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Abstract 

Background:  PET/CT image quality is directly influenced by the F-18-FDG injected 
activity. The higher the injected activity, the less noise in the reconstructed images but 
the more radioactive staff exposition. A new FDA cleared software has been intro-
duced to obtain clinical PET images, acquired at 25% of the count statistics considering 
US practices. Our aim is to determine the limits of a deep learning based denoising 
algorithm (SubtlePET) applied to statistically reduced PET raw data from 3 different 
last generation PET scanners in comparison to the regular acquisition in phantom 
and patients, considering the European guidelines for radiotracer injection activities. 
Images of low and high contrasted (SBR = 2 and 5) spheres of the IEC phantom and 
high contrast (SBR = 5) of micro-spheres of Jaszczak phantom were acquired on 3 dif-
ferent PET devices. 110 patients with different pathologies were included. The data was 
acquired in list-mode and retrospectively reconstructed with the regular acquisition 
count statistic (PET100), 50% reduction in counts (PET50) and 66% reduction in counts 
(PET33). These count reduced images were post-processed with SubtlePET to obtain 
PET50 + SP and PET33 + SP images. Patient image quality was scored by 2 senior 
nuclear physicians. Peak-signal-to-Noise and Structural similarity metrics were com-
puted to compare the low count images to regular acquisition (PET100).

Results:  SubtlePET reliably denoised the images and maintained the SUVmax values 
in PET50 + SP. SubtlePET enhanced images (PET33 + SP) had slightly increased noise 
compared to PET100 and could lead to a potential loss of information in terms of lesion 
detectability. Regarding the patient datasets, the PET100 and PET50 + SP were quali-
tatively comparable. The SubtlePET algorithm was able to correctly recover the SUVmax 
values of the lesions and maintain a noise level equivalent to full-time images.

Conclusion:  Based on our results, SubtlePET is adapted in clinical practice for half-time 
or half-dose acquisitions based on European recommended injected dose of 3 MBq/kg 
without diagnostic confidence loss.

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

ORIGINAL RESEARCH

Bonardel et al. EJNMMI Physics            (2022) 9:36  
https://doi.org/10.1186/s40658-022-00465-z

EJNMMI Physics

*Correspondence:   
sebastien.hapdey@chb.
unicancer.fr
4 Nuclear Medicine 
Department, Henri Becquerel 
Cancer Center, Rouen, France
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0002-3967-434X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40658-022-00465-z&domain=pdf


Page 2 of 23Bonardel et al. EJNMMI Physics            (2022) 9:36 

Keywords:  PET/CT, Deep-learning, Denoising

Key points

•	 QUESTION: Is there any interest to use the SubtlePET reconstruction on daily prac-
tice low statistics PET images in terms of lesion detectability and quantification.

•	 PERTINENT FINDINGS: Applied on half-time (or eventually half-dose) acquisi-
tions, SubtlePET correctly recovers the SUVmax values of the lesions and maintain 
a noise level equivalent to full-time images, yielding a lesion contrast-to-noise ratio 
comparable to that of full statistical PET acquisition based on EU recommended 
standard of 3 MBq/kg.

•	 IMPLICATIONS FOR PATIENT CARE: Based on our results, SubtlePET is ready to 
be used in clinical practice for half-time or half-dose acquisitions. It would offer new 
perspectives such as, dividing the injected dose by 2, scanning twice as fast when 
necessary (children, painful patients, long delays in appointments and the need to 
increase the number of patients per day, emergencies, etc.…) or the possibility to 
make real whole body and not mid-thigh vertex more easily.

Introduction
Positron emission tomography coupled with computed tomography (PET/CT) after 
the injection of F-18-Fluoro-2-deoxy-glucose (F-18-FDG) is a commonly used imaging 
modality to perform diagnostic and stratify diseases in various pathologies (oncology, 
cardiology, infectiology, neurology…).

The image quality required to perform an accurate diagnosis is directly influenced by 
the radiopharmaceutical activity and the acquisition duration. The higher the injected 
activity or acquisition duration, the less noise in the reconstructed images.

For a given injected activity, increasing the acquisition duration limits the number of 
patients per day who can benefit from the exam. A longer examination is also less well 
tolerated by the patient and may increase the risk of motion artifacts. Conversely, for a 
given acquisition duration, increasing the injected activity leads to higher exposure of 
the patient and operational dose to the healthcare staff.

Thus, optimizing the use of PET CT technology in a clinical setting needs to balance 
carefully the injected activity/acquisition duration ratio.

The current standard approach for image reconstruction of PET Raw data is based 
on iterative methods. The most commonly used being the Ordered Subset Maximum 
Expectation (OSEM) algorithm, which requires setting up a global number of iterations 
to reconstruct the image. Theoretically, the higher the number of iterations, the closest 
to the expected reconstructed image. However, the increased number of iterations gen-
erates noise that worsens image quality and might cause misinterpretations and quantifi-
cation errors by reducing the signal-to-noise ratio.

To reduce PET image noise, different approaches have been proposed. The first 
approaches incorporate image noise reduction within the reconstruction process. As 
an alternative to OSEM, the Bayesian Penalized likelihood (BPL) approach, consists in 
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reducing noise between iterations using penalty functions and has been proposed and 
implemented few years ago on the General Electric PET systems. This algorithm, incor-
porating a prior in the image distribution, allows the use of a high number of iterations, 
improving contrast while preventing any dramatic noise increase [1, 2]. However, noise 
reduction is done at the expense of image quantitation [3].

Other noise reduction approaches consist in the image post-filtering, from the simple 
Gaussian mean to the more complex non-local means [4], possibly including anatomical 
priors [5]. Non-stationary approaches, such as multi-scale transform (curvelet or wave-
let) [6, 7] have proven to be also of great interest to provide a significant reduction of 
noise while preserving contrast and important structures [8, 9].

