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Background: Glioblastoma (GBM) is one of the most common and malignant brain tumors. 
Cardiotrophin-like cytokine factor 1 (CLCF1) is a member of the IL-6 superfamily. However, the clinical 
significance, potential role, and molecular mechanism of CLCF1 in GBM remain obscure. Here, the 
expression and prognostic significance of CLCF1 was investigated in GBM.
Methods: The Cancer Genome Atlas (TCGA) GBM and Chinese Glioma Genome Atlas (CGGA) datasets 
were downloaded and analyzed by using Gene Expression Profiling Interactive Analysis (GEPIA). Next, 3 
shRNAs targeting CLCF1 were designed, and silencing efficiency was examined with real-time polymerase 
chain reaction (PCR). Cell Counting Kit 8 (CCK-8), flow cytometry, transwell, and wound healing assays 
were used to study the function of CLCF1 in glioma cells.
Results: We found increased expression of CLCF1 as an unfavorable prognostic marker in GBM. 
Functionally, down-regulation of CLCF1 significantly reduced cell proliferation, induced cell apoptosis 
and cell cycle G2 phase arrest, and weakened the migration and invasion of GBM cells. Downstream 
pathway analysis was conducted, and potential targets in cytokine receptors, extracellular matrix (ECM) 
receptors, apoptosis, and the cell cycle were uncovered. Finally, transcriptional regulators were analyzed, and 
bromodomain-containing protein 4 (BRD4) was found to activate CLCF1 in GBM. 
Conclusions: CLCF1, transcriptionally activated by BRD4, promotes glioma and serves as an unfavorable 
marker in GBM.
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Introduction

Glioblastoma (glioblastoma multiforme, GBM) is one of 
the most common and malignant grade IV glial tumors 
(1,2). Mutations (MUT) in isocitrate dehydrogenase (IDH) 
and O6-methylguanine-methyltransferase (MGMT) 
promoter methylation are 2 prognostic biomarkers of GBM 
(3). Typical molecular changes include MUT in receptor 
tyrosine kinase (RTK), rat sarcoma (RAS), phosphoinositide 
3-kinase (PI3K), p53, and retinoblastoma protein (RB) 
signaling genes (4,5). Although surgery combined with 
radiation therapy and chemotherapy has been widely used 
for the treatment of GBM, the prognosis is still poor. Thus, 
it is necessary to identify all potential therapeutic targets for 
GBM and clarify their underlying mechanisms.

Increasing evidence indicates that immune cells and 
cytokines (6) in the tumor microenvironment are involved in 
GBM progression (7), prognosis (8), and therapy response (9). 
Cardiotrophin-like cytokine factor 1 (CLCF1) is a member 
of the IL-6 superfamily (10) and forms a heterodimer 
complex with cytokine receptor-like factor 1 (CRLF1). As 
a potent neurotrophic factor, CLCF1 competes with ciliary 
neurotrophic factor (CNTF) and binds ciliary neurotrophic 
factor receptor (CNTFR) (11). CLCF1 was also reported 
to bind and activate the ILST/gp130 receptor and Janus 
kinase (JAK)-STAT signaling cascade (12). Previous studies 
have shown that CLCF1 is involved in osteogenesis (13), 
osteoporosis (14), hematopoiesis (15), atherosclerosis (16,17), 
fibrosis (18), nerve regeneration (19), cold-induced sweating 
syndrome (20), inflammatory diseases (12), and lung cancer 
(11,16,21). CLCF1 was significant prognostic genes in 
both IDH-wild type (WT)/PTEN-MUT GBM and LGG 
patients, and was bond by the small molecule compound 
(+)-JQ1 as potential therapy for PTEN-mut glioma (22). 
However, further studies are needed to uncover the detailed 
function and regulation of CLCF1 in GBM. 

