluid 
(ISF), where exposure has been reported to be lower than in 
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Dense blood sampling (pre-dose and after 0.5, 1, 2, 3, 
4, 5, 6, and 8 h) and collection of microdialysate samples 
in ISF of subcutaneous adipose tissue (pre-dose and 0–0.5, 
0.5–1, 1–1.5, 1.5–2, 2–3, 3–4, 4–5, 5–6, 6–7, and 7–8 h) of 
both upper arms (one catheter per arm) were performed. 
Catheters were inserted into both upper arms (one catheter 
per arm) to allow quantification of catheter-related variabil-
ity [18] and to allow precise estimation of pharmacokinetic 
parameter values associated with the ISF. To derive drug 
concentration in ISF from microdialysate concentrations, 
the retrodialysis calibration method was used [18–20]. Sam-
pling, preparation, and storage are described by Simon et al. 
[17], and meropenem concentrations were quantified using 
validated high-performance liquid chromatography ultra-
violet detection (lower limit of quantification = 0.1 mg/L 
in plasma and 0.02 mg/L in microdialysate) [21]. Based on 
in-process quality control samples (50, 15, and 0.5 mg/L 
in plasma or 15, 1.5, and 0.15 mg/L in 0.9% NaCl as the 
surrogate for microdialysate, respectively), the mean intra-/
interassay imprecision and inaccuracy were < 4% coefficient 
of variation (CV). The autosampler stability (20–24 h/6°C) 
was 99.2 ± 3.6% (plasma) and 98.3 ± 4.1% (microdialysate/
retrodialysate). Further details on the bioanalysis of mero-
penem are provided elsewhere [21].

2.3 � Software

Nonlinear mixed-effects model development and simula-
tions were performed in NONMEM v7.4.3 (Icon Develop-
ment Solutions, Ellicott City, MD, USA, FOCE Interaction) 
accessed with PsN v4.8.1 through Pirana v2.9.6 (Certara, 
Princeton, NJ, USA). RStudio v1.2.1335 (Boston, MA, 
USA) was used for dataset preparation, model evaluation, 
and post-processing of results. Stepwise covariate modeling 
was performed in PsN v4.8.1.

2.4 � Meropenem Population Pharmacokinetic Model 
Development

Meropenem standard (observations available in this clini-
cal study) and alternative dosing regimens (Table S1 in the 
electronic supplementary material [ESM]) in both patient 
populations were evaluated via Monte Carlo simulations 
based on the developed population pharmacokinetic model. 
Two- and three-compartment (mammillary and serial) phar-
macokinetic models with plasma data attributed to the cen-
tral and ISF data to the central or peripheral compartments 
were evaluated using the integrated dialysate-based mod-
eling approach [22, 23]. Elimination from the central com-
partment and intercompartmental flows were assessed using 
linear and nonlinear processes. Between-patient variability 
was implemented assuming a log-normal distribution of 
the individual parameters. Microdialysis technique-related 

variabilities between patients, within catheters, and between 
catheters were characterized assuming a logit-normal distri-
bution to confine relative recovery values to 0–100%. Addi-
tive, proportional, combined additive and proportional, and 
log-normal models of residual unexplained variability were 
evaluated.

Statistical comparisons between nested models with 
additional covariates were made using the likelihood ratio 
test and based on the Akaike information criterion for non-
nested models [24]. Model selection was based on statistical 
significance (p < 0.05) and the plausibility and precision of 
parameter estimates.

2.4.1 � Impact of Body Size Descriptors and Renal Function 
on Meropenem Pharmacokinetics

Clinical and demographic characteristics were tested for 
inclusion as covariates. First, the relationship between phar-
macokinetic parameters and body size descriptors was evalu-
ated via allomeric scaling (fixed or estimated exponents) 
[25], and the impact of creatinine clearance (CLCRCG) on 
meropenem clearance was evaluated via linear and power 
relationships. Allometric scaling [26] was implemented 
based on body size descriptors (ideal [27], lean [28], total 
or adjusted body weight [ABW] [29], or BMI) to (1) ensure 
simplicity and therefore clinical applicability and (2) avoid 
type I errors by selecting numerous different combinations 
of covariates in allometric scaling. To test whether allomet-
ric principles held, allometric exponents of the selected body 
size descriptor were also estimated separately for volumes 
and flows and compared with the theory-based fixed expo-
nents (1 for volumes and 0.75 for flows). The least biased 
body size descriptor in the calculation of CLCRCG [30] in 
obese patients was reported to be ABW, based on a retro-
spective study including 3678 patients with stable renal 
function [31]. CLCRCG based on other body size descriptors 
(ideal, lean, or total body weight) and predicted glomerular 
filtration rate via the Modification of Diet in Renal Disease 
(MDRD) equation [32] and Chronic Kidney Disease Epide-
miology Collaboration (CKD-EPI) [33] equation (untrans-
formed and “de-indexed”, i.e., de-normalized [34] via indi-
vidual predicted body surface area [35]) were also evaluated.

ABW in male and female individuals was calculated 
according to Erstad [36].

2.4.2 � Implementation of Remaining Covariate 
Relationships

After the implementation of allometric scaling, all other 
characteristics considered biologically plausible to affect the 
pharmacokinetics of meropenem were evaluated via step-
wise covariate modeling (α = 0.05 for forward inclusion, α 
= 0.01 for backward deletion) [37].
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Continuous covariates were normalized to the study 
median values, and linear, exponential, and power covariate 
pharmacokinetic parameter relationships were evaluated. 
Categorical covariates were incorporated in the model as 
index variables using the following general equation:

with θi as the individual model-predicted pharmacokinetic 
parameter for a patient with a covariate value covi (either 0 
or 1), θpop as the population pharmacokinetic parameter, and 
θcov as the covariate effect parameter.