Few years ago, neural networks (NN) organized in multiple layers, called deep learn-
ing (DL), have been introduced as an efficient tool to perform image denoising on PET 
raw data with low statistic. The results, essentially published for brain PET images, sug-
gest that one can recover the same noise level in the images with lower dose than the 
one obtained with the standard acquisition dose [10–12]. Many NN, from supervised 
or semi-supervised convolutional neural network (CNN) to unsupervised CNN and 
their derivatives, have been proposed as post-reconstruction processes [13–15]. More 
recently, authors proposed to use NN, within the reconstruction framework, to improve 
PET image quality [16], or to perform directly the image reconstruction from sinograms 
with a U-NET approach [17].

Essentially developed in the framework of cerebral examinations, few teams have so 
far been interested in the use of neural networks for denoising in the case of whole body 
examinations [18, 19]. Based on the work from Stanford University [20], a new FDA and 
CE cleared software has been introduced (SubtlePET, Subtle Medical, Menlo Park, CA, 
USA) to improve clinical PET images, on wholebody PET exams acquired at 25% of the 
count statistics. This NN is based on a 2.5D encoder–decoder U-Net deep convolutional 
neural network trained on North American datasets and has been evaluated on a small 
population [21–23]. Only a very recent study investigates the ability of SubtlePET to 
produce images of adequate diagnostic confidence on 61 patients, considering a count-
ing statistic equivalent to 66% of the original statistic (i.e. a 33% reduction of the original 
statistic) for old-generation PET scanners (without time of flight-TOF-technology)[24].

According to SubtlePET manufacturer, a 75% dose reduction can be achieved without 
any information loss with SubtlePET enhanced images, but to our knowledge, nobody 
has investigated so far, the important topic of model generalizability, i.e., how well can 
an AI model trained on North American PET data generalize to new patients from dif-
ferent practices, different scanners and different injected dose standards. Therefore, our 
aim in this study was to assess the performance and potential limitations of SubtlePET 
on phantom datasets and on a large population of whole body PET clinical exams per-
formed under EANM or EU practice guidelines for FDG injected dose, considering 
count statistics down to − 66% and on latest generation of PET systems (TOF and SiPM).
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Materials and methods

Phantom

Three phantom experiments were realized using a NEMA IEC phantom with 3 different 
acquisition conditions and acquired on our 3 different General Healthcare PET/CT sys-
tems (Discovery MI 4 rings, Discovery 710 and Discovery IQ 4 rings).

For the first and second experiments (E1 & E2), the phantom was equipped with a 
set of 6 fillable spheres (inner diameters/volumes of 10 mm/0.52 mL, 13 mm/1.15 mL, 
17 mm/2.57 mL, 22 mm/5.58 mL, 28 mm/11.5 mL, 37 mm/26.5 mL). For E1, 2 syringes 
of approximately 20 MBq and 10 MBq of F-18-DG (calibrated at the acquisition time) 
were prepared. The first syringe was injected into the phantom tank filled with water, 
and the second, diluted on 1  L of water and then used to fill the spheres. This yields 
a contrast ratio between spheres and background of 5:1 and a background activity of 
2 MBq/kg. At the end of E1, approximately 20 MBq of F-18-FDG were reinjected in the 
phantom background to obtain a contrast ratio of 2:1 (E2).

For the third experiment (E3), the phantom was equipped with a set of 4 micro fillable 
spheres (inner diameters/volumes of 5.94 mm/31 µL, 6.95 mm/63 µL, 8.23 mm/125 µL, 
9.86 mm/250 µL) and the 2 smallest spheres of the standard set mentioned above. The 
same procedure was applied to reach a final contrast of 5:1.

For each experiment, the phantom was centered in the field-of-view and a list-mode 
acquisition over one bed-position was performed, allowing the reconstruction of differ-
ent acquisition durations: the regular clinical duration (PET100), one-half (PET50) and 
one-third (PET33) and of the regular clinical duration (cf. Table 1). This method allows 
to simulate a PET tracer dose reduction retrospectively, with resulting simulated low-
dose images having equivalent characteristics with PET images actually measured at 
lower doses [25].

The raw data were reconstructed according to the routinely used OSEM or BPL proto-
cols (cf. Table 1) and for the 1/2 and 1/3 acquisition duration, post-processed with Sub-
tlePET (named PET50 + SP and PET33 + SP).

Table 1  Clinical acquisition and reconstruction set-up for the 3 PET devices

DMI4 D710 IQ4

Clinical injected activity 3 MBq/kg 3 MBq/kg 3 MBq/kg

Clinical acquisition time 1.5 min/bed 2 min/bed 2 min/bed

Type of reconstruction BPL (Q.Clear) VPFX (OSEM) BPL (Q.Clear)