Recently, the bioinformatics research and microarray 
technology has enabled us to understand the occurrence, 
development and metastasis of glioma at the molecular level. 
Bioinformatics research revealed that therapeutic molecular 
targets and the theoretical basis of tumor with systematic, 
accurate and effective way, which makes it possible to study 
the genetic changes and molecular mechanisms of glioma and 
provides a new idea for studying the molecular pathogenesis 
of various diseases. Bioinformatics research including gene 
ontology (GO), Kyoto encyclopedia of genes and genomes 
(KEGG), protein to protein interaction analysis (GSEA), 
etc. These methods help us identify the core driving genes 

of the disease and the abnormal regulatory pathways in 
glioblastoma. Gene Expression Profiling Interactive Analysis 
(GEPIA) database including the genes expression and the 
survival prognosis of glioblastoma patients.

Here, we first studied the expression changes and 
prognostic significance of CLCF1 in GBM based on the 
GEPIA database. Then, the function of CLCF1 in glioma 
cells was investigated with gene loss-of-function strategies. 
Next, the downstream target of CLCF1 in GBM was 
analyzed. Finally, we analyzed the transcriptional activators 
for high expression of CLCF1 in GBM tumor samples. 
This study deepens our understanding of CLCF1 in GBM 
and provides a potential target for GBM therapy. We 
present the following article in accordance with the MDAR 
reporting checklist (available at https://atm.amegroups.
com/article/view/10.21037/atm-22-1164/rc).

Methods

Differential expression and prognostic significance of 
CLCF1 in GBM datasets

The expression and prognostic significance of CLCF1 was 
investigated with The Cancer Genome Atlas (TCGA) GBM 
and Chinese Glioma Genome Atlas (CGGA) datasets using 
Gene Expression Profiling Interactive Analysis (GEPIA) (23). 
The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013).

Cell culture and transfection

The human GBM cell lines U87 and U251 were purchased 
from the Institute of Biochemistry and Cell Biology of the 
Chinese Academy of Sciences, Shanghai, China. U87 and 
U251 cells were cultured in Dulbecco’s modified Eagle’s 
medium (DMEM) (Gibco, Thermo Fisher Scientific, 
Waltham, MA, USA). Three shRNAs targeting CLCF1 
were designed, and silencing efficiency was examined with 
real-time polymerase chain reaction (PCR).

The sequencing of shRNAs for CLCF1 were as follows: 
shRNA1 (5'-3'): GGCTGGGACCTATCTGAACTA; shRNA2 
(5'-3'): GCTGGGACCTATCTGAACTAC; shRNA3 (5'-3'): 
GCGAAGCCTCAATGACAAACT. The primer sequences 
of CLCF1 and GAPDH (housekeeping gene) were as follows: 
CLCF1 F(5'-3'): TTTCAACGAGCCAGACTTCAAC, 
R(5'-3'): GAGGCCACGCAAGTAACACA; GAPDH 
F(5'-3'): GGAGCGAGATCCCTCCAAAAT, R(5'-3'): 
GGCTGTTGTCATACTTCTCATGG. Gene expression 

https://atm.amegroups.com/article/view/10.21037/atm-22-1164/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-1164/rc
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quantification was performed with the 2−ΔΔCT method in this 
study.

Cell proliferation assays

Cell proliferation was measured using the Cell Counting Kit 
8 (CCK-8) assay. After 48 h of transfection, cells were seeded 
in 96-well plates at a density of 5×103 per well and cultured in 
an incubator for 0, 24, 48, and 72 h at 37 ℃. Then, 10 μL of 
CCK-8 solution (Beyotime Biotechnology, Shanghai, China) 
was added, and the cells were cultured in an incubator for 2 h. 
The OD450 was measured using a spectrophotometer (DS-11 
FX; DeNovix, Wilmington, USA).

Cell cycle assay by flow cytometry

The effect of CLCF1 on cell cycle arrest in GBM cells was 
assessed using a flow cytometer. Cells were harvested, washed 
twice using phosphate-buffered saline (PBS), and fixed with 
75% ethanol at 4 ℃ for at least 4 h. Then, the cells were 
collected and stained with PI solution/RNase A at 4 ℃ in the 
dark for 30 min, followed by flow cytometric analysis. 

