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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is the most common neoplastic disease of the pancreas, 

accounting for more than 90% of all pancreatic malignancies. As a highly lethal malignancy, 

PDAC is the fourth leading cause of cancer-related deaths worldwide with a 5-year overall survival 

of less than 8%. The efficacy and outcome of PDAC treatment largely depend on the stage of 

disease at the time of diagnosis. Surgical resection followed by adjuvant chemotherapy remains 

the only possibly curative therapy, yet 80–90% of PDAC patients present with non-resectable 

PDAC stages at the time of clinical presentation. Despite our advancing knowledge of PDAC, the 

prognosis remains strikingly poor, which is primarily due to the difficulty of diagnosing PDAC at 

the early stages. Recent advances in glycoproteomics and glycomics based on mass spectrometry 

have shown that aberrations in protein glycosylation plays a critical role in carcinogenesis, tumor 

progression, metastasis, chemo-resistance and immuno-response of PDAC and other types of 

cancers. A growing interest has thus been placed upon protein glycosylation as a potential early 

detection biomarker for PDAC. We herein take stock of the advancements in the early detection of 

PDAC that were carried out with mass spectrometry, with special focus on protein glycosylation.

Introduction

PDAC Cancer Statistics

Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer with poor prognosis and 

rising incidents. PDAC accounts for more than 90% of all pancreatic malignancies[1], and 

only 10–20% of PDAC patients are surgically resectable [2]. By 2030, PDAC is predicted to 

emerge as the second leading cause of cancer-related death in the United States, surpassing 

breast cancer [3–5]. The major challenges with treating PDAC lie in the difficulty of early 

detection and the particularly aggressive cancer biology[6]. The PDAC prognosis would be 

improved significantly when malignant lesions are identified at early stages and resected 

surgically[7]. Among the top 5 lethal cancers, PDAC is the only type without an early 

detection strategy[8].
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PDAC Pathological Features and Progression

PDAC is an infiltrating epithelial neoplasm with glandular differentiation and sialo-type 

and sulfated acid mucin production (well and moderately differentiated tumors), which is 

derived from the pancreatic ductal tree[9]. It is characterized histologically by its highly 

desmoplastic stroma embedding tubular and ductlike structures, causing ductal obstruction 

and vascular involvement[10]. PDAC is generally a multinodular and sclerotic solid tumor 

with poorly-defined margins and a whitish cut surface [9]. Apart from conventional PDAC, 

other PDAC variants including adenosquamous carcinoma (ASqC), colloid carcinoma, 

hepatoid carcinoma (HC), medullary carcinoma of the pancreas (MCP), signet ring cell 

carcinoma (SRCC), undifferentiated carcinoma with osteoclast-like giant cells (UCOGC), 

and undifferentiated carcinoma (UC) are characterized to have different histologic features 

and prognostic landscape [10].

It is believed that the pathogenesis of PDAC follows a step-wise progression similar to 

that of colorectal carccinoma [11, 12], which is characterized by the transition of a normal 

pancreatic duct to pre-invasive precursor lesions including the most common pancreatic 

intraepithelial neoplasia (PanIN), ultimately these advanced precursor lesions would develop 

into an invasive PDAC[10, 11]. The gradual accumulation of genetic mutations such as 

KRAS predominantly drives the progression of PDAC, with KRAS mutations found in 

almost all PDAC[13]. Other genetic mutations, including the loss of function in tumor 

suppressor genes such as CDKN2A, TP53, or SMAD4, the activation of oncogenic 

Her-2/neu[11, 14], and germline mutations in the genes BRCA1/2, ATM, MLH1, TP53, 

or CDKN2A[15–17], are also found in PDAC. The aggregation of multiple genomic 

aberrations in advanced PanIN lesions results in an invasive phenotype and subsequent 

metastatic disease. The aggregation of multiple genomic aberrations in advanced PanIN 

lesions results in an invasive phenotype and subsequent metastatic disease.

PDAC Diagnosis

PDAC presents clinical symptoms that are nonspecific and overlap with other conditions 

such as chronic pancreatitis, therefore a diagnosis for PDAC could only be made with a 

reasonable level of certainty after further investigations [9]. In addition, the early stages of 

PDAC are often clinically silent, creating extra challenges for PDAC diagnosis. Currently, 

the diagnosis and staging of PDAC relies heavily on imaging and cytology diagnostic 

methods, with 10% of PDAC remains isoattenuating on CT and approximately 80% of 

the patients diagnosed at advanced inoperable stages [2, 10]. Nevertheless, CT-based 

diagnoses of PDAC have an overall sensitivity of 89% and specificity of 90%. Since 

invasive approaches are often associated with delay in diagnosis, non-invasive biomarker 

could potentially provide a valuable complement. Non-invasive serum biomarkers represent 

one of the most attractive methods due to the low risk of patients and ease of access 

[18]. Currently, the serum marker carbohydrate antigen 19–9 (CA 19–9) is the only 

clinical biomarker established for pancreatic cancer management [19]. CA 19–9 is used 

extensively for disease monitoring, especially for recurrence assessment after surgery [19]. 

However, CA 19–9 does not provide adequate accuracy and sensitivity for early detection 

and diagnosis purposes, since an elevated level of CA 19–9 could indicate either PDAC 

or benign biliary/pancreatic disease [20]. The advance of proteomic technology based on 
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mass spectrometry has propelled the establishment of various pancreatic cancer biomarker 

identification methods [21–23] and the discovery of several serum biomarkers to address 

the specificity and sensitivity issues with CA 19–9[24]. Despite the efforts, none of these 

biomarkers could surpass the performance of CA 19–9 to be translated into clinical use 

for the early detection of PDAC[24, 25]. Capitalizing the biological relevance with tumor 

progression [26] and prevalence of protein glycosylation might be a promising path for 

PDAC early detection.

Protein Glycosylation and Its Cancer Implication

Protein glycosylation is the one of the most abundant protein modifications, involving 

proteins comprising ~50% of the human proteome[27]. Protein glycosylation is highly 

diversified to conform with various biological and physiological functions[28–33]. Protein 

glycosylation is a multi-step enzymatic process that occurs in the endoplasmic reticulum 

and Golgi apparatus[34]. N-linked and O-linked glycosylation are the most common protein 

modifications involving glycan conjugation. N-linked glycans are linked to the amide group 

of asparagine residues in a consensus Asn-X-Ser/Thr sequence (X could be any amino acid 

other than proline), with, N-glycans in eukaryotic cells sharing a common core sequence, 

Manα1–3(Manα1–6)Manβ1–4GlcNAcβ1–4GlcNAcβ1–Asn-X-Ser/Thr [34]. In contrast, O-

linked glycans are linked to the hydroxyl group of serine, threonine or tyrosine residues 

without an obvious motif preference and involving various initiating monosaccharides [34]. 