Sharp-IR Yes Yes Yes

TOF Yes Yes No

Iterations – 2 –

Subsets – 24 –

Regularization parameter 700 – 350

Matrix size 2562 2562 2562

In plane filter – 6.4 mm –

Axial filter – Heavy –

Voxel size (mm) 2.73 × 2.73 × 2.79 2.73 × 2.73 × 3.27 2.73 × 2.73 × 3.27
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We used PET/CT images from the first 110 patients who agreed to participate to this 
study. Those patients benefited from PET examination addressed for various patholo-
gies (oncology or internal medicine representative of the clinical activity) during Octo-
ber 2020. All patients were informed that their data were fully anonymized for research 
purposes and gave their approval (IRB approval was obtained for this study). PET/CT 
scans were acquired 60 min after the injection of 3 MBq/kg of F-18-FDG, with an acqui-
sition time varying from 1.5 min/bed position for the DMI4 to 2 min/bed position for 
D710 and DIQ4 (cf. Table  1). All the PET raw data were natively acquired in the list-
mode format, allowing the retrospective reconstruction of lower time/dose-equivalent 
sinograms. Given the results observed in the phantom experiments regarding the loss of 
information with PET33 + SP reconstructions, only a subpopulation of 30 patients were 
reconstructed with a 66% time lowering (PET33) and post-processed with SubtlePET 
(PET33 + SP) to evaluate the qualitative improvement achieved by SubtlePET. For the 
whole population, a 50% time lowering was studied (PET50) and enhanced with Sub-
tlePET (PET50 + SP). For the 20 patients with a body mass index (BMI) > 30 kg/m2, the 
SubtlePET algorithm was also applied on the full time acquisition (PET100 + SP) to eval-
uate the interest of SubtlePET on noisier images. As for the phantom experiments, the 
reconstruction set-up depends on the PET system used (cf. Table 1).

Except for disease-free patients, one hypermetabolic lesion was delineated on each 
patient by an experienced nuclear physician. In order to be representative, the choice 
was made to select different types of lesions: primary or metastatic, small sub-centimet-
ric or larger, homogeneous or heterogeneous, low or high uptake etc.…) from different 
organs among 60 patients.

SubtlePET algorithm

SubtlePET uses a 2.5D encoder–decoder U-Net deep convolutional neural network to 
perform denoising. The software takes a low count PET image (from shorter scan or 
lower dose) as input and generates a high quality PET image (close to full dose image) 
as output. It employs a convolutional neural network (CNN)-based method in a pix-
el’s neighborhood to reduce noise and increase image quality. Using a residual learn-
ing approach and optimized for quantitative (L1 norm) as well as structural similarity 
(SSIM), the software learns to separate and suppress the noise components while pre-
serving and enhancing the structural components.

The networks were trained with paired low- and high-count PET series coming from 
a wide range of clinical indications and patient BMI and from a large variety of PET/CT 
and PET/MR devices (10 General Electric, 5 Siemens and 2 Philips models). The training 
data included millions of paired image patches derived from hundreds of patient scans 
with multi-slice PET data and data augmentation. All the training PET data was acquired 
in the USA or Canada with the average injected FDG dose ~ 6 MBq/kg and acquisition 
time per bed of 2–3 min/bed. For the training regime, low count data was either retro-
spectively reconstructed or prospectively acquired at 1/4th the acquisition time or dose 
(i.e., 1.5 MBq/kg at 2–3 min/bed or 6 MBq/kg at 30–45 s/bed).
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Image analysis

Quantification

On the phantom experiments, spherical volumes of interest (VOIs) were manually 
drawn to enclose each visible sphere and on the background (10  cm3 spherical VOI 
located in the central part of the phantom) to measure quantitative parameters. On the 
patient analysis, the lesions quantitation was measured, using automatic segmentation 
tools proposed on the AWServer workstation (GE Healthcare, Milwaukee, USA). The 
background region was proximally defined for each lesion. In addition, a VOI of approxi-
mately 6  cm3 was also defined on an hepatic healthy region when applicable. For the 
phantom or the patients, each VOI was perfectly cloned on every sequence (all recon-
structions and all acquisition statistic) to get the measurements on the exact same loca-
tion and prevent any intra-operator variability.

For each VOI, the SUVmax, SUVmean, SUVpeak and standard deviation (SD) were 
recorded to derive: the sphere contrast recovery coefficient (CRC) for the phantom data 
only, the contrast to noise ratio (CNR) and the background variability (BV) by using:

We also calculated the percentage variation of SUVmax, SUVpeak, CRC, CNR and BV 
(ΔSUVmax, ΔSUVpeak, ΔCRC, ΔCRC and ΔBV respectively) regularly used in clini-
cal practice, between the SubtlePET-enhanced images (PET50 + SP, PET33 + SP, 
PET100 + SP) and the standard PET100 images.

We studied the correlation between BV and SUV variations (ΔBV and ΔSUV) as a 
function of the patient BMI to evaluate the efficiency of SubtlePET on patient with nois-
ier images.

Additionally, quantitative image quality metrics like peak signal to noise ratio (PSNR) 
and structural similarity index (SSIM) were also calculated between the regular dura-
tion PET scan (PET100) and the faster PET processed and unprocessed series to assess 
for the presence or the absence of absolute errors (data loss, corruption, alteration, or 
exaggeration).

In complement to the quantitative analysis, 2 senior nuclear medicine physicians inde-
pendently realized a qualitative evaluation of the overall quality of the image, considering 
a 3 point-scale: (1) insufficient quality for image interpretation; (2) insufficient quality, 
with noise or heterogeneity but acceptable for interpretation; and (3) image of good 
quality for optimal interpretation. At the end of their evaluation, in case of disagreement 
on image quality rating, a joint analysis was performed. Finally, for the PET50 + SP ver-
sus PET100 images, the evaluation of quality was summarized by the question: “Would 
my report have changed considering the PET50 + SP instead of PET100 images?”. To that 
end, PET100 and PET50 + SP series were presented side by side to each physician inde-
pendently. All the images were evaluated in one session and there was no waiting period 
between different images.