Apoptosis assay by flow cytometry

The effect of CLCF1 on apoptosis in GBM cells was 
assessed using a flow cytometer. U251 cells were transfected 
and cultured for 24 h. Then, the cells were digested, washed, 
and resuspended in PBS. Finally, the cells were stained using 
Annexin V-FITC at 4 ℃ in the dark for 20 min and analyzed 
by flow cytometry.

Wound healing assay

Take cells from each group and add them into the well 
plate. There are 5 horizontal lines and 5×105 cells. After 
overnight incubation, 200 μL gun head is perpendicular to 
the horizontal line scratch on the back, and wash away the 
scratched cells. After 48 hours of treatment, take samples 
and take photos.

Transwell assay

U251 cells were routinely digested, centrifuged and collected, 
and cultured with serum-free DMEM. The cells were 
resuspended in the medium and made into cells with a density 
of 2.5×104 cells/mL suspension. 200 mL cell suspension was 
inoculated into the upper chamber of transwell chamber,  

800 mL DMEM medium containing 10% fetal bovine was 
added to the lower chamber. Incubate in 37 ℃ incubator for 
48 h. Take out the transwell chamber, gently wipe the non-
invasion cells in the upper chamber with a cotton swab, wash 
with PBS for 3 times, and dry them at room temperature for 
about 10 min. The cells were stained with 100 mL of crystal 
violet. Let it stand at room temperature for 20 min, and 
then wash it with PBS for 3 times. The invasion cells were 
observed and counted under the microscope. The experiment 
was repeated three times.

Gene set enrichment analysis (GSEA) of CLCF1-related 
pathways

GBM samples were separated into 2 groups (high and low) 
based on the median CLCF1 expression. GSEA was applied 
to identify the differences in the MSigDB (https://www.
gsea-msigdb.org/gsea/msigdb/collections.jsp) C2 collection 
between the high group and low group.

Dual luciferase assay

HEK-293T cells were plated on a 12-well plate and 
cultured at 37 ℃ in a humidified incubator with 5% 
CO2. One day after culture, the cells in each well were 
co-transfected with pcDNA3.1. The cells were also co-
transfected with pcDNA3.1-CLCF1-WT or pcDNA3.1-
CLCF1-MUT using Renilla luciferase expression vectors. 
The bromodomain-containing protein 4 (BRD4) inhibitor 
JQ1 was added to the 293T cells. After 48 hours of culture, 
luciferase activity was detected according to the steps of 
double luciferase reporter gene detection kit.

Statistical analysis

The statistical analysis was conducted with GraphPad Prism 
8.0. A t-test or one-way ANOVA was used to compare the 
difference between 2 or more groups. All cell experiments 
were replicated 3 times, and a P value <0.05 was considered 
statistically significant.

Results

CLCF1 is an unfavorable prognostic marker in GBM

To explore the clinical significance of CLCF1 expression 
in GBM, we first analyzed the differential expression of 
CLCF1 in GBM cancer and non-cancerous samples with 

https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
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the TCGA GBM dataset. As shown in Figure 1A, CLCF1 
had significantly higher expression in the cancer group, 
indicating an oncogenic role of CLCF1 in GBM. Then, we 

analyzed the prognostic significance of CLCF1 in GBM 
patients. As shown in Figure 1B,1C, GBM patients with 
higher CLCF1 expression had a significantly lower overall 