Remaining structural parameter correlations were esti-
mated by implementation of covariance terms. Finally, we 
investigated whether the identified covariate relationships 
explained potential remaining differences in pharmacoki-
netic parameters between obese and non-obese patients by 
separate population-specific estimation of all pharmacoki-
netic parameters followed by likelihood ratio testing [24].

2.5 � Population Pharmacokinetic Model Evaluation

Population pharmacokinetic models were evaluated with 
standard goodness-of-fit plots (e.g., observed vs. predicted 
meropenem concentrations and conditional weighted residu-
als vs. population prediction/time). The predictive model 
performance was assessed with visual predictive checks (n 
= 1000), and the uncertainty, bias, and stability of parameter 
estimates was evaluated using the nonparametric bootstrap 
(n = 1000) [38]. Statistically significant differences (p < 
0.05) in individual parameter estimates between obese and 

�i = �pop ×
(

1 + �cov × covi
)

,

non-obese patients were investigated using the Mann–Whit-
ney–Wilcoxon test.

2.6 � Target‑Site Penetration in Obese 
and Non‑Obese Patients

To demonstrate the impact of ABW and CLCRCG_ABW on 
meropenem exposure, simulations of meropenem plasma 
and ISF concentrations over 8 h following short-term, pro-
longed (both 1000 mg), and continuous (3000 mg/24 h) 
infusion were performed covering the study range of ABW 
(ABW  = 60–120 kg) and CLCRCG_ABW (CLCRCG_ABW 
= 60–200 mL/min) covering the range of patient character-
istics in the study cohort (Table 1).

The extent of meropenem penetration into ISF in obese 
versus non-obese patients was evaluated by the commonly 
evaluated ratio of the area under the unbound drug concen-
tration–time curve (AUC) between 0 and 8 h (fAUC​0–8h) in 
ISF to plasma (i.e., [fAUC​0–8h, ISF] : [fAUC​0–8h, plasma]; pen-
etration index). Given the negligible plasma protein binding 
(~ 2%) of meropenem, it was considered unbound in plasma 
[39].

Since the antibiotic effect of β-lactams such as mero-
penem has been demonstrated to be time dependent [5, 
6], an AUC-related penetration index is irrelevant for the 
outcome of meropenem therapy, so we also evaluated the 
ratio of the effect-related %fT > MIC in ISF to plasma (i.e., 
[%fT > MIC, ISF] : [%fT > MIC, plasma]; effective penetration 
index). Both were evaluated for (1) ABW = 60–120 kg at 
healthy renal function (CLCRCG_ABW = 100 mL/min) and 
(2) CLCRCG_ABW = 60–140 mL/min at ABW = 60.0 kg. To 

Table 1   Patient-specific and 
surgery-specific characteristics 
of obese and non-obese patients

Data are presented as median (range) or count (%)
ABW adjusted body weight, BMI body mass index, CLCRCG_ABW creatinine clearance calculated via Cock-
croft–Gault using ABW, MAP mean arterial pressure (summary statistics computed based on individual 
median of observed intra-anesthetic data and post-anesthetic data, respectively)
a Time-varying parameter

Characteristics Population

Full (n = 30) Obese (n = 15) Non-obese (n = 15)

Sex, female 26 (86.7) 13 (86.7) 13 (86.7)
Age, years 51.5 (30.0–65.0) 52.0 (30.0–65.0) 50.0 (31.0–64.0)
Total body weight [kg] 101 (52.0–230) 121 (96.0–230) 65.0 (52.0–84.0)
BMI [kg/m2] 32.6 (20.5–81.5) 44.7 (38.1–81.5) 23.6 (20.5–27.1)
ABW [kg] 70.5 (51.4–128) 81.6 (66.0–128) 60.3 (51.4–72.8)
Serum creatinine concentration 

[µmol/L]
63.0 (40.6–127) 63.0 (40.6–103) 66.4 (51.8–127)

CLCRCG_ABW [mL/min] 87.9 (51.3–188) 99.4 (51.3–188) 76.0 (53.6–136)
Anesthesia duration [h] 4.22 (2.38–8.63) 4.08 (2.97–5.63) 4.78 (2.38–8.63)
MAPa [mmHg] 75.4 (48.3–130) 76.7 (48.3–130) 72.5 (53.3–105)
Intra-anesthetic 72.7 (50.0–105) 72.5 (50.0–102) 75.0 (53.3–105)
Post-anesthetic 85.0 (48.3–130) 96.7 (48.3–130) 81.2 (58.3–105)
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investigate whether PK/PD targets related to 4 × MIC for 
continuous infusions are suitable to avoid ISF concentra-
tions below MIC for the entire dosing interval (i.e., effective 
penetration index = 0) %fT > MIC was related to 4 × MIC in 
plasma and 1 × MIC in ISF.

2.7 � Model‑Based Evaluation of Dosing Regimens

To evaluate whether meropenem dosing regimens are suf-
ficient to achieve effective concentrations in obese and non-
obese patients when non-susceptible or resistant bacteria 
are encountered in the clinic, PTA analyses were performed 
for susceptibility and resistance breakpoints (EUCAST). To 
determine the PTA of various simulated dosing regimens, 
Monte-Carlo simulations (n = 1000 per covariate combina-
tion) of meropenem concentrations over time in plasma and 
ISF for the first day of treatment were performed using the 
developed population pharmacokinetic model and virtual 
patients without the effect of anesthesia. PTA for achieving 
a PK/PD target of %fT > MIC = 95 [6] and %fT> MIC = 40 [5] 
was calculated for MIC = 0.25 mg/L, 2 mg/L (EUCAST 
epidemiological cut-off value for P. aeruginosa and Entero-
bacteriaceae), and 8 mg/L (non-species-related resistance 
breakpoint). These PK/PD targets were selected to cover a 
broad range of PK/PD targets and to ensure comparability 
with other PK/PD evaluations of meropenem in (morbidly) 
obese patients [7, 8, 16]. The PK/PD target of %fT > MIC = 95 
was selected instead of %fT > MIC = 100, since treatment at 
day 1 was evaluated during PTA analysis and meropenem 
concentrations in all matrices are zero before the first dose, 
preventing any concentration–time profile from attaining 
%fT  > MIC = 100. For continuous infusions, stricter PK/PD 
targets were selected: %fT > MIC was related to 4 × MIC [10].