CRC =

SUVmax in sphere
SUVmean in backgrcound

Activity concentration in sphere
Actity concentration in background

; CNR =

SUVmax in sphere or lesion
SUVmean in backgrcound

SUVSD in Background
and

BV =
SUVSD in Background

SUVmean in backgrcound
× 100
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DMI contrast 5:1

PET100 PET50

PET50+SP

PET33

PET33+SP

D710 contrast 5:1

PET100 PET50

PET50+SP

PET33

PET33+SP

DIQ contrast 5:1

PET100 PET50

PET50+SP

PET33

PET33+SP
Fig. 1  Images from the IEC phantom acquisition for a contrast of 5:1, for each PET systems (Top image: DMI; 
Middle image: D710 and bottom image: IQ4), acquisition time (1st column: PET100, 2nd colomn: PET50 and 
3rd column: PET33) and the application of SubtlePET (2nd row of each image)
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DMI contrast 5:1

PET100 PET50

PET50+SP

PET33

PET33+SP

D710 contrast 5:1

PET100 PET50

PET50+SP

PET33

PET33+SP

DIQ contrast 5:1

PET100 PET50

PET50+SP

PET33

PET33+SP
Fig. 2  Images from the IEC phantom acquisition for a contrast of 2:1, for each PET system (Top image: DMI; 
Middle image: D710 and bottom image: IQ4), acquisition time (1st column: PET100, 2nd colomn: PET50 and 
3rd column: PET33) and the application of SubtlePET (2nd row of each image)
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DMI contrast 2:1
w/ microspheres

PET100 PET50

PET50+SP

PET33

PET33+SP

D710 contrast 2:1
w/ microspheres

PET100 PET50

PET50+SP

PET33

PET33+SP

DIQ contrast 2:1
w/ microspheres

PET100 PET50

PET50+SP

PET33

PET33+SP
Fig. 3  Images from the IEC phantom acquisition equipped with microspheres, for a contrast of 5:1, for each 
PET system (Top image: DMI; Middle image: D710 and bottom image: IQ4), acquisition time (1st column: 
PET100, 2nd colomn: PET50 and 3rd column: PET33) and the application of SubtlePET (2nd row of each 
image)
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Statistical analysis

We compared the phantom and patient’s quantitative data (SUVmax, SUVmean, ΔSUVmax, 
ΔSUVmean, ΔCRC and ΔCNR) using a Student paired t test, with p values lower than 
0.05 considered as statistically significant.

The comparison of lesion detectability and quality between PET100 and SubtlePET-
enhanced images was evaluated by calculating the kappa coefficients for each observer.

All statistical tests were realized with MedCalc 13.1.2.0 and graphs and plots with 
Excel 2016.

Results

Phantom evaluation

Figures 1, 2 and 3 present the images of the phantom of experiment E1, E2 and E3, for 
the 3 PET devices and the 5 reconstructed series (PET100; PET50; PET33; PET50 + SP; 
PET33 + SP).

These figures clearly show that the noise increases when the acquisition time is 
reduced. This noise is compensated for by the application of SubtlePET. Table 2 sum-
marizes the improvements in PSNR and SSIM indices in comparison to PET100, con-
sidering the slice with all visible spheres from the NEMA IEC phantom experiments 
(E1 & E2). SubtlePET processing increased the PSNR & SSIM in every instance of 
PET50 & PET33 images.

Visually, whatever the experiment and the PET device, SubtlePET seems to relia-
bly denoise and restore the noise level for the PET50 + SP to the level of the PET100 
acquisition. For the PET33 acquisition which is much noisier than PET100 and 
PET50, SubtlePET enhancement (PET33 + SP) significantly reduces the noise but the 

Table 2  PSNR and SSIM indices variation in comparison to PET100, considering the slice with all 
visible spheres from the NEMA IEC phantom experiments (E1 & E2)

SubtlePET processing increase the PSNR & SSIM in every instance i.e., PET50 & PET33 images

PET50 PET50 + SP PET33 PET33 + SP

PSNR (E1)

D710 41.61 43.07 36.55 37.42

IQ4 38.86 40.30 37.81 40.26

DMI4 38.53 40.19 33.12 33.88

PSNR (E2)

D710 35.60 36.73 35.82 39.29

IQ4 39.27 40.92 34.85 36.98

DMI4 34.71 39.26 30.98 35.04

SSIM (E1)

D710 0.982 0.984 0.972 0.976

IQ4 0.979 0.983 0.968 0.977

DMI4 0.983 0.987 0.968 0.973

SSIM (E2)

D710 0.980 0.981 0.968 0.975

IQ4 0.980 0.983 0.972 0.978

DMI4 0.976 0.980 0.964 0.972
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noise level remained slightly higher than PET100. In terms of detectability, for experi-
ment E1 (standard spheres, contrast S/B = 5), the reduction of the acquisition time 
(50% or 33%) does not induce any loss of detectability, whatever the PET system. For 
experiment E2 (standard spheres, contrast S/B = 2), the reduction of the acquisition 
time induces a loss of detectability for the D710 system (for 50% and 33%) and IQ4 
PET system (for 33% only), but not for the DMI4 PET system. Finaly, for experiment 
E3 (micro spheres), the detectability loss can be observed for the 3 PET systems and 2 
acquisitions time (50% and 33%). SubtlePET does not recover the sphere detectability 
that is not present in the input images, neither for the low contrast (Fig. 2 for D710 
PET device), nor for the microspheres (Fig.  3 for the 3 PET systems), whatever the 
PET system or the acquisition time.

Figure 4 shows the BV as the function of the acquisition time (PET100, PET50 and 
PET33) and SubtlePET application for the 3 PET systems of experiments E1 and E2. 