Apart from N- and O-linked glycosylation, major components of the extracellular matrix 

(ECM), such as proteoglycan proteins, including galectins and hyaluronan, also contain 

abundant sugar moieties, with differential abundance of these ECM-related proteoglycans 

impacting cell proliferation and migration.

Protein glycosylation can be altered in structure and density (hyper, hypo, or neo-

glycosylation) in association with changes in cellular pathways in cancer [35, 36], which 

was first described 50 years ago [37]. Since then, altered glycosylation patterns have 

long been considered as hallmarks in various epithelial cancers [38–42], including PDAC. 

Aberrant protein glycosylation can influence cancer cells proliferation, metastasis, invasion, 

and interactions within the tumor microenvironment [35]. Glycosylation alterations that are 

often associated with cancer include fucosylation, sialyation, increased GlcNAc branching 

of N-glycans and hyper-expression of truncated O-glycans such as Tn and sialyl-Tn (sTn) 

[43]. These signature alterations in cancer-associated glycosylation may provide novel 

diagnostic markers and even therapeutic targets.

In general, the carcinogenesis relies on a series of sequential obligatory steps beginning 

with the detachment from neighboring cells as well as the concomitant degradation 

and remodeling of the basement membrane (BM), which is the barrier to tumor cells 

dissemination [44, 45]. Tumor cells acquire the ability to penetrate the surrounding tissues 

through the disruption of cell-cell junction, which seals the luminal of blood vessels [46, 

47]. Consequently, tumor cells start to separate from the primary tumor and enter the 

systemic circulatory, and migrate to distant organ to form metastatic. A critical step in 

metastatic process is the epithelial-mesenchymal transition (EMT), where the epithelial cells 

exhibit altered phenotypes leading to novel functions, characterized by enhanced migratory 
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and invasive potentials. EMT was first observed in normal embryonic development of 

organogenesis, during which the cells lose the polarity and transform into fibroblast-like 

cells which express mesenchymal makers [48]. Glycosylation changes were previously 

reported to occur during TGF-β-induced EMT[49–51]. Using the TGF-β treatment to induce 

the expression of oncofetal fibronectin (onfN), Freire-de-Lima and colleagues showed 

a direct correlation of the O-linked glycosylation in regulating EMT process in human 

prostate epithelial cells. [52]. Similarly, by inducing the expression of mesenchymal EMT 

genes and by stimulating MMP-2 activity in breast carcinoma, the role of GALNT14 in 

regulating the cellular proliferation, migration, and invasion has been validated [53]. In our 

recent study, we observed a dramatic reduction in the migratory phenotype, when cells 

were endogenously overexpressed with the endoplasmic reticulum N-linked glycosylated 

enzyme, the Mannosyl-oligosaccharide 1,2-alpha-mannosidase IA (Man1A1). Our finding 

highlighted the importance of glycosylation and its related enzymes in the process of 

carcinogenesis and EMT [54].

The cell surface glycans have been proven to play an important role in cancer development 

and resistant mechanism [43]. We and others have shown the role of core fucosylation in 

the development of cancer progression and castration resistance mechanisms, melanoma 

metastasis [55] as well as T-cell exhaustion [56]. Using prostate cancer models, we have 

shown how core fucosylation on the epidermal growth factor receptor (EGFR) switches 

the tropism of cancer cells from nuclear receptor signaling (androgen receptor) to the cell 

surface receptor (EGFR) mechanisms to escape castration-induced cell death [57]. Similarly, 

cell surface glycans have been implicated in antigen mimicry to avoid immune attacks [58]. 

The hyper sialyation on the cancer cell surface have been shown to make the cell a primary 

ligand for sialic acid binding immunoglobulins type lectin (siglecs), which are found on the 

surface of immune cells [59]. Siglecs would promote immunosuppressive signaling upon 

bounding to sialylated glycans, thus conferring protection to the cancer cells from NK cells.

Aberrant Protein Glycosylation in PDAC

Protein glycosylation in healthy pancreas acts as a protective and lubricative shield 

of the pancreatic ducts [60]. In PDAC patients, the changes in protein glycosylation 

exert a significant effect on tumor transformation and progression, where the normal 

pancreatic ducts become obstructed and vascularized [10]. PDAC-associated glycosylation 

abnormalities can extend beyond the pancreatic neoplasms and are often shed into the 

circulation system. Proteomic analysis of relevant body fluids such as serum, bile fluid, 

urine, pancreatic juice or cyst fluids, and pancreatic tissues, have revealed glycoprotein-

associated alterations that contribute to the carcinogenesis and progression of PDAC 

[61–68]. These changes include increases in the sialyl Lewis antigens (sLeA and sLeX), 

an increase in truncated mucin-type O-glycans (Tn and sTn), increased branched and 

fucosylated N-glycans, upregulation of specific proteoglycans and galectins and increased 

O-GlcNAcylation [18] (Table 1).
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PDAC Glycoproteomics

Proteomics has been extensively applied in PDAC studies, ranging from the studies 

elucidating the mechanism implicated in pancreatic carcinogenesis to the mining of protein 

biomarkers for PDAC early detection or therapeutic purposes [61–68]. Glycoproteomics, as 

a branch of proteomics, especially focuses on the proteomic characterization of glycosylated 

proteins and establishing the correlation between glycoproteomic signatures and biological 

functions in both healthy and diseased states. Mass spectrometry-based glycoproteomics 

has been the most powerful and versatile approach available for the characterization 

of glycoproteome in complex biological samples. A recently published work led by 

Liwei Cao et al. identified 1,727 N-linked glycosites with significant (adjusted p < 0.01) 

elevation, 75 N-linked glycoproteins with >2 fold change in PDAC[106]. Of note, 18 out 

of the 75 N-linked glycoproteins were identified for the first time, with the rest being 

catalogued in the Pancreatic Cancer Database[107, 108]. Despite the fact that current 

MS-based glycoproteomics could warrant us with a decent amount of identifications of 

potential glycoprotein as biomarker candidates, challenges remain for the comprehensive 

glycoproteomic characterization of a clinical sample. Glycosylation is a highly diversified 

process with various compositions, structures (linear or branched) and linkages [35]. 

Subsequently, the heterogeneity generates various substoichiometric modifications to the 

glycopeptide that decrease the quantities of unique glycoforms [109], which requires 

better sample enrichment strategies and an increased sensitivity of the mass spectrometry 

instrumentations. A typical glycoproteomic pipeline consists of sample preparation and 

enrichment, mass spectrometry (MS) analysis and bioinformatics interpretation [35] (Figure 

1).