To determine whether meropenem dosing regimens are 
sufficient to achieve effective concentrations in obese and 
non-obese patients in routine clinical settings, we calculated 
the sum of PTA weighted by the relative frequency of MIC 
values (cumulative fraction of response [CFR] [40]) for spe-
cific pathogens. Infections by pathogens commonly treated 
with meropenem [41] were selected (E. coli, C. freundii, K. 
pneumoniae, P. aeruginosa).

A dosing regimen was considered adequate if the PTA 
or CFR was ≥ 90% [15]. We also assessed whether the 
meropenem toxicity threshold concentration was reached, 
for which a 50% risk of developing a neurotoxicity event 
has been reported [42]. The dosing regimens evaluated via 
simulations were thrice-daily (TID) intravenous short-term 
(30 min) or prolonged (3 h) infusions of 1000 and 2000 mg 
meropenem over 24 h, and continuous infusions of 3000 and 
6000 mg meropenem starting immediately after a 1000-mg 
30-min infusion loading dose (Table S1 in the ESM). PTA 
was assessed for different combinations of ABW (60–120 
kg) and CLCRCG_ABW (60–200 mL/min).

3 � Results

3.1 � Database

In total, 30 patients (15 obese and 15 non-obese) scheduled 
for elective abdominal surgery were recruited according to 
study protocol [17]. The 15 obese (two class II and 13 class 
III) patients were scheduled for bariatric surgery, and the 
15 non-obese patients were undergoing elective abdomi-
nal surgery, mainly tumor resection (11 patients underwent 
gynecological operations, and the remaining four opera-
tions involved the stomach, liver, kidneys, or appendix). 
The cohort was predominantly female (26/30 patients) and 
covered a wide BMI range (BMInon–obese = 20.5–27.1 kg/m2 
and BMIobese = 38.1–81.5 kg/m2). As expected, heart rate 
and blood pressure were reduced during anesthesia versus 
the post-anesthetic period, as indicated by the derived mean 
arterial blood pressure (Table 1).

In total, 915/932 (observed/planned) meropenem concen-
trations were available, comprising plasma concentrations 
(n = 239/240), microdialysate concentrations collected via 
two catheters (to investigate microdialysis-related variabil-
ity) in the ISF of subcutaneous adipose tissue over 8 h (n = 
292/300 + 293/300), and retrodialysate concentrations (n = 
46/46 + 45/46).

The geometric mean, selected to account for the hetero-
scedasticity of observed maximum meropenem concentra-
tions (Cmax) in plasma and at target site were lower in obese 
than in non-obese patients (ΔCmax, plasma = − 19.6% and 
ΔCmax, target site = − 38.5 to − 40.9%; Fig. 1; Fig. S1 in the 
ESM), whereas observed minimum concentrations (Cmin) 
were higher in obese than in non-obese patients (ΔCmin, plasma 
= + 49.7% and ΔCmin, target site = + 38.6 to + 54.3%).

3.2 � Population Pharmacokinetic Model

The developed pharmacokinetic model was a serial three-
compartment model (Table 2, Fig. 2) with a significantly 
higher total meropenem volume of distribution (V1 + V2 
+ V3, median [range]) in obese (22.8 L [18.0–38.8]) than 
in non-obese patients (15.4 L [12.1–18.0]; p < 0.001) and 
similar clearance for obese (CL = 12.2 L/h [6.33–20.6]) and 
non-obese patients (CL = 10.5 L/h [5.38–14.6]; p = 0.250; 
Table 3). Individual volumes of distribution were higher in 
obese than in non-obese patients for V1, V2, and V3 (V1,obese 
= 10.1 L [6.09–17.5]; V1,non–obese = 6.67 L [3.87–11.5]; p 
= 0.001; V2,obese = 11.7 L [8.04–17.9]; V2,non–obese = 7.49 
L [5.28–9.95]; p < 0.001; V3,obese = 3.06 L [2.28–4.41], 
V3,non–obese = 2.07 L [1.77–2.51]; p < 0.001). Concentra-
tions in ISF were related to the first peripheral compartment, 
which was best described by a tissue factor, scaling predicted 
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meropenem concentrations in this peripheral compartment 
to ISF concentrations (Fig. 2).  

The evaluation of the relationship of individual param-
eter estimates (empirical Bayes estimates) before covariate 
implementation and potential covariates revealed an impact 
(p < 0.01) of different body size descriptors on volumes 
of distribution (total body weight, BMI, ABW, lean body 
weight; Fig. S2 in the ESM) and CL (total body weight, 
BMI, ABW; Fig. S3 in the ESM).

The effect of ABW on central and peripheral volumes 
(V1–3), CL, and intercompartmental flows (Q1–2) was 
implemented using theory-based allometric scaling with 
fixed exponents [25] (i.e., positive relationships of phar-
macokinetic parameters with body size with the exponents 
1 for V1–3 and 0.75 for CL and Q1–2, respectively) based 
on likelihood ratio testing (Table S2 in the ESM). When, 
instead, exponents were estimated separately for flows and 
volumes, the decrease in objective function value (OFV) was 
not significant (p = 0.104, ΔOFV = − 2.64) and the 90% 
confidence interval (CI) of estimates included the theory-
based allometric exponents of 0.75 for flows (0.505; 90% 

CI = 0.135–0.876) and 1 for volumes (0.757; 90% CI = 
0.408–1.10).