0%

5%

10%

15%

20%

25%

30%

DMI: E1 DMI: E2 DMI: E3 D710: E1 D710: E2 D710: E3 DIQ: E1 DIQ: E2 DIQ: E3

BV
 (%

)

PET system and Experiment

BV comparison as a function of the acquisition time and SP application 
for the 3 PET systems and the 3 experiments

PET100 PET50 PET50+SP PET33 PET33+SP

Fig. 4  Background variability (BV = SUV standard deviation/SUV mean) as a function of the acquisition time 
(PET100, PET50 and PET33) and the application of SubtlePET (PET50 + SP and PET33 + SP) for the 3 PET 
systems (DMI, D710 and IQ4) and the 3 experiments (E1: IEC phantom and contrast 5:1; E2: IEC phantom and 
contrast 2:1 and E3: IEC phantom w/microspheres and contrast 5:1)

Table 3  Mean SUV indexes variation in comparison to PET100, considering the visible spheres 
pooled from the 3 experiments

p values of the paired t test between the SUV values for PET100 and the corresponding SUV for the 4 acquisitions/
reconstructions are given

PET50 PET50 + SP PET33 PET33 + SP

ΔSUVmax

Mean value 9.1% − 4.6% 14.6% − 1.4%

Standard deviation 17.9% 14.2% 16.5% 13.6%

p value 4E−04 0.061 < 1.E4 0.94

ΔSUVpeak

Mean value 1.5% − 5.0% 2.5% − 4.7%

Standard deviation 7.8% 7.2% 11.2% 10.2%

p value 0.16 5E−04 0.14 0.025

ΔSUVmean

Mean value − 0.2% − 5.7% 0.0% − 5.5%

Standard deviation 0.3% 8.6% 2.4% 10.7%

p value 0.71 < 1.E4 0.96 < 1.E4
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This figure confirms the qualitative observation of Figs.  1 and 2, with a comparable 
background variability only between PET100 and PET50 + SP series. For the PET33 
acquisition, applying the SubtlePET algorithm does not restore correctly the noise 
level, which remains elevated, whatever the PET system and contrast considered.

Table 3 summarizes the quantitative variation of the spheres quantification. A small 
but statistically significant SUVmean and SUVpeak reduction was observed due to the 
application of SubtlePET on the PET50 and PET33 data, in comparison with the PET100 
data. For the SUVmax index, PET50 and PET33 were statistically higher than PET100. 
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Fig. 5  Contrast Recovery (CRC = measured image contrast/theoritical contrast) as a function of sphere 
diameter, acquisition time (PET100, PET50 and PET33) and SubtlePET application (PET50 + SP and PET33 + SP) 
for the 3 PET systems (1st row: DMI; 2nd row: D710 and 3rd row: IQ4) and 2 contrasts (1st column:5:1 and 2nd 
colomn:2:1)

Table 4  Mean CRC values and CRC variation in comparison to PET100, considering the visible 
spheres pooled from the 3 experiments

p values of the paired t test between the CRC values for PET100 and the corresponding CRC for the 4 acquisitions/
reconstructions are given

PET100 PET50 PET50 + SP PET33 PET33 + SP

Mean (± Std Dev) CRC value 1.02 (± 0.25) 1.11 (± 0.28) 0.98 (± 0.26) 1.19 (± 0.30) 1.03 (± 0.28)

Mean variation (± Std Dev) 
versus PET100

– 9.3% (± 9,1%) − 4.1% (± 7.4%) 16.6% (± 12.6%) 0.3% (± 9.3%)

p value – < 1.E4 0.02 < 1.E4 0.87
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When applying the SubtlePET algorithm, the SUVmax for PET50 + SP and PET33 + SP 
became non statistically different from PET100 (mean ΔSUVmax = − 4.6 ± 14.2%, 
p = 0.06 and − 1.4 ± 13.6%, p = 0.94 for PET50 + SP and PET33 + SP respectively).

Figure 5 plots the contrast recovery coefficient for each visible sphere as a function of 
the acquisition for the 3 PET systems (three rows) and contrast (2 columns). Figure 5 
illustrates that SubtlePET seems to have a real benefit on contrast recovery, especially on 
images of contrast 5:1. This is confirmed with the results shown in Table 4, which pre-
sents the quantitative variations between the native and SubtlePET–enhanced images 
for the calculation of the lesion CRC with respect to PET100 acquisition. There was a 
statistically significant increase of the CRC for the PET50 (10.1 ± 17.4%; p < 10−4) and 
PET33 series (15.9 ± 16.1%; p < 10−4). The application of SubtlePET allows a bias reduc-
tion which remains statistically significant for PET50 + SP: − 4.7 ± 13.7% (p = 0.02) but 
not significant for PET33 + SP: − 1.5 ± 12.9% (p = 0.87).

Based on this whole set of results of the phantom experiments, we decided to limit the 
application of SubtlePET to the PET50 images for the clinical evaluation, as the best bal-
ance between noise control, lesion detectability and quantitative contrast recovery. Fig-
ure 6 show exemples of PET100, PET50 and PET50+SP images, for the 3 PET systemes.

Patients

The clinical indications for the patient studies were largely for cancer diagnoses and fol-
low up, with full demographic information summarized in Table 5.

Performance of SubtlePET in the image quality restoration

Table 6 presents the image quality scoring by the 2 medical physicians. For the PET33 
acquisitions, 83.3% of the images were considered non-interpretable due to the high 
noise level. Applying SubtlePET reduces the rate of non-interpretable images as low 
as 13.3%. Finally, 26.7% of the PET33 + SP images were considered to be of good qual-
ity (0% for PET33 alone). As for the phantom experiments, they remain of lower qual-
ity than the PET100 images, which is why we decided not to further analyse the loss of 
quantification of the PET33(± SP) images of the patient.

For PET50 images, 16.3% were considered of poor quality (level 1) and 81.8% of insuf-
ficient quality (level 2). The application of SubtlePET clearly improved all low quality 
images by making them interpretable (level 1 → level 2) and obtaining a classification of 
image quality comparable to that of PET100 images.