Advances in mass spectrometry-based glycoproteomics

Glycoproteomic is an important branch of proteomics which uses MS as a basic tool for 

glycoprotein structure elucidation, yet the development of glycoproteomics lags behind 

compared to other protein modifications due to the plasticity of glycoproteins. Currently, 

glycoproteomic studies focuses on three different levels, glycan profiling, glycopeptide 

profiling and glycoprotein profiling [110],with varying instrument requirements (Figure 2) 

[111]. Due to the lower ionization efficiency of glycans, the sensitivity of the glycomics 

studies should be slightly higher than that of bottom-up proteomics, and even more 

so for glycoproteomics studies, where the heterogeneous glycans are subdivided over 

the peptide backbones. In this context, extensive separation is almost mandatory for 

glycoproteomics and intact glycoprotein analyses, and less of a requirement in glycomics 

studies, where information of glycan composition may be obtained by direct MALDI-

TOF or MALDI-FTICR analysis of released glycans [111]. In most bottom-up strategies, 

CID fragmentation is the method of choice. However, CID is generally not sufficient 

in glycoproteomics and intact glycoprotein analysis unlike that in glycomics analysis. 

Alternative dissociation techniques such as ETD, EThcD, UVPD, or AI-ETD are needed 

to provide more comprehensive fragmentation of both the peptide backbone and the glycan 

in order to identify intact glycopeptides and glycoproteins. As a result of more complex 

MS spectra containing both the glycans and peptide backbones information, more powerful 

bioinformatics software is required to assign the MS spectra for structural elucidation. Mass 
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spectrometry resolution (e.g. mass accuracy) is defined as m/Δm, where Δm is the full width 

at half-maximum. Compared to proteomics, glycomics studies require a higher resolution in 

order to accurately differentiate glycan peaks from non-glycan contaminant peaks rapidly. A 

higher resolution is generally required in glycoproteomics studies and even more so in intact 

glycoprotein analysis, allowing high-confidence identifications and structural elucidation of 

glycoforms.

Glycomics

Glycomics is the most extensively developed field of glycosylation-associated profiling, 

focusing on the elucidation of glycan structures via the release of glycan moieties 

using chemical or enzymatic strategies from glycoproteins and other kinds of sugar-

containing macromolecules [112]. Typically, N-linked glycans are released by enzymatic 

digestion [113], while O-linked glycans are released by β-elimination or chemoenzymatic 

digestion [114–116]. The released glycans can be directly analyzed by matrix-assisted laser 

desorption/ionization (MALDI) [117], or via liquid chromatography-electrospray ionization 

mass spectrometry (LC/ESI-MS) that integrates in-line separation of glycan structures based 

on their properties[118]. MALDI stands out for the simple sample preparation process 

with salts and compatibility with non-surfactant contaminants. However, the high degree of 

vibrational excitation in the ionization process of MALDI may trigger the fragmentation 

of terminal glycans that are labile, such as sialic acid, sulfate and phosphate group, and 

subsequent loss of information in the process of data acquisition. ESI greatly reduces the 

loss of acidic glycan residues during the ionization process, but the LC/MS is more labor 

intensive due to additional steps to remove the salts and any other contaminants. In addition, 

sample ionization can result in the loss of more labile moieties, thus additional steps to 

modify glycan structures can prevent residue loss [119, 120]. Permethylation is a common 

approach adopted for preserving whole glycan structural information [121]. In addition, 

permethylation can improve native glycan ionization through the universal conversion of 

free oxygen-containing nucleophilic groups such as carboxylic acid, hemiketal and hydroxyl 

groups in glycans. Overall, glycomics offers a high throughput methodology with a low 

consumption of biological samples, which is important in clinical studies, thus providing 

rationale for its respective extensive applications cancer biomarker discovery.

Glycopeptide analysis

Glycopeptide analysis is the major component of glycoproteomic-based studies, wherein 

glycoproteins are subjected to proteolytic digestion by enzymes such as Lys-C and trypsin, 

with the resulting peptide sample utilized for proteomic analysis. Even though ~50% 

of proteins are glycosylated [122], glycopeptides represent a minor fraction of the total 

amount of global peptides. Further confounding glycopeptide stoichiometry, glycoproteins 

can have variable glycosite occupancy and diverse heterogeneous glycan structures, with 

an individual glycosite conjugated to a myriad of glycan attachments. The combination 

of low-abundance, diverse glycan structures and variable fragment patterns of MS signals 

make glycopeptide detection in global peptides extremely challenging. To overcome these 

weaknesses in glycopeptide detection, enrichment methods using the physicochemical 

properties of glycopeptides or integrating chemoenzymatic reactions have been introduced 

to improve the coverage of glycopeptides and aid glycoproteomic studies [123].
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Several common glycopeptide enrichment approaches include lectin affinity binding 

methods, hydrophilic interaction liquid chromatography (HILIC), hydrazide chemistry 

methods, titanium dioxide binding methods, and boronic acid binding methods, as well 

as hybrid methods integrating chemical and enzymatic reactions. Due to the specific 

recognition of terminal glycan structures on glycopeptides or glycoproteins, lectins are 

widely used in N-linked or O-linked glycopeptide and glycoprotein enrichment. [124]. As 

one lectin only selectively bind to a specific terminal glycan structures, this enrichment 

method brings biases with certain glycans. HILIC based methods rely on the hydrophilic 

interactions between glycopeptides and matrix [125]. However, the normal HILIC is 

problematic in terms of low specificity, with co-elution of hydrophilic non-glycopeptides. 