Additionally, positive relationships between CLCRCG 
(via total, lean, and adjusted body weight) and predicted 
glomerular filtration rate (via the MDRD and CKD-EPI 
equations de-indexed by individual body surface area; Fig. 
S3 in the ESM) on CL were evident. The very high con-
cordance (Lin’s concordance correlation coefficient ≥ 0.962; 
Fig. S4 in the ESM) between CLCRCG_ABW and de-indexed 
predicted glomerular filtration rate via the MDRD and 
CKD-EPI equations resulted in similar model performance 
(Table S2 in the ESM). Since ABW was selected during 
allometric scaling and to enhance simplicity, CLCRCG_ABW 
was selected in the final model.

CL was successfully split into a renally filtered part 
related to CLCRCG_ABW (CLRfilt = 5.48 L/h; 29% relative 
standard error [RSE]) and CL accounting for remaining elim-
ination pathways scaling with ABW (CLnonfilt = 4.99 L/h, 
32.5% RSE).

Fig. 1   Observed maximum (top 
panel) and minimum (bottom 
panel) meropenem concentra-
tions in plasma (total) and in 
the interstitial space fluid of 
subcutaneous adipose tissue 
obtained via microdialysis 
(unbound) using two catheters 
for obese (red, n = 15) and non-
obese (green, n = 15) patients. 
Boxplots show the second to 
third quartile (box) and observa-
tions within (whiskers) and 
outside (dots) the interquartile 
range. Dashed horizontal lines 
indicate the minimum inhibitory 
concentrations. ISF interstitial 
space fluid, s.c. subcutaneous
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Table 2   Parameter estimates 
(pharmacokinetic parameters for 
meropenem and microdialysis 
methodology-related 
parameters) including bootstrap 
results of the final model of 
meropenem in obese and non-
obese patients

ABW adjusted body weight, ANAE_TF anesthesia effect on TF, CI confidence interval, CL clearance, 
CLCRCG_ABW creatinine clearance calculated via Cockcroft-Gault based on ABW, CLnonfilt clearance 
accounting for the remaining elimination scaling with ABW, CLRfilt renally filtered part of CL related to 
CLCRCG_ABW, CMT1/CMT2/CMT3 central/peripheral/deep peripheral compartment, CV coefficient of 
variation, MAP mean arterial pressure, OBE obesity, Q1/Q2 intercompartmental flow of meropenem from 
CMT1/CMT2 to CMT2/CMT3, RROBE/RRNOBE relative recovery for obese/non-obese patients, RSE rela-
tive standard error, TF tissue factor, V1/V2/V3 volume of distribution parameters for CMT1/CMT2/CMT3 of 
meropenem, σ residual unexplained variability, σ2 variance associated with retrodialysis
a Convergence rate of nonparametric bootstrap (n = 1000): 91.6%
b RSE of random effects are reported on approximate standard deviation scale
c Scaled (linear relationship) with the ratio of individual CLCRCG_ABW to the median CLCRCG_ABW in over-
all population (87.9 mL/min)
d Allometrically scaled with ABW centered to median in overall population (70.5 kg) with exponent of 1 for 
volumes and 0.75 for flows
e Change of CLnonfilt per mmHg deviation of MAP from 75 mmHg (linear relationship)
f Change of TF after anesthesia
g Fixed to interassay variability

Parameter Final model Bootstrapa

Estimate (RSEb, %) Median (95% CI)

Structural and covariate parameters
 CLRfilt scaled via CLCRCG_ABW

c, L/h 5.48 (29.0) 5.34 (1.01–8.91)
 CLnonfilt scaled via ABWd, L/h 4.99 (32.5) 5.13 (1.91–9.91)
 MAP_CLnonfilt

e,% 0.618 (37.1) 0.594 (0.141–2.01)
 V1 scaled via ABWd [L] 7.24 (10.7) 7.24 (5.67–8.68)
 Q1

d scaled via ABWd [L/h] 31.3 (10.2) 31.4 (26.1–38.5)
 V2

d scaled via ABWd [L] 9.39 (8.00) 9.37 (7.96–11.1)
 Q2

d scaled via ABWd [L/h] 3.06 (34.3) 3.20 (0.73–5.56)
 V3

d scaled via ABWd [L] 2.14 (19.2) 2.14 (1.32–3.06)
 TF, % 37.2 (11.4) 37.1 (29.7–47.4)
 ANAE_TFf, % 19.0 (20.4) 19.1 (11.8–26.4)
 RROBE, % 31.0 (10.1) 31.0 (25.8–37.6)
 RRNOBE, % 55.3 (9.90) 55.7 (45.6–65.8)

Interindividual variability parameters, %CV
 CL 20.8 (13.4) 19.9 (13.9–25.4)
 V1 34.1 (18.9) 32.9 (19.2–48.4)
 Q1 43.1 (19.3) 41.8 (22.0–57.7)
 V2 32.2 (15.6) 31.5 (19.3–40.5)
 TF 46.2 (15.0) 44.9 (31.4–58.6)

Coefficients of correlation
 V2–Q1 0.630 (41.1) 0.624 (0.140–0.859)
 Q1–TF 0.281 (27.1) 0.298 (0.0343–0.586)

TF–RR − 0.764 (31.2) − 0.797 (− 0.938 to − 0.477)
Microdialysis technique-related variability parameters
 σ2