Table 7 and Fig. 7 give the quantitative analyses of the healthy hepatic region for the 
whole population. Reducing the acquisition statistic by 50% (PET50) logically induced a 
statistically significant noise increase (p < 10−4) in comparison with the PET100 acquisi-
tion, with a mean (± Stdev) SUVmax and a mean (± Stdev) SD going respectively from by 
3.4 (± 0.6) and 0.29 (± 0.08) for PET100 to 4.0 (± 0.8) and 0.39 (± 0.09) for PET50. In the 
SubtlePET-enhanced images (PET50 + SP), the same parameters became comparable, 
but surprisingly still statistically different to PET100, with mean SUVmax (p = 0.006) and 
SD (p < 10−4) values equal to 3.4 (± 0.7) and 0.28 (± 0.08) respectively. This noise reduc-
tion is nevertheless associated with a minor SUVmean increase of 4.1 (± 4.1)%. Consider-
ing these 2 last results, we finally observed a slight but statistically significant (p < 10−4) 
BV reduction when applying SubtlePET on our PET50 acquisitions (− 7.9 ± 9.9%), as can 
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Fig. 6  Examples of MIP and axial attenuation corrected PET images reconstructed with PET100, PET50 and 
PET50 + SP obtained on the DMI4 (A), D710 (B) and IQ4 (C) PET systems. Patients characteristics A Female; 
60 kg; IBM 26.7; Breast cancer B Male; 98 kg; IBM 32.4; Lung cancer; C Female; 47 kg; IBM 18.4; Lung cancer;
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been seen on Fig. 8. This figure shows that the noise lowering with SubtlePET is inde-
pendent of the patient BMI.

The analysis of the impact of SubtlePET on the 20 patients with BMI > 30  kg  m−2 
is displayed on the right side of Tables 6 and 7. Regarding those 20 patients, applying 

Table 5  Patient and lesion characteristics

Patient n = 110 (%)

Sex

Men 49 (44.5)

Women 61 (55.5)

Age (mean) 64 [20–88]

Pathology

Lung cancers 38 (35)

Breast cancers 23 (20)

Head and neck cancers 10 (9)

GastroIntestinal tract cancers 9 (8)

Melanoma 4 (4)

Lymphoma 3 (3)

Sarcoma 1 (1)

Gynecologic cancers 1 (1)

Internal medicine 21 (19)

Stage

Initial 49 (44.5)

Follow-up 61 (55.5)

Lesion volumes

Median 4.8

Minimal 0.2

Maximal 284

Table 6  Image quality quotation on a 3-point scale, for the PET 33, PET33 + SP, PET50, PET50 + SP 
and PET100 images

PET33 PET33 + SP PET100 PET50 PET50 + SP PET100 PET100 PET100 + SP
30 patients 110 patients 20 patients 

(BMI > 30)

Level 1: 
insuf-
ficient 
quality, 
interpre-
tation 
impos-
sible

25 (83.3%) 4 (13.3%) 0 (0%) 18 (16.3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Level 2: 
insuf-
ficient 
quality 
but inter-
pretation 
possible

5 (16.7%) 18 (60%) 5 (16.7%) 90 (81.8%) 17 (15.5%) 16 (14.5%) 8 (40%) 4 (20%)

Level 3: 
image 
of good 
quality

0 (0%) 8 (26.7%) 25(83.3%) 2 (1.8%) 93 (84.5%) 94 (85.5%) 12 (60%) 16 (80%)
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SubtlePET on the PET100 images induced a statistically significant noise and SUVmax 
reduction, along with a slight SUVmean increase. The image quality classification (Table 6) 
was improved for 4/20 exams, from level 2, insufficient quality but interpretable to level 
3, image of good quality.

Table 7  SUVmax, SUVmean, standard deviation and background variability quantitative indexes 
measured on the healty hepatic region on PET100, PET50 and PET50 + SP series of our patients

On the right side of the table, the measured for the subgroup of patients with a elevated BMI (> 30)

PET100 PET50 PET50 + SP PET100 PET100 + SP
110 patients 20 patients IMC > 30

SUVmax

Mean value 3.4 4.0 3.4 4.0 3.6

Standard deviation 0.6 0.8 0.7 0.7 0.6

Mean ΔSUVmax – 19.7% 2.3% – − 9.6%

Std dev of ΔSUVmax – 12.2% 7.9% – 5.1%

SUVmean

Mean value 2.2 2.2 2.3 2.6 2.7

Standard deviation 0.4 0.4 0.4 0.4 0.4

Mean ΔSUVpeak – 0.2% 4.1% – 5.0%

Std dev of ΔSUVpeak – 1.3% 4.1% – 2.2%

SD

Mean value 0.29 0.39 0.28 0.35 0.25

Standard deviation 0.08 0.09 0.08 0.08 0.07

Mean ΔSD – 34.0% − 4.2% – − 28.2%

Std dev of ΔSD – 12.0% 9.8% – 11.9%

BV

Mean value 13.1 17.3 12.0 13.5 9.3

Standard deviation 3.2 3.3 3.1 2.5 2.6

Mean ΔBV – 34% − 7.9% – − 31.5%

Std dev of ΔBV – 12% 9.9% – 12.1%
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Fig. 7  Bland Altman plot of the hepatic SUVmax variation (%) as a function of mean SUVmax between the 2 
PET series, for the 110 patients. The cross, squares and triangles represent the data from the 3 PET devices 
(D710, DMI4 and IQ4 respectively)
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Table  8 gives the quantitative analyses of the 60 hypermetabolic lesions selected by 
the nuclear physicians. In this table, we can observe the overall SUV reduction due to 
the application of SubtlePET on the PET50 data, in comparison with the PET100 data. 
For the SUVmax index (− 5.4 ± 10.4%) the reduction is statistically significant (p = 0.003), 
although it is not the case for the SUVpeak values (− 2.6 ± 5.8%, p = 0.15). As previously 
(Table  7), the noise is reduced when applying SubtlePET. Combining those 2 effects 
results in a non statistically significant increase (+ 3.3 ± 14.4%, p = 0.23) on the lesion 
CNR which is dependent on the lesion SUVmax value as illustrated by Fig. 9. The higher 
the SUVmax on PET100, the higher the CRC increases when applying SubtlePET. On the 
opposite, the CNR decreases significantly when considering the PET50 data, without the 
application of SubtlePET (− 9.5 ± 13.6%, p = 0.04).