Figure 1 Clinical significance of CLCF1 expression in glioblastoma. (A) CLCF1 showed increased expression in TCGA GBM cancer 
samples; *, P<0.01; (B,C) Kaplan-Meier plot showing the overall survival rate (B) and disease-free survival rate (C) in the CLCF1 high and 
low GBM groups; the blue solid line represents low CLCF1 survival curve, and red solid line represents high CLCF1 survival curve; the 
blue dotted line represents the confidence interval of low CLCF1, red dotted line represents the confidence interval of high CLCF1; (D) 
expression level of CLCF1 in WHO grade II, III, and IV glioma samples; (E) expression level of CLCF1 in IDH mutant/wildtype and 
1p/19q co-deletion and non-co-deletion glioma samples; (F) Kaplan-Meier survival plot showing the prognostic performance of CLCF1 
in primary, recurrent, grade III, and IV glioma patients. CLCF1, cardiotrophin-like cytokine factor 1; TPM, transcripts per million; HR, 
hazard ratio; IDH, isocitrate dehydrogenase; TCGA, The Cancer Genome Atlas; GBM, glioblastoma.
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survival (OS) rate [hazard ratio (HR) =1.5, P value =0.031] 
and disease-free survival rate (HR =1.8, P value =0.0039), 
implying that CLCF1 may serve as a risk factor for GBM 
patients. CGGA datasets were utilized to validate the 
prognostic significance of CLCF1 in GBM. As shown in 
Figure 1D, increased expression of CLCF1 was observed in 
higher WHO grade GBM samples. Additionally, CLCF1 
was found to be highly expressed in IDH1 wild-type and 
non1p/19q co-deletion samples (Figure 1E). Finally, CLCF1 
was found to be significantly related to prognosis in primary 
glioma (P<0.0001), recurrent glioma (P=0.051), grade III 
(P=0.0022), and IV glioma patients (P=0.011) (Figure 1F).

CLCF1 silencing suppresses cell proliferation, migration, 
and invasion and enhances apoptosis in GBM in vitro

To investigate the biological functions of CLCF1 in 
GBM U87 and U251 cells, including cell proliferation, 
migration, invasion, cell cycle, and apoptosis, shRNAs 
were constructed. Expression of CLCF1 in the CLCF1 
knockdown groups was down-regulated compared to that 
in the control groups (Figure 2A). Cell proliferation in the 
CLCF1 knockdown groups was found to be significantly 
lower than that in negative control (NC) in both cell lines 
(Figure 2B,2C). As CLCF1 silencing exhibited a more 
pronounced effect in U251 cells, the subsequent assays were 
conducted in U251 cells. As shown in Figure 2D, CLCF1 
knockdown significantly reduced the proportion of cells in 
G0/G1 phase but slightly induced G2 cell cycle arrest. A 
higher percentage of apoptotic cells was found in the CLCF1 
knockdown groups than in the control groups (Figure 2D). 
These results suggest that CLCF1 might enhance the cell 
growth of GBM. The effect of CLCF1 on the migratory 
and invasive abilities of GBM cells was determined using 
transwell and wound healing assays, respectively. The 
transwell invasion assay results indicated that knockdown of 
CLCF1 reduced cell migration in GBM cells (Figure 2E). 
Migration in GBM cells was slower in the CLCF1 silencing 
group than in the control groups (Figure 2F). These results 
indicate that CLCF1 plays an oncogenic role by promoting 
cell migration and invasion in vitro.

Related downstream mechanisms of CLCF1 in GBM

To uncover the molecular mechanism of CLCF1 in GBM, 
we divided GBM cancer samples into CLCF1 high/low 
groups and performed GSEA. The top 10 significantly 
enriched Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways in the CLCF1 high and low groups are 
shown in Figure 3A. For the CLCF1 high group, immune- 
and cell proliferation-related pathways, such as cytokine-
cytokine receptor interaction (Figure 3B), extracellular 
matrix (ECM) receptor interaction (Figure 3C), and 
apoptosis (Figure 3D), were significantly enriched. For the 
CLCF1 low groups, we noticed that the gene set in the cell 
cycle (Figure 3E) was one of the most significantly enriched 
terms. To further analyze potential targets of CLCF1, 
a protein-protein interaction (PPI) network of CLCF1 
was constructed using the String database (Figure 3F).  
According to Figure 3F, CLCF1 was predicted to be 
related to leukemia inhibitory factor receptor (LIFR), 
cardiotrophin-1 (CTF1), JAK1, JAK2, signal transducer 
and activator of transcription 3 (STAT3), CNTF, CNTFR, 
CRLF1, IL-6 signal transduction (IL6ST), and tyrosine 
kinase 2 (TYK2). In fact, CLCF1 is a member of the IL-6 
cytokine family, and its potential role in inflammatory 
diseases and cancers has been reported (12). All of these 
results suggest that CLCF1 may play a complex role in 
GBM by repressing cell proliferation and regulating the 
tumor microenvironment through cytokine receptors and 
ECM receptors.