Interindividual RR 0.388 (38.1) 0.355 (0.341–0.820)
 σ2

Intercatheter RR 0.157 (49.8) 0.151 (0.214–0.583)
 σ2

Intracatheter RR 0.515 (44.9) 0.519 (0.373–1.01)
Residual variability parameters
 σadditive, plasma, mg/L 0.0600 (28.2) 0.0603 (0.0187–0.140)
 σproportional, plasma, %CV 8.43 (12.3) 8.25 (6.24–10.4)
 σproportional, microdialysis, %CV 18.3 (9.70) 17.9 (14.9–21.6)
 σproportional, retrodialysis, %CV 2.3 FIXg 2.3 FIXg 
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Fig. 2   Illustration of the final meropenem population pharmacoki-
netic model. Impact of patient (black: body size descriptors; orange: 
categorical difference between obese and non-obese patients; purple: 
kidney function) or therapy factors (pink: anesthesia-related factors) 
on pharmacokinetic parameters (blue); green: microdialysis-related 
observation types; eyes: observations. ABW adjusted body weight, 
ANAE anesthesia, CLCRCG_ABW creatinine clearance calculated via 
Cockcroft–Gault based on ABW, CLnonfilt clearance accounting for the 
remaining elimination scaling with ABW, CLRfilt renally filtered part 

of CL related to CLCRCG_ABW, CMT1/CMT2/CMT3 central/periph-
eral/deep peripheral compartment, CISF concentration in the intersti-
tial space fluid of subcutaneous adipose tissue, Cplasma total plasma 
concentration, CRD1/2 retrodialysate concentration from catheter 1/2, 
CRP retroperfusate concentration, CµD1/2 microdialysate concentration 
from catheter 1/2, MAP mean arterial pressure, OBE obesity, Q1/Q2 
intercompartmental flow of meropenem from CMT1/CMT2 to CMT2/
CMT3, RR relative recovery, TF tissue factor, V1/V2/V3 volume of dis-
tribution parameters for CMT1/CMT2/CMT3 of meropenem

Table 3   Individual meropenem 
parameter estimates and 
exposure predictions of the final 
population pharmacokinetic 
model in (morbidly) obese and 
non-obese patients

CI confidence interval, CLtotal total clearance, Cmax maximum concentration, Cmin minimum concentration, 
Vtotal total volume of distribution
a Student t-test between obese and non-obese subpopulation
b Entries are median (range)
c Normalized to total body weight
d Normalized to adjusted body weight
e Entries are median (95% CI) based on 1000 Monte Carlo simulations

Parameter Obese population (n = 15) Non-obese population (n = 15) p-valuea

Parameter estimateb

 Vtotal, L 22.8 (18.0–38.8) 15.4 (12.1–18.0) < 0.001
 Vtotal, L/kgc 0.179 (0.144–0.260) 0.236 (0.159–0.315) 0.00167
 Vtotal, L/kgd 0.259 (0.217–0.395) 0.262 (0.201–0.360) 0.967
 CLtotal, L/h 12.2 (6.33–20.6) 10.5 (5.38–14.6) 0.250

Exposure predictione

 Cmax, mg/L
  Plasma 48.6 (28.1–80.8) 63.0 (38.8–99.0) < 0.001
  Interstitial tissue fluid 10.9 (3.40–32.5) 14.6 (1.05–44.8) < 0.001

 Cmin, mg/L
  Plasma 0.930 (0.0994–4.11) 1.01 (0.0847–4.48) 0.550
  Interstitial tissue fluid 0.619 (0.08–3.24) 0.641 (0.08–3.27) 0.320
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Implementation of these two patient characteristics 
as covariates entirely explained differences in population 
parameter estimates between obese and non-obese patients.

Relative recovery estimates for catheters were variable 
and significantly lower for obese (31.0% [26.4–61.6]) than 
non-obese patients (55.4% [31.5–81.5]; p < 0.001). Addi-
tionally, the anesthesia status of the patient and mean arte-
rial blood pressure impacted the tissue factor and CLnonfilt, 
respectively: post anesthesia, the tissue factor was 19.0% 
(11.4% RSE) larger than during anesthesia, and a 10% 
increase of mean arterial blood pressure increased CLnonfilt 
by 6.2% (37% RSE).

Inclusion of these covariates considerably decreased the 
between-patient and retrodialysis-related variability com-
pared with the base model (15.1–31.0% relative reduction in 
CV). Microdialysis/retrodialysis data with repeated measure-
ments from two catheters allowed quantification of micro-
dialysis technique-related variabilities, which were large 
between patients (σ2 = 0.388) and within catheters (σ2 = 
0.515) and comparably low between catheters (σ2 = 0.157).

The key model development steps are detailed in Table S2 
in the ESM. Adequate model prediction for all three matrices 
was demonstrated by visual predictive checks (Figs. S5–6 in 
the ESM): The final pharmacokinetic model adequately cap-
tured both the central tendency and the variability of mero-
penem pharmacokinetics in all investigated matrices. Addi-
tionally, all meropenem pharmacokinetic- and microdialysis 
technique-related parameters were precisely estimated (RSE 
≤ 49.8%, Table 2), and the results of model evaluation dem-
onstrated appropriate model performance (Figs. S7–8 in the 
ESM). A small trend of underpredicting low meropenem 
plasma concentrations in obese patients and overpredicting 
low concentrations in non-obese patients remained (Fig. S7 
in the ESM, top panel). This trend remained when allomet-
ric exponents were estimated instead of using theory-based 
allometric exponents (abolsute average fold error [AAFE]: 
AAFEobese =  0.996, AAFEnon–obese =  1.05 and slope of 
observed vs. predicted plasma concentrations: Slopeobese 
= 0.985; 95% CI = 0.938–1.03 and Slopenon–obese = 0.958; 
95% CI = 0.910–1.01). No trends were found when inspect-
ing random-effects variables for structural pharmacokinetic 
parameters versus the identified covariates (Figs. S9–10 in the 
ESM). Additionally, after implementation of the impact of body 
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mass on pharmacokinetic parameters, no additional impact of 
obesity on any pharmacokinetic parameter remained in the 
final pharmacokinetic model (p > 0.05) as judged by likeli-
hood ratio testing. Visual predictive checks stratified by obesity 
status demonstrated that, for low plasma concentrations, the 
trend in the median of observed values for obese and non-obese 
patients was also observable. However, for obese and non-obese 
patients, not only the median of observed values was within the 
95% CI of the median of predicted concentrations (Fig. S6 in 
the ESM, top panel) [43]. This also applied to the 5th and 95th 
percentiles of meropenem plasma concentrations. This qualified 
the model application for the intended use of simulating with 
interindividual variability in both subpopulations.