Several improvements on the stationary phase of HILIC matrices have been developed to 

help increase the glycopeptide enrichment specificity, including the conjugation with various 

hydrophilic groups to enhance the hydrogen-bonding and changing to zwitterionic based 

HILIC (ZIC-HILIC) [126]. Similarly, mixed mode strong anion exchange (MAX) has also 

been utilized to improve specificity of hydrophilic interactions to enrich glycopeptides 

[127]. Apart from these non-covalent bonding enrichment methods, there are several 

strategies where sugar molecules are covalently bonded for the enrichment of glycopeptides, 

including the hydrazide chemistry method [128], which has been shown to have the highest 

specificity for glycopeptide enrichment. Hydrazide based oxidation method relies on the 

hydrazone formation from hydrazide and aldehyde group generated via glycan cis-diol 

periodate oxidation. The enriched glycopeptides are then selectively released from the bead 

via N-glycosidase F (PNGase F) digestion at the N-linked glycosylation site. Cleavage 

with PNGase F will convert the asparagine residue to an aspartic residue, allowing MS 

identification of N-linked glycosylation site. Further adaptations of hydrazide chemistry 

method allow for N-linked glycopeptides, O-linked glycopeptides and intact glycopeptides 

analyses [129]. Titanium dioxide (TiO2) can strongly coordinate with negatively charged 

oxygen present in residues such as charged sialic acid residues, conferring TiO2 with the 

ability to enrich sialic acid-containing glycopeptides [130]. However, negative phosphorous 

residues could also coordinate with TiO2 and results in co-elution of phosphopeptides with 

sialic acid-containing glycopeptides. Boronic acids chelation with cis-diol on glycans to 

form cyclic boronate esters is another way to enrich glycopeptides [131]. One drawback of 

these strategies is that they enrich glycopeptides without preference for particular glycan 

structures (N-linked or O-linked), thus several chemoenzymatic enrichment strategies were 

developed to enrich a specific class of glycopeptides of interest. Based on the hydrazide 

chemistry, N-linked glycans and glycosite-containing peptides (NGAG) can be extracted 

from solid phase coupled with chemoenzymatic reactions [132]. A similar design was 

developed recently to specifically enrich and map mucin type O-GalNAcylation at a large-

scale [114].

Meanwhile, parallel to the development of sample preparation methodologies, advances in 

analytical methods also contribute to the improvement of glycopeptide analysis, especially, 

MS instrumentation approaches and associated data analysis algorithms to interpret the mass 

spectra. Inherent structural differences between peptide backbones and glycan structures 

result in varied MS fragmentation efficiency. Collision-induced dissociation (CID) and 

high energy collision dissociation (HCD) not only fragment peptide backbones, but also 
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glycans, while electron-capture dissociation (ECD) and electron-transfer dissociation (ETD), 

the peptide backbone is fragmented more readily thus preserving the glycan structure 

information [133]. Combining multiple fragmentation approaches could potentially help to 

get information for both glycans and peptide backbones [134]. Photodissociation, especially 

ultraviolet photodissociation (UVPD) is another fragmentation strategy for the acquisition of 

intact glycan information [135].

In addition to fragmentation strategy, different data acquisition strategies are also considered 

in glycoproteomics studies. Data Dependent Acquisition (DDA) is the go-to method 

when it comes to glycoproteomics, due to its robustness and flexibility in neo-glycan 

species discovery. In DDA, individual precursor ions would be isolated sequentially in a 

narrow m/z window, with intensity being the one of the primary selection criteria. This 

semi-stochastic trait of DDA is beneficial in increasing new discovery rates, however, 

this selection preference often “shadow” those peptides of low abundance, such as 

glycopeptides. Therefore, identification and quantification of glycopeptides from DDA data 

is quite challenging [136]. Compared to DDA, all precursor ions that are detected in 

the pre-set isolation windows (usually 10–20 m/z) would be subject to co-fragmentation 

in Data-Independent Acquisition (DIA). This indiscriminative fragmentation of DIA is 

beneficial for glycoproteomics since DIA provides a broader dynamic range of detected 

signals, improved identification reproducibility, accurate and sensitive quantification, as well 

as enhanced protein coverage [137]. As an emerging method in bottom-up glycoproteomics, 

DIA is still at its infant stage. Despite the attractive strengths of DIA over DDA, the inherent 

complexity of glycopeptides poses tremendous analytical and bioinformatics challenges.

In addition, new data analysis pipelines are indispensable in deciphering the various 

glycopeptide structures. While spectral assignments of formerly glycosylated peptides 

using glyco-enrichment strategies that focus on generation of deglycosylated glycopeptides 

(i.e. subjected to releasing glycans from glycosylation sites of the glycoproteins) are 

compatible with established proteomic search pipelines, intact glycopeptide analysis 

is far more challenging. To this end, more than twenty different software tools 

were developed to interpret glycopeptide data for identification and quantification 

as well as to analyze and annotate glycans and glycopeptides [138]: Byonic 

[139], pGlyco 2.0 [140], GPQuest [141], Integrated GlycoProteome Analyzer (I-GPA) 

[142], LaCyTools [143], GP Finder [144], gFinder [145], GlycoMaster DB [146], 

Glycopep grader (GPG) [147], GlycoPep Detector (GPD) [148], GlycoPeptideSearch 

(GPS) [149], MassyTools[150], GlycoSpectrumScan[151], GlycopeptideGraphMS[152], 

GlycoFragwork[153], and GlycReSoft [154], as well as the most recent MSFragger-

Glyco[155] and O-Pair search[156]. An extensive description of the algorithms, strengths 

and weaknesses of most of the available glyco-related software is summarized by Haojie 
Lu [157] and the comparison study is described by Morten Anderson et al [158]. Of 

note, Software such as GPQuest [141] and pGlyco [159] have the capabilities to analyze 

the intact glycopeptide raw data, enabling the delineation of the peptide backbone, site 

of glycosylation, and glycan structure composition. MSFragger-Glyco and O-Pair search 

represent the most recent developments in intact glycopeptide identification, both algorithms 

use ion-indexed search strategy, which could make more accurate assignments in less 

amount of time compared to traditional search algorithms such as the commercially 
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available software, Byonic. To conform with the pressing need to decipher accumulating 

glycomics and glycoproteomics data, glyco-analysis is moving toward the next stage of 

more comprehensive and quantitative identification. A handful of software are reported for 

quantitative purposes: the above mentioned LaCyTools [143] and GlycopeptideGraphMS 

[152] are both python-based with an improved glycopeptide identification and quantitation, 

Integrated GlycoProteome Analyzer (I-GPA) [142] enables an automated label-free 

quantitation, pQuant [160] could quantitate more peptides with accuracy compared to 

MaxQuant [161]. Bioinformatics in glycopeptide analysis methods have grown substantially 

in the last decade and will continue to increase, subsequently improving our understanding 

of glycosylation in the disease state.

Glycoprotein analysis

Glycoprotein analysis is the directly analysis of intact glycoprotein by MS without any 

digestion, i.e. the “top down” approach [162], [163]. “Top-down” Intact glycoprotein 

analysis has its intrinsic advantages as this approach captures and identifies the entirety 

of proteoforms of an individual protein, which allows the direct assessment of modifications 

on protein backbones from the same protein molecule. In contrast, the “bottom up” approach 

relies heavily on individual peptide identification, which may potentially lead to the 

inference problem of “peptide-to-protein” [164]. In addition to the former, modifications 

that are related to each other (i.e. modifications that co-exist on a specific proteoform) 

may not be captured by “bottom-up” approach as well. In bacterial glycoproteomic studies, 

the top-down approach was proven to be a powerful tool to discover new glycans. [165]. 