BRD4 transcriptionally activates CLCF1 in GBM

As CLCF1 showed significantly higher expression in GBM, 
we explored the factors that impact CLCF1 expression. 
First, we analyzed histone activation marks, such as 
H3K4me3 and H3K27ac peaks, in glioma cells and samples 
from the ChIP-Atlas database (24). As shown in Figure 4A,  
strong binding peak signals were not only found for 
H3K4me3 and H3K27ac, but also transcription factors 
such as BRD2, BRD4, MYC, MYC-associated protein 
X (MAX), and Mediator Subunit 1 (MED1) were found 
to bind to the CLCF1 promoter. Then, we validated the 
expression of 5 transcription factors with CLCF1 in the 
CGGA glioma datasets. As shown in Figure 4B, there was 
a strong positive correlation coefficient between BRD2, 
BRD4, MYC, and MAX and CLCF1 in both primary and 
recurrent glioma samples, suggesting that CLCF1 may be 
regulated by these transcription factors. As BRD4 showed 
the highest correlation coefficient with CLCF1 (0.359 for 
primary glioma and 0.28 for recurrent glioma), we chose 
BRD4 for subsequent validation. A dual luciferase assay 
was then conducted to test whether mutation of the BRD4 
binding cis-element in the CLCF1 promoter impacts 
CLCF1 expression. Binding sequencing was mutated, as 
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shown in Figure 4C, and the BRD4 inhibitor JQ1 was used 
to antagonize BRD4 function. The BRD4 inhibitor JQ1 
significantly reduced luciferase activity, while no significant 

difference was found in the mutant group (Figure 4D),  
implying that elevated CLCF1 was transcriptionally 
activated by BRD4 in glioma.

Figure 2 The effect of CLCF1 silencing in glioblastoma cells. (A) CLCF1 mRNA expression after shRNA transfection as measured by 
qRT-PCR; (B) CCK-8 assay of the viability of U251 and U87 cells after knockdown of CLCF1; (C) effect of CLCF1 silencing on the cell 
cycle distribution of U251 cells by used flow cytometry assay; (D) CLCF1 down-regulation induced apoptosis in U251 cells by used flow 
cytometry assay; (E) CLCF1 silencing in U251 cells reduced cell invasion were observed under electron microscope by stained with 0.1% 
crystal violet (magnification, 100×); (F) wound healing assay indicated that reduction of migration capability after CLCF1 knockdown in 
U251 cells were observed under electron microscope (magnification, 40×). *, P<0.05; **, P<0.01. CLCF1, cardiotrophin-like cytokine factor 1; 
OD, optical density; qRT-PCR, quantitative real-time polymerase chain reaction; CCK-8, Cell Counting Kit 8.
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Discussion

Accumulating evidence indicates that cytokines are widely 
involved in GBM progression and therapy response (6). 
Previous studies found that the high expression of lncRNA 
MIR155 host gene (MIR155HG) was a prognostic biomarker 
and associated with poorer overall survival in glioblastoma 
multiforme (25). Shugoshin 2 (SGO2) is a biomarker that 
is predictive of WHO pathological grading and patient 
survival in patients with gliomas (26). Nicotinamide 
phosphoribosyltransferase (NAMT), and C1q/TNF-related 
protein 1 (CTRP1) were reported to be potential prognostic 
and therapeutic biomarker for glioblastoma (27,28). In this 
study, we focused on the cytokine CLCF1. We uncovered 
its clinical significance and function in glioma cells and 
finally identified potential downstream targets and BRD4 
as a transcription activator for the elevated expression of 