3.3 � Interstitial Space Fluid Penetration in Obese 
and Non‑Obese Patients

Simulated maximum concentrations in patients with ABW 
= 120 kg (obese) compared with ABW = 60 kg (non-obese) 
were lower in plasma and in ISF (34.9–47.8% decrease 
throughout all dosing regimens, Fig. 3A). In the final descend-
ing phase within one dosing interval (8 h), an inverse trend 
was observed for short-term and prolonged infusion dosing 
regimens (Fig. 3A, left and middle panels), with patients of 
ABW = 120 kg having higher minimum plasma and ISF con-
centrations (50.0–332% increase). For continuous infusions 
(Fig. 3A, right panel), this inverse effect was not evident: Sim-
ulated meropenem plasma and ISF concentrations in patients 
with ABW = 120 kg were continuously below simulated con-
centrations in patients with ABW = 60 kg. Throughout all 
simulated dosing regimens, patients with CLCRCG_ABW = 200 
mL/min had lower minimum plasma and ISF concentrations 
than patients with CLCRCG_ABW = 60 mL/min (from 10.8% 
reduction to even no remaining concentration; Fig. 3C).

The model-predicted, commonly evaluated ISF to plasma 
ratio of fAUC​0–8h (penetration index) was similar over the 
ABW range: 30.7% (95% CI = 25.0–37.8) for 120 kg vs. 
30.2% (95% CI = 24.7–37.2) for 60 kg. Similarly, for simu-
lated short-term and prolonged infusions (Fig. 3B; Fig. 
S11 in the ESM, left and middle panels), the ISF to plasma 
ratio of %fT > MIC (effective penetration index) was rela-
tively similar over the investigated ABW range for MIC ≤ 2 
mg/L (≤ 11.9% relative reduction). In contrast, the effective 
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penetration index for MIC = 8 mg/L decreased from 60 to 
120 kg ABW (≥60.3% relative reduction, Fig. 3B; Fig. S11 
in the ESM, upper panels). Similar trends were observed for 
varying CLCRCG_ABW, yet relative differences were lower 
than for ABW (Fig. 3D; Fig. S11 in the ESM, lower panels).

For simulated continuous infusions (%fT > MIC related to 
4 × MIC in plasma to avoid suspected ISF concentrations 
constantly below the MIC and 1 × MIC in ISF; Fig. 3B, 
right panel) ISF:plasma %fT > MIC ratios were ≥0.983 over 
the entire ABW and CLCRCG_ABW range (Fig. 3B, D; Fig. 
S11 in the ESM, right panels). With increasing MIC val-
ues, the ISF:plasma %fT > MIC ratio also increased since 
%fT > MIC in plasma (related to 4 × MIC) decreased faster 
than %fT > MIC in ISF (compare Fig. S11 in the ESM). Simu-
lated unbound steady-state concentrations were 2.68 times 
(95% CI = 2.11–3.37) higher in plasma than in ISF over the 
whole ABW range (Fig. 3A, right panel).

3.4 � Model‑Based Evaluation of Dosing Regimens

When evaluating susceptibility and resistance breakpoints, 
for short-term and prolonged infusions, PTA (%fT > MIC 
= 95) increased with increasing ABW because of the afore-
mentioned inversion of concentration at the end of the dos-
ing interval (Figs. S12–13 in the ESM). Consequentially, 
at ABW > 90 kg and CLCRCG_ABW ≤ 100 mL/min for 
%fT > MIC = 95 and MIC = 2 mg/L, PTA was adequate with 
2000 mg TID prolonged infusions (Table 4, Fig. 4E). How-
ever, for the continuous infusion, higher body mass resulted 
in decreased PTA, leading to adequate PTA only for ABW < 
90 kg (%fT> MIC = 95) with a 3000 mg continuous infusion 
for MIC = 2 mg/L (inadequate PTA for all patients at MIC 
= 8 mg/L) and patients with CLCRCG_ABW ≤ 100 mL/min 
(Table 4, Fig. 4C). 

Overall, PTA analysis showed lower PTA at higher 
CLCRCG_ABW (Table 4). In all patients for %fT > MIC = 95, a 
TID prolonged infusion of 1000 mg was sufficient to achieve 
adequate PTA for MIC = 0.25 mg/L, whereas only a con-
tinuous infusion of 6000 mg sufficed for MIC = 2 mg/L. 

None of the investigated dosing regimens was adequate for 
MIC = 8 mg/L. For the lower target, %fT > MIC = 40, the 
TID short-term infusion of 2000 mg and both prolonged 
infusion dosing regimens were adequate for MIC ≤ 2 mg/L, 
and a 2000 mg TID prolonged infusion was even sufficient 
for MIC = 8 mg/L. PTA results for additional covariate com-
binations are presented in Fig. S12–S14 in the ESM.

The CFR for the standard meropenem dosing regimen 
(short-term infusions of 1000 mg TID) was sufficient for 
CLCRCG_ABW ≤ 130 mL/min and commonly encountered 
MIC distributions for E. coli, C. freundii, and K. pneumo-
niae (Fig. 4, top panel). For P. aeruginosa, the CFR of the 
meropenem standard dosing regimen was inadequate for all 
virtual patients (Fig. 4, top panel).

In addition to efficacy, the reported neurotoxicity thresh-
old [42] was not reached for the scenario with the highest 
meropenem exposure, i.e., the highest investigated daily dose 
(meropenem 6000 mg continuous infusion with 1000 mg 
loading dose) and the lowest investigated CLCRCG_ABW and 
ABW after 24 h (Fig. S15B in the ESM).