In addition, the top-down approach has been routinely utilized for the assessment and 

characterization of glycoproteins used for therapeutics and monoclonal antibodies [166]. 

Distinct from bottom-up proteomics separation methods, which tend to use hydrophobic-

based separation (e.g. C18 matrices) of peptides, top-down proteomics incorporates multiple 

in-line separation strategies, including reverse phase liquid chromatography (RPLC), size 

exclusion chromatography (SEC) and capillary zone electrophoresis (CZE) to reduce the 

sample heterogeneity, as well as enabling detection of a boarder range of molecular 

weights [167]. As an emerging new technology, intact glycoprotein analysis has shown 

great potential in clinical study and biomarker discovery. Despite its powerful potentials and 

technological advancements, limitations persist for top-down proteomics. For example, the 

solubilization challenge of hydrophobic proteins such as membrane proteins, the scarcity 

of optimal sample separation or fractionation methods for glycoproteins, and the limited 

scalability of top-down method to high molecular-weight proteins, as well as the suppression 

of low-abundance proteins like glycoproteins, the difficulty to localize labile PTMs 

accurately during LC–MS/MS, remain to be tackled. Apart from the technical hurdles, 

additional bioinformatics tools are also needed to process the complex data generated by 

top-down method [168, 169].

Glycoproteomic profiling of PDAC cells and tissues

In PDAC, the surgically-obtained tumor tissues consist of cancerous lesions interspersed 

with activated stroma, which can account for up to 90% of the whole resected tumor 

volume. These activated stromal cells include activated fibroblasts, myofibroblasts, immune 

cells, neo-endothelial cells and extra cellular matrix (ECM) components [68]. Proteomic 
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characterization of the whole tissue or purified cancer cells would not only provide insight 

into the differential protein profiles of these various cell types, but also reveal the cross-talk 

between cancer cells and the surrounding tumor microenvironment.

In PDAC tissues, an overall increase of N-linked glycosylation was observed compared 

to healthy pancreas[94]. In addition, this N-glycosylation occupancy change was also 

implicated in pathways associated with pancreatic cancer, such as TGF-β, TNF, and 

NF-kappa-B pathways, one of the major carriers of CA 19–9 antigen, MUC5AC, 

individual glycoproteins including carcinoembryonic antigen-related cell adhesion molecule 

5 (CEACAM5), insulin-like growth factor binding protein 3 (IGFBP3), galectin-3-binding 

protein (LGALS3BP), cathepsin D (CTSD), as well as integrins and CD antigens (including 

the pancreatic cancer stem-like cells marker CD44) [94, 170]. In-depth mapping of 

these PDAC-associated glycoproteins revealed that the occupancy change in N-linked 

glycosylation was specific to not only protein but also glycosylation site. What is worth 

noting is that the increase of N-linked glycosylation of many of these glycoproteins 

was also observed in chronic pancreatic tissues, which makes the PDAC glycoproteomic 

changes even more confounding [35]. As the common precursor for PDAC, pancreatic 

intraepithelial neoplasia (PanIN), especially the pre-invasive PanIN3 is believed to be the 

most clinically relevant stage for early detection of curable pancreatic neoplasia [68]. 

Glycoproteomic profiling of PanIN 3 using iTRAQ and ICAT techniques found several 

dysregulated glycoproteins, including the ECM components laminin beta 1 (LAMB1) and 

decorin (DCN), and other proteins such as 14–3-3 theta(YWHAQ), galectin-1 (LGALS1, 

glycan binding), vimentin (VIM) and actinin (ACTN) in PanIN 3 [171]. In addition, the 

quantitative proteomics analysis of whole pancreatic cancer tissues had previously revealed 

that the stromal-epithelial interaction is critical for carcinogenesis [172].

Glycoproteomic techniques were also applied to profile the glycoproteome of isolated 

PDAC-associated cells, including neoplastic cells, stromal cells and stem cells. Cell 

surface proteins are largely comprised of transmembrane glycoproteins, such as receptor 

tyrosine kinases (RTKs), which play an indispensable role in cell signaling, trafficking 

and cell-cell interactions [35]. N-linked glycosylation alterations in these cell-surface 

receptors, including epithelial growth factor receptor (EGFR), integrins, and TGF β 
receptor (TGFβR), were found to influence their functionality, which has implications 

in carcinogenesis and cancer progression [96, 173–175]. Apart from antibody-based 

enrichment of cell surface glycoproteins, studies utilizing cell surface capturing (CSC) 

technology[176] or biorthogonal chemical reporter[177] were carried out to characterize 

N-linked glycopeptides enriched from the surface of pancreatic cancer cells, revealing 

the overexpression of CD109[178] and ecto-50-nucleotidase[179]. Another study based on 

multi-lectin affinity chromatography and nano-LC MS/MS investigated the differentially 

expressed glycoproteins between the malignant phenotype of pancreatic cancer stem-like 

CD24+/CD44+ cells and CD24-/CD44+ cells, where the hyper-expression of CD24 was 

positively linked to late-stage pancreatic adenocarcinomas and the expression of CD13 was 

negatively linked to late-stage pancreatic adenocarcinomas[180].
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Proteomic profiling of protein glycosylation abnormalities in body fluids

Detection regimes based on body fluids are more preferable due to the facts that they 

are considered less invasive and more accessible. Moreover, PDAC-associated molecular 

events and signaling can induce protein alterations in various cellular pathways at different 

levels. These protein alterations, are structurally or quantitatively reflected at the proteome 

level and may be detectable in PDAC-associated body fluids[64], which would provide 

valuable clinical information related to disease pathology and severity. In this context, 

the proteomic characterization of abnormal protein glycosylation patterns in body fluids 

associated with PDAC may present meaningful opportunities for detecting PDAC at early 

stages. Depending on the nature of the body fluids (including serum/plasma, pancreatic 

juice, pancreatic cyst fluids, urine, and bile) and its proximity to the pancreatic neoplastic 

lesions, can influence the resulting proteomic profiles [64, 181]. In general, serum/plasma 

represents the proteome of the circulating system, which consists of various functional 

blood proteins and proteins shed from different tissues, while urine can be viewed as an 

ultrafiltrate of plasma. Pancreatic juice can be considered a proximal fluid, and is secreted 

directly into the pancreatic ducts containing many secreted enzymes. Similarly, pancreatic 

cyst fluid may include mucins and other proteins of interest derived from tissues. Finally, 

bile could be considered relevant a source for PDAC-associated diagnostics since pancreatic 

diseases could cause biliary stenosis[64, 181], and may also leak proteins that could be 

leverage for disease information.