These results regarding the noise and contrast restoration are confirmed by the 
qualitative analysis performed by the 2 nuclear physicians. Indeed, target and non-
target foci seen on the PET100 images were identically found on the PET50 + SP 
images, including small sub-centimetric and low contrast lesions. Consequently, 
they did not find any difference in the PET50 + SP and PET100 image interpretation, 
and would not have changed their report if it would have been based on PET50 + SP 
images alone.

Discussion
This study aimed to evaluate the benefit of the SubtlePET deep learning FDA and CE 
cleared algorithm, on daily PET/CT images with low count statistic acquisition, espe-
cially according to EANM or EU practice guidelines [26]. Only 2 very recent papers 
evaluated the clinical impact of this Deep Learning approach in low count PET images 
for more than 60 patients. Our study investigated more precisely the performances of 
SubtlePET, first from phantom experiments to clinical images of a large population (110 
patients) from daily practice, acquired on analogic or SiPM-based PET systems. Our 
results suggest that SubtlePET clearly allows a good restoration of qualitative (i.e. noise 
level) and quantitative (i.e. SUVmax) parameters on PET/CT images with a 50% reduc-
tion of total counts according to EU injection guidelines.
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Fig. 8  Scatter plot of the restoration of the hepathic Background Variability with respect to PET100 obtained 
with SubtlePET, as a function of the patient BMI, for the 110 patients
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In our work, a first series of phantom experiments allows us to evaluate the limits 
of SubtlePET considering 50% and 33% of the standard statistic. In the first case, the 
noise level, along with the SUVmax indexes are compensated for with SubtlePET (i.e. 
PET50 + SP). At the opposite, even improved by SubtlePET, our results suggest that a 
66% reduction in statistics (i.e. PET33 + SP) leads to a potential loss of information in 
terms of noise increase and most importantly, lesion detectability for the D710 and DIQ4 

Table 8  SUVmax, SUVpeak, standard deviation of the background region and Contrast-to-noise ratio 
indexes measured on the 60 lesions selected by the physicians on PET100, PET50 and PET50 + SP 
series of our patients

PET100 PET50 PET50 + SP
60 lesions

SUVmax

Mean value 10.9 11.3 10.4

Standard deviation 4.9 5.3 5.3

Mean ΔSUVmax – 2.9% − 5.4%

Std dev of ΔSUVmax – 9.2% 10.4%

SUVpeak

Mean value 8.1 8.2 8.0

Standard deviation 4.5 4.6 4.8

Mean ΔSUVpeak – 1.2% − 2.6%

Std dev of ΔSUVpeak – 4.4% 5.8%

SD of the background region

Mean value 0.29 0.32 0.27

Standard deviation 0.14 0.15 0.14

Mean ΔSD – 16.4% − 8.4%

Std dev of ΔSD – 15.8% 10.2%

CNR

Mean value 75.2 62.8 83.1

Standard deviation 121.3 86.3 127.0

Mean ΔCNR – − 9.5% 3.3%

Std dev of ΔCNR – 13.6% 14.4%
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Fig. 9  Scatter plot of the variation of Contrast to Noise Ratio between the PET100 and the PET50 ± SP 
images, as a function of the PET100 SUVmax, for the 60 lesions selected by the physicians. The CNR restoration 
is less dependent to lesion SUVmax with SubtlePET
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PET system. The SiPM-based DMI4 PET system is less limited by the statistic reduction, 
since for E1 & E2 experiments, the detectability seems to be preserved event with 33% of 
the statistic. This result was confirmed by the analysis of patient image quality in Table 6, 
where SubtlePET enhancement of PET33 images did not restore the quality of PET100 
images (although for 4 patients, SubtlePET provides good image quality restoration as 
shown in Additional file 1: Fig. S10). The reason for this can be attributed to the train-
ing data and the corresponding noise restoration task. Since all training data was from 
North America (NA) where the dose of FDG injected is higher (PET100: ~ 6 MBq/kg), 
the PET25 of NA can be approximated to ~ 1.5 MBq/kg. This dose is still higher than the 
PET33 of EU which is ~ 1 MBq/kg. Since the SubtlePET algorithm was not trained to 
restore such low count PET, the resulting performance is not optimal. Considering this 
main limit of the SubtlePET algorithm for EU, we decided to focus our patient analysis 
using only a 50% reduction in the statistic. These limitations must however be investi-
gated for each user facility, since they are clearly dependent on the type of PET system 
and the image acquisition and reconstruction set-up.

The analysis of the image quality by our two senior physicians showed that even for 
PET100 images, the image quality can be heterogeneous and of poor quality. This can be 
explained by the presence of patients with a high BMI and by the imaging system used. 
For example 13/16 level 2 images were acquired on the GE D710 system. It can also be 
seen that, in the presence of patients with a BMI > 30, applying SubtlePET to PET100 
images potentially improves the image quality and therefore the interpretation of the 
images.

In a previously published paper, Chaudhari et  al. report comparable SUVmax and 
SUVmean values between PET100 and PET25 + SP images evaluated on 65 lesions in 15 
patients [21]. This is partially in line with our conclusions, since we obtained comparable 
SUVmax values on PET50 + SP or PET33 + SP images, but statistically reduced SUVmean 
values on the spheres of the phantom experiments and on the patient’s lesion. Most of 
the differences in quantitative SUV metrics (mean, peak, Max) after SubtlePET process-
ing were ~ 5% of PET100. This variation is clinically insignificant and falls below the test-
rest reproducibility of PET scans.