4 � Discussion

In this controlled clinical trial, dosing regimens attaining 
target meropenem concentrations were identified for obese 
and non-obese patients. Employing a strict PK/PD target 
(%fT > MIC = 95), a higher PTA was achieved with short-
term and prolonged infusions in obese patients (because 
of a higher volume of distribution and thus longer merope-
nem half-life) and with continuous infusions in non-obese 
patients. For patients with CLCRCG_ABW ≤ 100 mL/min, 
2000 mg TID prolonged infusions were sufficient for patients 
with ABW > 90 kg, and lower doses of 3000 mg/24 h (con-
tinuous infusion) were sufficient for patients with ABW 
< 90 kg. For a less conservative PK/PD target (%fT > MIC 
= 40) and MIC ≤ 2 mg/L, adequate PTA was achieved for all 
patients irrespective of ABW via the standard dosing regi-
men (1000 mg short-term infusion TID).

PTA of the standard short-term infusion meropenem dos-
ing regimen is inadequate throughout ABW = 60–120 kg 
for MIC ≥ 2 mg/L (EUCAST epidemiological cut-off value 
for P. aeruginosa and Enterobacteriaceae), whereas CFR 
(evaluation of empirical therapy) was adequate for E. coli, 
C. freundii, and K. pneumoniae (but not for P. aeruginosa). 
In contrast, for MIC ≤ 2 mg/L, we demonstrated that a con-
tinuous infusion of meropenem 6000 mg after a 1000 mg 
loading dose may be sufficient to avoid treatment adjust-
ments according to body mass. The 2.68 times (95% CI 
= 2.11–3.37) higher steady-state meropenem concentrations 
in plasma versus ISF corroborated the use of PK/PD targets 
related to 4 × MIC to avoid sustained ISF concentrations 
below MIC during continuous infusion.

Fig. 3   Simulations of meropenem concentration–time profiles (A, C) 
and the ISF:plasma ratio of %fT > MIC (B, D) for three different dos-
ing regimens (panels) with varying adjusted body weight (A, B) and 
varying creatinine clearance calculated via Cockcroft–Gault based on 
adjusted body weight (CLCRCG_ABW, C, D). *For continuous infu-
sions %fT > MIC, ISF is related to 1 × minimum inhibitory concentra-
tions (MIC) and %fT > MIC, plasma is related to 4 × MIC. Dashed hori-
zontal lines (A, B) or bold arrows (C, D): 1 × MIC of 0.25, 2, and 8 
mg/L (short-term and prolonged infusions) and 4 × MIC of 2, 8, and 
32 mg/L (continuous infusion; related to plasma). Triangles: Neuro-
toxicity thresholds for minimum plasma concentrations at steady-state 
reported by Imani et  al. [42]. %fT > MIC time that unbound merope-
nem concentrations exceeded MIC, ISF interstitial space fluid of the 
subcutaneous adipose tissue, IV intravenous, LD 1000 mg 30-min IV 
loading dose

◂
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Table 4   Meropenem probability of target attainment in plasma for (1) 
different dosing regimens, (2) adjusted body weights, (3) creatinine 
clearance values, and (4) PK/PD targets defined for %fT > MIC = 95 

and %fT > MIC = 40 at three minimum inhibitory concentrations (0.25, 
2 and 8 mg/L) each

Grey shading indicates that the probability of target attainment is < 90%
ABW adjusted body weight, CLCRCG_ABW serum creatinine clearance calculated using the Cockcroft–Gault equation based on ABW, DR dosing 
regimen, IV intravenous, MIC minimum inhibitory concentration, PTA probability of target attainment, q8h every 8 h, 95%fT > MIC/40%fT > MIC 
unbound meropenem plasma concentrations exceeding the MIC 95%/40% of the time over 24 h
a 30-min 1000 mg IV loading dose
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For the less conservative PK/PD target (%fT  > MIC 
= 40), the same trends with ABW and renal function as for 
%fT > MIC = 95 were evident, but we demonstrated that a pro-
longed infusion of 2000 mg was sufficient for all ABW and 
CLCRCG_ABW values for MIC = 8 mg/L. These results indi-
cate that the reported superiority of prolonged and continu-
ous infusions (given infusion bags are prepared accordingly 
to account for the chemical instability of meropenem [44]) 
versus short-term infusion, regarding mortality and duration 
of therapy [45, 46] may well also apply to obese patients.

The relation between CLCRCG_ABW and meropenem CL 
was consistent with previous studies [8, 47–50], and the 
additional impact of body mass on meropenem clearance 
(CLnonfilt) was in line with meropenem elimination besides 
glomerular filtration such as tubular secretion [51]. Impor-
tantly, the final pharmacokinetic model did not include sim-
ple allometric scaling of total meropenem CL with ABW but 
rather a fraction of CL (i.e., by the nonfiltered elimination 
pathway, 47.7% of total CL) was scaled by ABW and the 
dominant renally filtered elimination pathway by CLCR (see 
Sect. 3.2). Discrimination between these two elimination 
pathways was possible because of the very large range of 
ABW (51.4–128 kg, scaling of CLnonfilt) and CLCRCG_ABW 
(51.3–188 mL/min, scaling of CLRfilt) in the leveraged clini-
cal data set. However, the lack of a standardized prediction 
of glomerular filtration in obese patients has been identified 
as a major challenge in dosing of antibiotics [52]. Among 
all tested prediction methods, CLCRCG_ABW resulted in the 
lowest OFV and was hence selected as a covariate on mero-
penem CL (de-indexed predicted glomerular filtration rate 
via the MDRD or CKD-EPI equations performed equally 
well and might be used interchangeably given their frequent 
use in clinics). This was in line with results by Winter et al. 
[31], who identified the use of ABW-based CLCRCG as most 
accurate over the entire range of BMI classes. Future clinical 
trials should include individual measurements of glomerular 
filtration via standards such as 51Cr EDTA or measurement 
of meropenem concentrations in urine. This would allow a 
more accurate characterization of the distinct elimination 
processes of meropenem.