Serum/plasma

The detection and measurement of CA 19–9 antigen in PDAC-associated body fluids 

is the only FDA approved biomarker monitoring for PDAC, but it falls short in terms 

of specificity and sensitivity[19]. Instead of analyzing the whole fluid and delineating 

differential abundance of protein components, it is reasonable to focus on glycosylation 

alterations of certain proteins involved in neoplastic progression. In fact, CA 19–9 test 

detects the abnormalities associated with sialyl Lewis antigen of mucins and other carriers 

of CA 19–9, such as MUC1, MUC5AC and MUC16. Although the individual measurement 

of CA 19–9 glycan on MUC1, MUC5AC and MUC16 did not improve the performance of 

the test significantly, it was found that the combined measurement of standard CA 19–9 test 

and the measurement of CA 19–9 glycan levels on MUC5AC and MUC16 did enhance the 

discrimination of malignant from benign pancreatic disease[75]. Other distinct glycosylation 

alterations of MUC1 and MUC5AC including Tn antigen, fucosylation and Lewis antigens 

were also observed in pancreatic cancer serum [91].

Apart from CA 19–9, other protein glycosylation abnormalities associated with pancreatic 

cancer were also observed in patient sera. One glycomic study observed an increase in 

N-linked glycosylation branching as well as hyper-fucosylation and hyper-sialylation in the 

sera from pancreatic cancer patients[90]. The glycosylation of another pancreas-associated 

protein – serum ribonuclease 1 (RNASE1), exhibited an overall 40% increase in core 

fucosylation in the sera of pancreatic cancer patients[93]. Investigation on other major 

acute-phase proteins (APP) in sera from pancreatic cancer and chronic pancreatitis patients, 

including alpha-1-acid glycoprotein (AGP1 or ORM1), haptoglobin (HP), fetuin-A (AHSG), 

α−1-antitrypsin (SERPINA1) and transferrin (TF), revealed an increased level of sialyl 
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Lewis X as well as branching, which could be associated to inflammatory response[182]. 

In addition, an increase of core fucosylation was also observed on AGP1 and HP in the 

sera of advanced pancreatic cancer patients, which could be relevant to cancer and may 

serve as pancreatic cancer signature[182]. The diagnostic potential of fucosylated HP was 

later validated in several studies, it is possible to detect fucosylated HP as an indicator for 

advanced pancreatic cancer[183, 184]. However, fucosylated HP could also be detected in 

other diseases such as hepatocellular carcinoma, liver cirrhosis, gastric cancer, and colorectal 

cancer[183], and the detection of fucosylated HP alone does not provide satisfactory 

accuracy for pancreatic cancer diagnosis[184].

An elevated level of other glycoproteins were identified in the sera of pancreatic cancer 

patients using two-dimensional gel electrophoresis (2DE) and MS, such as fibrinogen γ 
(FGG) [185], apolipoprotein E (apoE)[186, 187], alpha-1-antichymotrypsin (α1AC)[186], 

leucine-rich alpha-2-glycoprotein (LRG)[188, 189], and inter-alpha-trypsin inhibitor (IαI)

[186]. In comparison to healthy controls and chronic pancreatitis serum samples, another 

study identified and evaluated several differentially expressed glycoproteins in PDAC 

serum samples, including tissue inhibitor of metalloproteinase-1 (TIMP1), intercellular 

adhesion molecule 1 (ICAM1), zinc-alpha 2-glycoprotein 1 (AZGP1), lactoferrin (LF), 

thrombospondin-1 (THBS1) [190], and lipopolysaccharide-binding protein (LBP) [23]. It 

was demonstrated that a combination of TIMP1 and ICAM1 could outperform CA 19–9 in 

terms of the accuracy of distinguishing patients from the healthy and chronic pancreatitis 

controls, and that AZGP1 could be the biomarker candidate for chronic pancreatitis [23]. 

Later on, thrombospondin-2 (THBS2) in complement to CA 19–9 was also found to have 

an improved discrimination capability for PDAC [191]As another accessible body fluid in 

clinical testing, urine is also a valuable source for disease detection. A proteomics analysis 

of urine samples collected from patients with PDAC, chronic pancreatitis as well as healthy 

controls yielded several differential expressed proteins associated with PDAC, including 

CD59 glycoprotein (CD59) [192]. In particular, these differentially expressed proteins, such 

as CD90/Thy-1 [193], annexin A10 [194], annexin A2 (ANXA2) [68] and gelsolin (GSN) 

[68], have been found overexpressed in pancreatic cancer tissues [68], which demonstrated 

the potential of using the levels of these PDAC-tissue associated proteins in urine and as 

means for of pancreatic disease detection and discrimination.

Pancreatic juice and pancreatic cyst fluid

Compared to serum/plasma, the collection of pancreatic juice and pancreatic cyst fluid 

generally requires endoscopy and fine-needle aspiration. Apart from this limitation, 

pancreatic juice and pancreatic cyst fluid are rich in cancer-specific proteins, providing 

us with ample material to advance the development of diagnostic biomarkers for PDAC. 

Due to the advances in proteomics, the proteomic characterizations of pancreatic juice and 

pancreatic cyst fluid are more comprehensive than ever. Proteomic analyses of pancreatic 

juice have been conducted in patients with pancreatic adenocarcinoma [195–199], pre-

malignant pancreatic neoplasia [200], and pancreatitis [196, 201], as well as in individuals 

with normal pancreas [202]. Hundreds of proteins such as pancreatic enzymes and other 

pancreas-associated proteins were identified across different pancreatic juice samples in 

these studies [64]. Using isotope-code affinity tag (ICAT) technology and tandem MS, 
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several differentially expressed glycoproteins were identified in PDAC samples compared to 

healthy controls, including kallikrein 1 (KLK1), insulin-like growth factor binding protein 

2 (IGFBP2), lithostathine 1 (REG1A, REG1B), pancreatic secretory granule membrane 

major glycoprotein (GP2), and pancreatic ribonuclease 1 (RNASE1) [195]. In addition, 

another study identified the overexpression of matrix metalloproteinase-9 (MMP9), and 

α1-β-glycoprotein (A1BG) in pancreatic juices from PDAC patients. A1BG was also found 

to be significantly elevated in PDAC patient sera [203], which indicates the fact that cancer-

related proteins can often extend beyond the vicinity of cancerous pancreatic tissues.