Recently, Schaefferkoetter et al. assessed the performances of a simpler U-Net archi-
tecture on patients [19]. The evaluation involved 20 patients (including 12 patients 
presenting 65 lesions), for whom each image was reconstructed with acquisition times 
divided by up to 20. The enhanced low time images were compared to the full-time 
image and the low time smoothed images. The authors noted a noticeable improvement 
in overall image quality with their deep learning approach, but associated with a deg-
radation in the mean quantification of lesions. The impact on SUVmax values was not 
assessed by the authors.

A very recent paper investigates the ability of SubtlePET to produce images of ade-
quate diagnostic confidence which were considered non-inferior to native scans with two 
different non-TOF PET/CT scanner models, for a 2/3 FDG standard dose, on 61 patients 
[24]. They did not investigated a larger dose reduction due to practical considerations, 
but not from objective reasons. Our results on phantom experiments, clearly confirm 
that a dose reduction up to 50% can be achieve without any lost in the lesion detectabil-
ity, signal to noise ratio or quantitation. Our clinical results are in line with this work, 
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since they reported no significant difference between datasets in lesions’detectability, 
target lesion mean SUVmax value, and liver mean SUVmean values. No false-positive 
lesions were neither reported in PET enhanced with SubtlePET.

Compared to other deep learning based denoising approaches [18, 19], the optimiza-
tion steps implemented in SubtlePET were able to correctly recover the SUVmax values 
of the lesions maintaining a noise level equivalent to full-time images.

We also limited our study to one lesion per patient in order to remove any bias in the 
quantitative analysis, using multiple lesions coming from the same reconstruction as it 
was done by Chaudhari et al. or Schaefferkoetter et al. [19, 21].

Another limitation of our study concerns the use of spheres in the phantom of much 
smaller sizes than the lesions found in our patients. The issue of detectability really arises 
for small lesions. Since one aim of this work was to evaluate the limits of SubtlePET, 
we found it more interesting to integrate microspheres in our phantom experiment. We 
thus showed that reducing the acquisition time entailed a risk of non-detection of small 
lesions and that SubtlePET was not able to recover these lesions. This is quite under-
standable as this approach consists in detecting the hot spots of the images to differ-
entiate noise from useful signal. Since the signal is not distinguishable from the noise 
present in the images, the software cannot recreate this signal which is somehow 
expected. In the case of pre-identified small lesions (< 7 mm), a longer acquisition can 
then be performed.

These results were obtained by considering a reduction in counting by reducing the 
acquisition time of list-mode data. As the counting statistic varies linearly with the num-
ber of coincidences detected, these results can be extrapolated to a direct reduction of 
the injected dose, at the limit of the random coincidences rate variation [25].

Practically, SubtlePET offers new perspectives such as, dividing the injected dose by 2 
to reduce the patient and staff exposure, scanning twice as fast when necessary (children, 
painful patients, long delays in appointments and the need to increase the number of 
patients per day, emergencies, etc.…) or the possibility to make real whole body and not 
mid-thigh vertex more easily. On the other hand, we can question ourselves on the inter-
est to use SubtlePET on low noise images obtained with the latest long FOV SiPM PET 
models that offer almost noise-free images. Since SubtlePET is designed to denoise PET 
images, applying it on noise free or PET100 images could result in additional smooth-
ing that would degrade the interpretability of the exams, with a loss of quantification as 
shown for large patients (Table 7).

In this work, we investigated SubtlePET on F-18-FDG PET images. SubtlePET™ is 
FDA-cleared for use with 18F-FDG and 18F-Amyloid tracers and, since june 2021, is 
now CE-marked for use with 18F-FDG, 18F-Amyloid, 18F-Fluciclovine, 18F-DOPA, 
18F-Choline, 18F-DCFPyL, Ga-68 Dotatate and Ga-68 PSMA radiotracer PET images, 
expanding coverage for Prostate (PSMA) and Neuroendocrine tumors. It will be inter-
esting to evaluate the performances of such algorithm on other radioactive tracers such 
as 82Ru for which the image is naturally smoother due to higher energy of the positron 
and a larger mean free path of the positron. The same approach will have to be extended 
to other F-18 radiolabeled since their spatial distribution which was potentially learned 
for the CNN differs from the FDG distribution. In parallel to this study, we tried to test 
SubtlePET™ 2.0 with other tracers like F-Dopa or F-Choline and the visual results seem 
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to be as effective as those obtained with FDG (Additional file  1: Fig. S11). A similar 
approach to SubtlePET could also be used for SPECT imaging, either to reduce dose or 
acquisition time.

Conclusion
We assessed the performances and potential limitations of a new neural network-
based denoising approach on phantom datasets and on a large patient population 
from daily practice, benefiting from F18-FDG PET exams based on EU recommended 
standard of 3 MBq/kg injected activity. In our phantom study and patient image qual-
ity analysis, reducing the count statistic as low as 33% leads to a loss of detectability 
and loss of image quality, making the image not good enough for interpretation. Com-
pared to other similar architectures, for the half-duration acquisitions, the optimi-
zation steps implemented in SubtlePET statistically recover the quantification of the 
phantom experiments and correctly but not statistically recover the SUVmax values 
of the lesions. It also maintain a noise level equivalent to full-time images, yielding 
a lesion contrast-to-noise ratio comparable to that of full statistical PET acquisition 
and did not induce any modification of the final clinical report. Based on our results, 
SubtlePET is adapted to clinical practice for half-duration or half-dose acquisitions 
based on EU practice of 3 MBq/kg without diagnostic confidence loss.
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