CLCF1 in GBM. By binding to CNTFR, CLCF1 mediates 
interactions with the co-receptors glycoprotein 130 (gp130) 
and LIFR. In lung cancer, CLCF1-CNTFR signaling 
has been observed in cancer-associated fibroblasts (CAFs) 
and acts to promote cancer cell growth (21). Additionally, 
a decoy receptor/antagonist (16) engineered to target 
CLCF1/CNTFR signaling proved effective in inhibiting 
tumor growth, and the mechanism was related to guanosine 
triphosphate loading (11). Therefore, this study may provide 
a new therapeutic target and prognostic marker in GBM.

Given that CLCF1 showed significantly higher 
expression in GBM cancer samples, we then focused on 
the CLCF1 downstream pathways and targets to analyze 
the role of CLCF1 in GBM. As expected, the GSEA 
pathway analysis identified potential targets in 4 cellular 
processes: cytokines and receptors, ECM and receptors, 
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apoptosis, and the cell cycle (Figures 3,4). Interestingly, 
CLCF1 showed positive and negative correlations with 
pro-apoptosis markers (FAS, BAX, and CASP7) and 
cell cycle (CCNA2, CCNB1, and CDKN1C) markers, 
suggesting that CLCF1 may inhibit cancer cell growth in 
GBM. Furthermore, CLCF1 was positively correlated with 
cytokines (LIF, CXCL3, and CSF1), cytokine receptors 
(IL4R, TGFBR2, and CCR1), ECM proteins (COL1A1, 

COL1A2, and LAMA2), and ECM receptors (ITGA5, 
ITGA3, and ITGB5), most of which have been reported as 
oncogenes in GBM (29-31). As cytokines, ECM proteins 
and their receptors are well-recognized participants in cell-
cell communications of the microenvironment (6,32).Their 
significant correlations with CLCF1 imply that CLCF1 
may also play a tumor-promoting role by regulating the 
GBM microenvironment. In summary, CLCF1 may play a 
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complex role in GBM by repressing cell proliferation and 
regulating the tumor microenvironment through cytokines 
and ECM proteins and their respective receptors.

Transcription factors (33) are known regulators of gene 
expression and are markers in GBM. In this study, we found 
a strong binding peak and a significant positive correlation 
between 4 transcription factors and CLCF1, suggesting 
their transcriptional regulation of CLCF1 expression, and 
subsequent analysis identified BRD4 as a transcription 
factor for CLCF1.

BRD4, a member of the bromodomain and extraterminal 
(BET) protein family, plays an important role in controlling 
oncogene expression and genome stability (34). In glioma, 
BRD4 has been reported to promote glioma cell stemness 
(35-37) and progression (38-41). Recently, studies have 
indicated that BRD4 is a prospective therapeutic target 
for the treatment of GBM for its ability to penetrate the 
blood-brain barrier and target glioma tumor tissues with 
little side effects (42,43). Therefore, understanding the 
mechanism of CLCF1 as the target of BRD4 would provide 
another perspective for the treatment of glioma with BRD4 
inhibitors.

Here, this study reveals the expression and prognosis 
of CLCF1 in glioblastoma based on public information 
database and bioinformation analysis technology, in order 
to further clarify the mechanism in the occurrence and 
development of glioblastoma from a new perspective, seek 
new effective treatment targets and prolong the survival of 
patients. Collectively, by integrated bioinformatics analysis, 
this study revealed CLCF1 as a hazardous prognostic 
marker in GBM in vitro. CLCF1 might play a complex role 
in GBM by regulating GBM cancer cells and the immune 
microenvironment through cytokines, the ECM, and 
receptors. Finally, BRD4 may be involved in transcriptional 
activation of CLCF1 in GBM.
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