Apart from PanIN lesions, the most common precursor of PDAC, pancreatic cystic 

neoplasms also have malignant potentials, such as intraductal papillary mucinous neoplasms 

(IPMNs) and mucinous cystic neoplasms (MCNs). Moreover, both PanIN 3 and IPMNs/

MCNs share many similar molecular features with PDAC, including proteomic changes 

[181]. One study focusing on the proteomic profiling of pancreatic cyst fluids suggested 

that the protein family members of amylase, mucins, CEACAMs, and S100 proteins may 

be candidate biomarkers for the discrimination of pancreatic cysts with malignant potential 

from benign lesions [204]. Another study identified several hyper-fucosylated glycoproteins 

such as triacylglycerol lipase and pancreatic α-amylase in pancreatic cyst fluids from 

IPMNs and MCNs [205]. These proteins are also found to be differentially expressed in 

PDAC, warranting research into early detection of PDAC at clinically-relevant stages such as 

PanIN3 and IPMNs/MCNs.

Bile

More than half of pancreatic cancer patients have jaundice as one of the symptoms 

[20], which is caused by a build-up of bilirubin, a component of bile. Normally, bile 

is produced by the liver and discharged by biliary ducts into the small intestine to aid 

lipids digestion. When the bile duct is blocked (biliary stenosis), the accumulating bilirubin 

in tissues would eventually cause jaundice. Biliary stenosis can be caused by pancreatic 

diseases, such as the malignant pancreatic adenocarcinoma or chronic pancreatitis [64]. 

One proteomics study of bile samples from patients with pancreatic adenocarcinoma, 

cholangiocarcinoma, chronic pancreatitis, and gallstones, identified 127 proteins, including 

the overexpressed CEACAM6 and MUC1 in pancreatic cancer and cholangiocarcinoma 

samples [206]. Detecting pancreatic cancer-associated proteins in bile is thus proven to 

be feasible, however, biliary stenosis may be either due to benign conditions such as 

chronic pancreatitis or malignant conditions including cholangiocarcinoma and pancreatic 

adenocarcinoma [206], and the etiological identification of one specific condition remains 

highly challenging.

Proteomic profiling of protein glycosylation abnormalities on pancreatic cancer-derived 
exosomes

Exosome are a subset of extracellular vesicles (EVs), with an average size of ~100 

nm. Exosomes were first discovered back in 1983 [207], but their role in intercellular 

communication was only recognized recently. As a compact bioactive cargo with a unique 

liquid bilayer structure containing nucleic acids, lipids and proteins from donor cells, 

exosomes could alter the pathophysiological conditions of recipient cells through merging. 
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Accumulating evidence have shown that exosomes play critical roles in cancers, especially 

tumor-derived exosomes (TEXs) [208]. Hence, exosomes are featured at the forefront of 

biomarker research in various diseases including pancreatic cancers. Exosomes have been 

obtained from biofluids such as saliva, blood, urine, pancreatic juice and ascites in PDAC 

[209]. Abnormalities in glycosylation (Table 1) can be displayed on the cell surfaces, 

extracellular EVs or proteins directly derived from PDAC cancer cells, making exosomes 

an exciting candidate for early diagnosis biomarker discovery. Notably, more than 80% of 

the exosome surface proteins are estimated to be glycosylated [210]. A proteomics study 

of outer membrane-associated proteins in urine exosomes identified 49 proteins, 25 of 

which are disease-specific glycoproteins [211]. One of such glycoproteins is olfactomedin-4 

(OLFM4), which was reported to be related to the chemo-resistance and poor prognosis in 

pancreatic cancer [212].

In addition to glycoproteins, proteoglycans are also found on exosomes derived from PDAC. 

One study found that glypican-1 (GPC1), which is overexpressed in PDAC cancer cells, 

is also significantly elevated in serum exosomes derived from PDAC patients but not the 

chronic pancreatitis patients. In fact, it has been proved that GPC1+ exosomes provide 

superior specificity and sensitivity of PDAC diagnosis to CA 19–9 [213]. Following studies 

yielded either similar [214–219] or contradictory results, which is not unaccounted for. 

Glypican-1 is not only found on cancerous tissues but also extensively expressed in brain, 

gastrointestinal tract, urinary and reproductive systems [220], exosomes produced other than 

cancerous tissues could confound cancer-derived ones. The specificity of the glypican-1 

antibody is not validated stringently, which could easily generate false-positive results 

[221]. In addition, the exosomes extracted for glypican-1 estimation could be biased [222]. 

Nonetheless, GPC+ exosomes present wonderful opportunities in PDAC early diagnosis 

once coupled with more rigorous experimental and statistical validations.

The potential of developing diagnostic markers from exosomes for PDAC is undeniable. 

However, we are a long way to clinical applications of exosomes as diagnostic tools. 

First, the cellular and molecular mechanisms of exosomes in PDAC tumorigenesis, 

progression, metastasis and resistance are unclear. Second, we are in short of effective 

exosome extraction methods and high-throughput analysis methods, mass spectrometry-

based approaches represent the current state-of-art technique. Last but not least, the 

establishment of an effective biomarker for PDAC early diagnosis (specificity > 99.99%), is 

challenging due to the low-incidence rate of PDAC in the general population (< 1%) [223], 

and PDAC exhibit overlapping signatures with other benign conditions.

Concluding remarks and future perspectives

Protein glycosylation is undeniably a major player in the carcinogenesis of pancreatic 

cancers. Pancreatic cancer-associated changes in protein glycosylation have profound 

biological ramifications on cellular pathways and signaling at different levels, granting 

tumor cells with aggressive features. PDAC represents a pancreatic cancer entity of 

astonishingly high malignancy and poor prognosis, as well as constantly rising patient 

numbers. It is becoming increasingly pressing that a reliable biomarker is developed 

for PDAC early-stage diagnosis and disease management. To this end, an overflow of 
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potential biomarkers for PDAC were published over the years, however, their clinical 

applicability is often considered limited as a result of: expression in benign diseases 

(for example, pancreatitis) other than PDAC, low predictive value in asymptomatic 

patients (0.5–0.9%), and varying specificity (70–90%) and sensitivity (68–91%) [224]. The 

emerging technologies of glycoproteomics, glycomics, and other glycoprotein analytical 

techniques provide robust tools for the inquisition into the sophistications of protein 

glycosylation involved in pancreatic cancers. Additionally, there are increasing evidence 

that disease-associated changes in protein glycosylation is fundamental for the discovery 

and development of cancer biomarkers [225]. In this context, pancreatic cancer-associated 

changes in protein glycosylation can undeniably “sweeten the pot” of biomarker discovery.