The larger CLCRCG_ABW in obese patients obtained in 
our analysis is supported by the reported initial state of glo-
merular hyperfiltration in obesity [53]. Second, a small but 
decisive influence of ABW on meropenem PTA was shown, 
corroborating the effect of body mass demonstrated in clini-
cal studies for simulated continuous infusions in obese [7, 
16] and non-obese patients [54–60]. Importantly, Chung 
et al. [8] identified no significant relationship between obe-
sity status and any pharmacokinetic parameter in a clinical 
study in 40 critically ill non-obese and (morbidly) obese 
patients, although the estimates for differences were substan-
tially in agreement with ours for some parameters. Whilst 
Chung et al. [8] selected total body weight as a covariate in 

the forward-selection step in their stepwise covariate mod-
elling, the impact of this body size descriptor was removed 
in the more stringent backwards-deletion step. The impact 
of this influence depended on the selected dosing regimen: 
PTA was adequate for patients with healthy renal function 
(CLCRCG_ABW = 100 mL/min) and high ABW (> 90 kg) 
for %fT > MIC = 95 receiving 2000 mg TID prolonged infu-
sions but inadequate when receiving a 3000 mg continuous 
infusion.

Analysis of ISF data further revealed that, for MIC > 
2 mg/L, PTA analysis solely based on plasma concentration 
in obese patients was compromised by a lower %fT > MIC 
in ISF than in non-obese patients for whom PK/PD indices 
were developed and confirmed [5, 6]. Hence, we conclude 
that for MIC > 2 mg/L, PTA exclusively based on plasma 
concentration might not be informative for the treatment of 
obese patients when current PK/PD plasma targets devel-
oped in non-obese patients are applied. In future, more reli-
able PTA should be aimed for by using the developed phar-
macokinetic model to define PK/PD targets adjusted to the 
population-specific ISF penetration.

In addition to the availability of ISF concentration data, 
which allowed inferences on meropenem distribution and 
its consequences on the interpretation of PTA, the strengths 
of this study were the high-quality, rich sampling data (915 
samples) obtained prospectively under clinical trial condi-
tions and the inclusion of a control group. Concentrations 
were measured in plasma and subcutaneous adipose tissue 
ISF in this study after a single dose, whereas sampling after 
multiple doses might have allowed evaluation of, for exam-
ple, nonlinearity of elimination processes in obese patients, 
where pharmacokinetic data are sparse. The extent to which 
concentrations at this target site can be transferred to other 
target sites is still unclear, so results regarding ISF penetra-
tion should be applied to skin and soft tissue infections and 
not to other infection sites.

Notably, single-dose administration of meropenem as 
perioperative antibiotic prophylaxis was used as a stand-
ardized surrogate for critically ill patients. Importantly, key 
pharmacokinetic parameters such as CL and volumes of dis-
tribution can substantially differ between critically ill and 
non-critically ill patients [61]. Hence, the absence of serious 
secondary diseases limits the transferability of the results. 
In fact, population pharmacokinetic parameter estimates of 
the total volume of distribution of non-obese patients in this 
study (15.4 L) were lower than literature-reported values in 
non-obese critically ill patients (21.7–24.0 L [47, 62, 63]), 
whereas CL estimates were similar (10.5 vs. 8.40–13.0 L/h 
[47, 62, 63]), although results in critically ill patients with 
augmented renal clearance (e.g., in sepsis) are expected 
to differ. Similarly, body weight-normalized estimates of 
volume of distribution were lower in obese individuals in 
this study (0.179 L/kg) than literature-reported estimates 
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Fig. 4   Plasma-based cumulative fraction of response (CFR, top 
panel) and probability of target attainment for MIC = 2 mg/L (bottom 
panels) versus ABW and CLCR after the standard meropenem dosing 
regimen (0.5–h i.v. infusion of 1000 mg, blue label) and alternative 
dosing regimens (black labels) based on MIC distributions* of four 
pathogens associated with severe skin and soft tissue infections. Bold 
black line: separates CFR or PTA ≥  90% (adequate therapy) from 
CFR or PTA < 90%. Crosses denote observed combinations of ABW 

and CLCRCG_ABW of the 15 obese (red) and 15 non-obese (green) 
patients in this study. ABW adjusted body weight, CLCRCG_ABW cre-
atinine clearance calculated via Cockcroft–Gault equation based on 
adjusted body weight, IV  intravenous, LD 30-min intravenous load-
ing dose of 1000 mg, MIC minimum inhibitory concentration, q8h 
every 8 h, 95%fT  > MIC unbound meropenem plasma concentrations 
exceeding MIC 95% of the time over 24 h. *EUCAST.org, accessed 
12 March 2021
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(0.21–0.50 L/kg [8, 64]), whereas estimates of CL were rela-
tively similar (12.2 vs. 10.0–18.0 L/h [8, 64]). Nevertheless, 
our analysis represents an important basis for future clinical 
PK/PD investigations of meropenem in obese and non-obese 
critically ill patients.

5 � Conclusion

Employing a strict PK/PD target (%fT > MIC = 95), higher 
PTA was achieved in obese patients with TID prolonged 
infusions (3 h) and in non-obese patients with con-
tinuous infusions: This suggests dosing adaptations for 
MIC = 2 mg/L and patients with healthy renal function 
(CLCRCG_ABW = 100 mL/min) and ABW > 90 kg receiving 
a 3000 mg continuous infusion but ABW < 90 kg receiv-
ing TID 2000 mg prolonged infusions. Only a continuous 
infusion of meropenem 6000 mg following a loading dose 
resulted in adequate effective exposure over the entire inves-
tigated range of ABW and CLCRCG_ABW for MIC ≤ 2 mg/L, 
but this was still inadequate for MIC = 8 mg/L.

For a less conservative PK/PD target (%fT > MIC = 40), 
no dosing adjustment was necessary for MIC ≤ 2 mg/L, 
irrespective of ABW, and a prolonged infusion of merope-
nem 2000 mg TID was sufficient for MIC = 8 mg/L and all 
investigated ABW and CLCRCG_ABW.
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