However, the changes in PDAC glycoproteomes are intricate and can overlap with associated 

diseases or disease complications such as chronic pancreatitis [226, 227], jaundice [228] 

and new-onset diabetes (NOD) [229]. Meanwhile, PDAC is considered “uncommon” despite 

the devastating effects, accounting for only 3% of all cancer cases [230], with a global 

incidence rate lower than 1% [224]. As a result, the diagnosis of PDAC is often delayed 

and tricky, which directly leads to poor prognosis and increased diagnoses on inoperable 

PDAC patients. While proteomic efforts have been made to draw a line between the low-

grade precursors (PanINs, IPMNs/MCNs) and PDAC for the early diagnosis attempts, the 

distinct mechanism and timeline of progression still require further validation and clinical 

assessment. In addition to the confounding pathological signatures exist in PDAC, technical 

challenges still remain in various aspects of biomarker discovery based on glycoproteomics. 

For example, due to the lack of effective consensus enrichment strategy for O-linked 

glycopeptides, the glycoproteome information of O-linked glycosylation is lacking, which 

poses further challenges for bioinformatics analysis of O-glycoproteome. Moreover, the less 

abundant protein glycosylation could not be detected due to the sensitivity limit of current 

mass spectrometry instrumentations. Consequently, comprehensive protein glycosylation 

mapping of complex samples is yet to be achieved. Nonetheless, the role of glycosylation 

in pancreas-related diseases is of emerging interest, many strategies have been demonstrated 

to target protein glycosylation for improved diagnostic and therapeutic biomarkers. To date, 

despite the current technology hurdles, significant findings have laid groundwork in the field 

of glycoproteomics and provide a compelling rationale for targeting protein glycosylation 

for future biomarker discoveries.

Despite the temptation to discover more potential biomarkers for the early detection of 

PDAC, the deployment of current FDA-approved CA 19–9 in parallel with other biomarkers 

such as carcinoembryonic antigen (CEA), or a serum biomarker panel, could amend for the 

unsatisfactory sensitivity and specificity while using CA 19–9 solely [231]. Another way of 

achieving better diagnosis power is to combine CA 19–9 with the cost-effective CT/MRI, 

which is potentially the most accurate method in detecting recurrent pancreatic carcinoma 

[232, 233]. In addition to proteomics and glycoproteomics candidates, an agglomerate effort 

of genomics, transcriptomics, proteomics and metabolomics could present us with new 

insights, also new challenges in developing novel diagnostic and therapeutic tools.

On top of this quest for “perfect” diagnostic biomarker of cancers including PDAC, it is 

worth noting that biomarkers don’t always tell a “full” story. Discovery of a biomarker 
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that might be associated with an increased cancer risk doesn’t necessarily mean a patient 

will get cancer or has cancer. Most cancers have multiple biomarkers while some have no 

identifiable biomarkers. Among these identifiable biomarkers, some could potentially be 

“driving” the cancer onset and progression. Targeting such biomarkers may be a potential 

treatment option, but does not always lead to a viable one. Additionally, new abnormalities 

would be constantly generating during cancer growth and immune evasion. Previously 

established biomarkers might lose diagnostic and therapeutic power. Currently, there is no 

effective immunotherapy for the treatment of PDAC as recently reviewed by Kanan Panchal 

et al. [234], mostly due to the stroma-rich environment of PDAC, which is reported to 

inhibit spontaneous and therapeutically induced antitumor immunity [235]. As the fourth 

pillar of cancer treatment (surgery, radiation, and chemotherapy are the initial three pillars), 

targeted immunotherapy holds great promise in curbing PDAC. With additional efforts and 

knowledge regarding the immunologic factors involved in the tumorigenesis, progression 

and immune evasion, development of immunotherapeutic that have direct effect on PDAC 

could be foreseen. Apart from direct targeting, immunotherapy strategies revolving around 

the reversion of immunosuppressive environment (TME) have also been proposed, they 

could be concluded by two directions: (1) T-cell pivoting to restore immunosurveillance 

and (2) myeloid cells redirecting to condition tumors with increased sensitivity to cytotoxic 

therapies [236]. Establishing an effective immunotherapeutic for PDAC is still more than a 

stone away, instead, targeted drug delivery of chemotherapeutic drugs utilizing nanoparticle 

could potentially overcome the stroma-rich barrier present in PDAC. Future considerations 

of PDAC targeted therapy based on biomarker should be focusing on multiple aspects 

including gene mutations and DNA damage repair, alerted receptors, TME, stroma-depleting 

and etc., there is always going to be a dire need for new biomarkers and therapeutic agents. 

And maybe, glycoprotein is the way to look.
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Figure 1. 
A typical pipeline for PDAC glycoproteomic study.
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Figure 2. 
Radar graph showing the instrument requirements for proteomics, glycomics, 

glycoproteomics, and intact glycoprotein analysis.
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Table 1.

Summary of PDAC-associated glycosylation alterations.

PDAC-ASSOCIATED GLYCOSYLATION 
ALTERATION

FEATURES REFERENCES

SIALYL LEWIS A Upregulated [69]

Could be detected by CA 19–9 assay on various proteins including mucins [60, 70–77]

SIALYL LEWIS X Upregulated [78–81]

Linked to invasion and metastasis [82]

Detected on pancreatic cancer-associated proteins [77, 83–85]

TN AND STN ANTIGENS Hyper-expressed [86, 87]

Linked to metastasis and poor prognosis [81, 87, 88]

BRANCHED AND FUCOSYLATED N-
GLYCANS

Highly-branched N-glycans are found in pancreatic cancers [89, 90]

Extensive fucosylation [91–93]

Detected on pancreatic cancer-associated proteins [94–96]

PROTEOGLYCANS Overexpressed [97–99]

Linked to cancer progression [100, 101]

GALECTINS (GLYCAN BINDING 
PROTEINS)

Overexpressed Galectin-1 and Galectin-3 [102–105]

Mass Spectrom Rev. Author manuscript; available in PMC 2024 March 01.


	Abstract
	Introduction
	PDAC Cancer Statistics
	PDAC Pathological Features and Progression
	PDAC Diagnosis

	Protein Glycosylation and Its Cancer Implication
	Aberrant Protein Glycosylation in PDAC
	PDAC Glycoproteomics
	Advances in mass spectrometry-based glycoproteomics
	Glycomics
	Glycopeptide analysis
	Glycoprotein analysis
	Glycoproteomic profiling of PDAC cells and tissues
	Proteomic profiling of protein glycosylation abnormalities in body fluids
	Serum/plasma
	Pancreatic juice and pancreatic cyst fluid
	Bile
	Proteomic profiling of protein glycosylation abnormalities on pancreatic cancer-derived exosomes

	Concluding remarks and future perspectives
	References
	Figure 1.
	Figure 2
	Table 1.

